Addenda and Corrigenda to Chapter 8, *Local Operator Theory, Random Matrices and Banach Spaces* by K. R. Davidson and S. J. Szarek

1. P. 346, the *Added in proof* section:

 (i) The paper [1a], which is a revised version of [105], has been circulated in the meantime; it contains additionally some concentration results for not-necessarily-extreme eigenvalues.

 (ii) More precise (but still presumably far from optimal) results in the same direction as [1a] were obtained in [7a].

2. P. 346, inequality (4): a factor $1/L$ in the middle expression is missing. It should read

 $$
 \mathcal{P}(F \geq M + t) \leq 1 - \Phi(t/L) < \exp(-t^2/2L^2)
 $$

3. P. 349, Theorem 2.8: more quantitative results (i.e., estimates valid for any dimension rather than in the limit) were obtained in [2a] and [6a]. In particular, some of the results of [6a] do not require that the distribution of the entries be Gaussian.

4. P. 352, inequality (11): a factor \sqrt{n} in the middle expression is missing. It should read

 $$
 \mathcal{P}(F \geq 2 + \sigma t) < 1 - \Phi(t\sqrt{n}) < \exp(-nt^2/2),
 $$

5. P. 353, Theorem 2.13: a factor \sqrt{n} in the middle expression in the second displayed formula is missing. It should read

 $$
 \max \{ \mathcal{P}(s_1(\Gamma) \geq 1 + \sqrt{\beta} + t), \mathcal{P}(s_m(\Gamma) \leq 1 - \sqrt{\beta} - t) \} < 1 - \Phi(t\sqrt{n}) < \exp(-nt^2/2)
 $$

6. P. 354, Problem 2.14: the existence of the limit was proved in [3a].

7. P. 357, Problem 2.18: solved in the affirmative in [4a].

8. The book [5a], and particularly its section 8.5, overlaps and complements the material presented in Section 2 of the Chapter.
New references

[4a] U. Haagerup and S. Thorbjornsen, A new application of random matrices: Ext($C^*_r(F_2)$) is not a group, private communication.

