The Degrees of Permutation Polynomials over Finite Fields*

CHARLES WELLS

Case Western Reserve University, Cleveland, Ohio 44106

Communicated by Alan J. Hoffman

Received January 10, 1968

ABSTRACT

A number of theorems are proved concerning the connection between the cycle structure of a permutation of a finite field GF(q) and the degree of the polynomial representing it. In particular (Section 4) if K_r is the set of permutations of GF(q) moving $\leq r$ elements, then, if r grows slowly enough with respect to q as $q \to \infty$, almost all polynomials of degree $\leq q - 1$ representing permutations in K_r have degree $q - 2$.

1. INTRODUCTION

Let ϕ be a permutation of the elements of the finite field GF($q = p^n$). It is well known that there is a unique polynomial of degree $\leq q - 2$ which represents ϕ in the sense that for all $a \in$ GF(q), $f(a) = \phi(a)$. Such a polynomial is called a permutation polynomial. In this paper some results on the degrees of permutation polynomials are presented. Each of the theorems says roughly that, if K is a class of permutations which move a number of elements of GF(q) which is small compared to q, then, as $q \to \infty$, the number of permutations in K represented by polynomials of degree $q - 2$ is asymptotic to the number of permutations in K.

2. SOME SPECIAL RESULTS

Let $a, b \in$ GF(q), $a \neq b$. It may be verified by direct substitution, using the fact that, if $r \neq 0$ in GF(q), then $r^{q-1} = 1$, that the polynomial

\[f(a) = x + (a - b)(x - a)^{q-1} + (b - a)(x - b)^{q-1} \]

(1)

* Supported by NSF Grant GP 6565.
represents the transposition \((a \ b)\). Then, as in the case of any permutation polynomial \([3, \text{p. 59}]\), the coefficient of \(x^{q-1}\) is zero, so \(\deg f \leq q - 2\). But it is not hard to show that the coefficient of \(x^{q-2}\) is \((a - b)^2 \neq 0\), so that every transposition in \(\text{GF}(q)\) is represented by a unique polynomial of degree \(q - 2\).

If \((a \ b \ c)\) is a 3-cycle of elements of \(\text{GF}(q)\), it is represented by

\[
g(x) = x + (a - b)(x - a)^{q-1} + (b - c)(x - b)^{q-1} + (c - a)(x - c)^{q-1}.
\]

(2)

The coefficient of \(x^{q-2}\) here is

\[
\lambda = a(a - b) + b(b - c) + c(c - a),
\]

so that \(\lambda = 0\) if and only if \(a\) is a solution of the quadratic

\[
x^2 - (b + c) x + b^2 + c^2 - bc = 0.
\]

(3)

This has discriminant

\[
D = -3(b - c)^2,
\]

which has a square root in \(\text{GF}(q)\) if and only if \(-3\) is a square in \(\text{GF}(q)\).

We first consider the case in which \(q\) is odd. In this case \(-3\) is a square in \(\text{GF}(p)\) if and only if the Legendre symbol \((-3)/p\) is 1. But by the quadratic reciprocity law, if \(p = 1 \mod 4\), then

\[
\left(\frac{-3}{p}\right) = \left(\frac{3}{p}\right) = \left(\frac{p}{3}\right)
\]

and \((p/3) = 1\) if and only if \(p = 1 \mod 3\). If \(p \equiv 3 \mod 4\), then

\[
\left(\frac{-3}{p}\right) = -\left(\frac{3}{p}\right) = \left(\frac{p}{3}\right),
\]

yielding the same result. If \(-3\) is a square in \(\text{GF}(p)\), it is a square in \(\text{GF}(p^k)\) for any \(k\). If \(-3\) is not a square in \(\text{GF}(p)\), then it is a square in \(\text{GF}(p^k)\) if and only if \(k\) is even. But \(-3\) is not a square in \(\text{GF}(p)\) if and only if \(p = 2 \mod 3\). Since in this case \(k\) is even if and only if \(p^k = 1 \mod 3\), we have that, when \(p \neq 2, p \neq 3\), then \(-3\) is not a square in \(\text{GF}(q)\) if and only if \(q \equiv 2 \mod 3\).

When \(q \equiv 1 \mod 3\), the solutions of (3) are

\[
x = \frac{1}{2}(b + c \pm r(b - c)),
\]

where \(r^2 = -3\). The solutions are easily seen to be distinct from each
other and from b and c. So for every one of the $q(q - 1)$ ways of choosing b and c there are exactly two a's for which $(a \ b \ c)$ is a 3-cycle represented by a polynomial of degree $<q - 2$.

Now suppose q is even. We may write (3) here as

$$(x + b)(x + c) = (b + c)^2;$$

setting $s = b + c$ and $y = s^{-1}(x + b)$, this is $y^2 + y + 1 = 0$, which is irreducible over GF(2^n) if and only if n is odd. Again, the roots of (3'), when they exist, are distinct from each other and from b and c, so precisely the same result holds in this case. (The even case is due to D. Hayes.)

Since $(a \ b \ c)$, $(b \ c \ a)$, and $(c \ a \ b)$ are all the same, this proves

Theorem. Every transposition over GF(q) is represented by a unique polynomial of degree $q - 2$. If $q \equiv 2 \pmod{3}$, then every 3-cycle is represented by a polynomial of degree $q - 2$. If $q \equiv 1 \pmod{3}$, then all but $\frac{2}{3}q(q - 1)$ 3-cycles are represented by polynomials of degree $q - 2$.

The connection with the comments at the end of the first section is clear when it is noted that there are $3q(q - 1)$ elements of GF(q) altogether.

The preceding two theorems have the following corollary:

Corollary. The symmetric group of permutations of GF(q) is generated by the permutations represented by polynomials of degree $q - 2$. If $q \equiv 2 \pmod{3}$, then the alternating group is generated by the even permutations represented by polynomials of degree $q - 2$.

In this connection the results of [6] should be noted.

If $q = 3^n$, one may prove similarly that all but $3^n(3^n - 1)$ 3-cycles are represented by polynomials of degree $q - 2$. Certain other special results may be obtained. For example, an explicit formula may be obtained for products of two disjoint transpositions. But even for 4-cycles an explicit formula seems difficult to get. The procedure used above to obtain the formula for 3-cycles breaks down because, when the polynomial corresponding to (3) has roots, the roots may not be distinct from the other elements already chosen to be in the 4-cycle (this happens already in GF(25)). However, it is true that a polynomial representing a 4-cycle always has degree $q - 2$ if $q \equiv 3 \pmod{4}$.

One may also treat in the same way the question of whether or not other coefficients occurring in the representing polynomial are zero. For example, consider again the transposition $(a \ b)$, $a \neq b$. In general, the
coefficient of \(x^{q-1-r} \) (for \(0 \leq r \leq q - 1, r \neq q - 2 \)) in the polynomial representing \((a \ b)\) is

\[
(-1)^r \binom{q-1}{q-1-r} (a - b)(a^r - b^r).
\]

However,

\[
\binom{q-1}{q-1-r} \equiv (-1)^r \pmod{p}.
\]

This is clear if \(r = 1 \). It is well known and easy to show that

\[
\binom{q-1}{q-1-r} = \binom{q-1}{q-1-r} - \binom{q-1}{q-1-r+1}.
\]

But the right side is 0 (mod \(p \)) by the Lucas criterion (this may also be shown by induction). Then (4) follows by induction on \(r \).

It follows from (4) that the coefficient of \(x^{q-1-r} \) is simply \((a - b)(a^r - b^r)\) for \(r \neq q - 2 \), and the coefficient of \(x \) is \((a - b)(a^{q-2} - b^{q-2}) + 1\).

Results analogous to the preceding results on degrees can be read off from these formulas. For example, excluding the anomalous case \(r = q - 2 \), there are \(a \) and \(b \) in \(\text{GF}(q) \) for which the coefficient of \(x^{q-1-r} \) in the polynomial representing \((a \ b)\) is zero if and only if \((r, q - 1) \neq 1\).

The coefficient of \(x \) is more complicated, but it may be proved using the same kind of arguments as for the case of the 3-cycle that there are \(a, b \in \text{GF}(q) \) for which the coefficient of \(x \) is zero if and only if one of these two possibilities occurs: (1) \(p = 2 \) (here setting \(a = 0 \) or \(b = 0 \) is sufficient, but there are pairs \((a, b)\) neither of which is zero which yields a zero coefficient of \(x \) as well); (2) \(p \neq 2 \) and \(q \equiv 1 \) or 4 (mod 5).

3. An Asymptotic Result

Let \(r \) and \(s \) be fixed positive integers, and \(k_2, \ldots, k_s \) non-negative integers for which

\[
\sum_{i=2}^{s} ik_i = r. \tag{5}
\]

Let \(P(k_2, \ldots, k_s) \) be the set of permutations of \(\text{GF}(q) \) which are the disjoint products of \(k_2 \) transpositions, \(k_3 \) 3-cycles, etc. Such permutations move exactly \(r \) elements.

Theorem. There is a constant \(C = C(k_2, \ldots, k_s) \) for which \(P(k_2, \ldots, k_s) \)
contains $Cq!/(q - r)!$ permutations, of which not more than $2q!/(q - r + 1)!$ are represented by polynomials of degree less than $q - 2$.

Corollary. The number of permutations in $P(k_2, \ldots, k_s)$ represented by polynomials of degree $q - 2$ is asymptotic to the number of all permutations in $P(k_2, \ldots, k_s)$ as $q \to \infty$.

Proof of Theorem: Let (a_1, \ldots, a_r) be an arbitrary r-tuple of distinct elements of $GF(q)$. There are clearly $q!/(q - r)!$ such r-tuples. The map β which takes each r-tuple (a_1, \ldots, a_r) into the (unique) permutation in $P = P(k_2, \ldots, k_s)$ which contains a_1, \ldots, a_r in that order is not injective. For example, (a, b, c) and (b, c, a) both go into $(a b c)$. But there is a number $B = B(k_2, \ldots, k_s)$ not dependent on (a_1, \ldots, a_r) with the property that each permutation in P comes under β from exactly B such r-tuples. In fact [5, p. 67]:

$$B = \prod_{i=2}^{s} i^{k_i} (k_i!)$$

(6)

If we now let $C = 1/B$, we have the first part of the theorem.

Now a permutation of $P(k_2, \ldots, k_s)$ is represented by a polynomial

$$f(x) = x + \sum_{i=2}^{s} \sum_{j=1}^{k_i} \sum_{n=1}^{i} (a_{i,j,n} - a_{i,j,n+1})(x - a_{i,j,n})^{n-1}$$

(7)

(cf. (1) and (2)), where the given permutation takes $a_{i,j,n}$ into $a_{i,j,n+1}$ ($i = 2, \ldots, s; j = 1, \ldots, k_i; n = 1, \ldots, i$) and where one sets $a_{i,j,i+1} = a_{i,j,1}$.

It follows that the coefficient of x^{q-2} is given by a quadratic in $a_{2,1,1}$ with coefficients which are polynomials in the other $a_{i,j,n}$. This quadratic is

$$Q(a_{2,1,1}) = \sum_{i=2}^{s} \sum_{j=1}^{k_i} \sum_{n=1}^{i} a_{i,j,n}(a_{i,j,n} - a_{i,j,n+1})$$

(8)

Thus an r-tuple (a_1, \ldots, a_r) determines a permutation in $P(k_2, \ldots, k_s)$ of degree less than $q - 2$ if and only if $a_{2,1,1}$ (which is a_1) satisfies

$$Q(a_{2,1,1}) = 0.$$

There are $q!/(q - r + 1)!$ possible choices for a_2, \ldots, a_r; once these are chosen there are at most 2 possibilities for a_1. Thus there are at most $2q!/(q - r + 1)!$ permutations in $P(k_2, \ldots, k_s)$ represented by polynomials of degree less than $q - 2$.

Since the ratio of this number to the order of $P(k_2, \ldots, k_s)$ is $2/[C(q - r + 1)]$, the corollary follows.
4. Further Results

The theorem of Section 3 requires \(r \) to be fixed. It is possible to allow \(r \) to grow slowly with respect to \(q \) and obtain the same result, as the following theorem asserts.

Let \(\Gamma \) denote the usual \(\Gamma \) function restricted to the real numbers \(\geq 1 \). Then, for any integer \(n > 0 \), \(\Gamma(n) = (n - 1)! \), and \(\Gamma \) is injective. We define the factorial root \(\Gamma^{-1}(x) \) of an arbitrary real number \(x \geq 1 \) by

\[
\Gamma^{-1}(x) = 1 - \frac{1}{x}.
\]

Let \(N(q, r) \) be the number of permutations of \(GF(q) \) which move at most \(r \) elements, and let \(M(q, r) \) be the number of such permutations represented by polynomials of degree \(< q - 2 \). Then we have

Theorem. For any \(\epsilon > 0 \), as \(q \to \infty \),

\[
\frac{M(q, \Gamma^{-1}(q^{1-\epsilon}))}{N(q, \Gamma^{-1}(q^{1-\epsilon}))} \to 0.
\]

Corollary. For fixed \(r \), as \(q \to \infty \),

\[
\frac{M(q, r)}{N(q, r)} \to 0.
\]

Proof of Theorem: By the theorem of Section 3,

\[
N(q, u) = 1 + \sum_{r=2}^{u} \frac{q!}{(q - r)!} \sum_{P_r} C_{P_r},
\]

where \(P_r \) ranges over the set of all \(P(k_2, \ldots, k_s) \) such that \(k_2, \ldots, k_s \) satisfy (5) and where \(C_{P_r} \) is the constant \(C \) of the theorem of Section 3 for that \(P(k_2, \ldots, k_s) \). If \(A_u \) is the number of cycle classes of permutations which move not more than \(u \) elements and if \(C_0 = \min_{r, P_r} C_{P_r} \), then

\[
N(q, u) > A_u C_0 q! / (q - u)!.
\]

We now estimate \(C_0 \). Let \(B_{P_r} = B \) defined by (6). We recall that \(B_{P_r} \) is the number of \(r \)-tuples yielding the same permutation of \(P_r \) and that \(B_{P_r} \) depends only on \(P_r \), not on the particular permutation of \(P_r \). Moreover, \(C_{P_r} = 1 / B_{P_r} \). Now if two \(r \)-tuples give the same permutation of \(P_r \), then one must be a rearrangement of the other, so that \(\max_{r, P_r} B_{P_r} \leq u! \). Hence \(C_0 \geq 1 / u! \). Therefore

\[
N(q, u) > A_u q! / u! (q - u)!.
\]
Now

\[M(q, u) \leq 2A_u q!/(q - u + 1)! \]

so that

\[\frac{M(q, u)}{N(q, u)} \leq \frac{2u!}{q - u + 1}. \]

If \(u \leq R_t(q^{1-e}) \), then

\[
\frac{M(q, u)}{N(q, u)} \leq \frac{2q^{1-e}}{q - u} < \frac{2q^{1-e}}{q - q^{1-e}} = \frac{2q^{1-e}}{q^{1-e}(q^e - 1)} \to 0
\]

as \(q \to \infty \). This proves the theorem.

The corollary follows by an easy adjustment of the proof of the theorem.

Acknowledgment

The author wishes to acknowledge the helpful suggestions of L. Carlitz and D. Hayes.

References

The author will be happy to supply on request an extensive bibliography of works concerned with permutations of algebraic structures.