Assignment \#3, extra problems and notes

Problem A Suppose $f, g \in \mathcal{R}[a, b]$ are such that $f \leq g$ on $[a, b]$. Show that $\int_{a}^{b} f \leq \int_{a}^{b} g$ using the approach via upper/lower sums.
Problem B (a) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous (hence $f \in \mathcal{R}[a, b]$) and that $f \geq 0$ on $[a, b]$. It then follows from Problem A that $\int_{a}^{b} f \geq 0$. Show that if $\int_{a}^{b} f=0$, then $f(x)=0$ for all $x \in[a, b]$.
(b) Show that the statement above is false if we drop the continuity hypothesis (i.e., give an appropriate counterexample and briefly justify why it works).

Notes and hints :
Problem A is Theorem 8.24 from the text. You are allowed to use the properties shown in class and/or included in the notes posted on Canvas. Reproducing the argument given in the text will not be accepted.
Hint for Problem $B(a)$: Argue by contradiction, suppose that there is $c \in[a, b]$ such that $0<f(c)=: \alpha$, and deduce that there is a subinterval of $[a, b]$ on which f is bounded from below by $\alpha / 2$.
Exercise 8.2.8 Use the method suggested in Exercise 8.2.7 specified to the context of Exercise 8.2.8. You will need to justify the steps. Choose tags in such a way that you can calculate the Riemann sums (note the mention of 'geometric progressions'...)
Exercise 8.2.11 Interpret the expression in the problem as a Riemann sum (or an upper/lower sum) of some function on the appropriate interval. You are allowed to use "the usual calculus method" to calculate the integral, but you will need to rigorously justify convergence.

