MATH 322/422

Spring 2022

Assignment #4, notes and hints

Problem 3.6.21 This is pretty straightforward from the proof in Section 3.6.8 (or its version shown in class). The last question asks for the "best" two-sided inequalities relating the two quantities (i.e., which one is larger and by how much in the extreme).

Problem 8.3.6 This is based on the same ideas as Extra Problem B from Assignment #3 (solutions will be posted on Canvas lated today).

Problem 8.4.7 For the improper integral over [-1, 1] to exist, both integrals $\int_{-1}^{1} 0$ and \int_{0}^{1} must converge (as improper integrals). This needs to be shown if the answert is YES. If the answer is NO, you need to provide a counterexample and justify. *Hint*: If $\lim_{x\to c} (g(x) + h(x))$ exists, does it follow that $\lim_{x\to c} g(x)$ and $\lim_{x\to c} h(x)$ exist?

Problems 8.5.6, 8.5.9: The most important hypothesis in the Integral Test 3.35 is the function f being nonincreasing.

Exercise 8.6.2 There is a simple proof using one of the advanced theorems about Riemann integrability, or one can argue via lower/upper sums (this will be a somewhat tedious even if not very hard calculation). In both cases you will have to use the fact that Riemann integrable functions are bounded.

Exercise 8.7.3 All parts of this problem are easy except for question (b), which will be counted for extra credit. A more "to the point" version of that question is: "If x is a point for which $\lim_{t\to x} f(t)$ doesn't exist, is it still possible that F'(x) exists?"