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Abstract

This article begins the development of a taxonomy of mathematical prose,
describing the precise function and meaning of specific types of mathemat-
ical exposition. It further discusses the merits and demerits of a style of
mathematical writing that labels each passage according to its function as
described in the taxonomy.
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1 Introduction
1.1 Rationale

Many students of mathematics are not experienced in reading mathematics
texts. They may not understand the nature and use of definitions. Even
if they do, they may not easily distinguish between a definition and an
informal discussion of a topic. They may not pick up on the use of a word
such as “group” that has a meaning in ordinary discourse but that has been
given a special technical meaning in their text. They may not distinguish
a plausibility argument from a careful proof, and in reading a careful proof
they may not grasp the significance of the words and phrases the author
uses to communicate the logical structure of the proof.

*Any reference to this paper should say “PRIMUS vol. 8, pages 116-136 (1998)”.
PRIMUS stands for “Problems, Resources and Issues in Mathematics Undergraduate
Studies” and its home page is at http://www.dean.usma.edu/math/resource/pubs/
primus/index.htm.



A thorough investigation of the distinctions and variations in usage
recorded in a preliminary way in this paper could be useful to the mathe-
matical community in several ways.

1. We expect that authors aware of the distinctions such as those we
have made will produce mathematical exposition that is easier to un-
derstand because the status of various parts of the text and the shape
of the mathematical argument will be clearly indicated.

2. Students who are aware of the possibilities will, we expect, have an
easier time identifying the intent of each part of an exposition. This
should be helpful to students in the same way in which an explanation
of some aspects of the grammar of a foreign language is helpful to the
student of a foreign language.

3. We further speculate that an author’s detailed awareness of the sta-
tus of different parts of a mathematical text should make it possible to
produce more effective mathematical exposition in hypertext by allow-
ing consistent treatment of pieces of text with similar status. Indeed,
it was the consideration of some of the problems involved in turning a
text [42] into hypertext that made it apparent that the distinctions we
make here are desirable. (Hypertext is described briefly in Section 4.)

1.2 About this paper

In Section 2, we provide a partial taxonomy of mathematical writing at the
paragraph or subsection level. This is intended as a first step toward a more
complete classification. We also comment on how some of the concepts we
have developed relate to teaching.

Section 3 describes two mathematical writing styles that we call the
Narrative Style and the Labeled Style. We argue that some version of the
Labeled Style, which makes use of the classification in Section 2 to label
each section explicitly, is particularly appropriate for undergraduate texts.
However, a knowledge of the classification of kinds of text could be useful
for the author of any mathematical text.

Section 4 provides a brief discussion of hypertext.

Many ideas of this paper are treated further in [43].

1.2.1 Caveat Although we expect our efforts to be useful to teachers
and writers of mathematics, we are not claiming that the lack of under-
standing of the structure of mathematical prose is the only stumbling block,



or even the most important one, for students trying to learn mathematics.
Our hope is to enhance the clarity of mathematical prose and to increase
students’ understanding of the kinds of prose that occur, thereby helping at
both ends with the communication of mathematics.

2 A classification of mathematical prose

A classification of the major modes of mathematical exposition is outlined
in this section. We must first establish some terminology.

2.1 Types of mathematical discourse

Part of mathematical discourse is written in a special variety of English or
some other natural language that we call the mathematical register. A
piece of text in a natural language, possibly containing embedded symbolic
expressions, is in the mathematical register if it communicates mathemat-
ical reasoning and facts directly. The presumption is that discourse in the
mathematical register could be translated into a sequence of statements in
a formal logical system such as first order logic. The mathematical register
is the register in which definitions, theorems and proof steps are written.

Other kinds of mathematical writing describe the history of a concept,
how to think about the concept, physical examples, and so on. They are in
some kind of general scientific or academic register that could be analyzed
further, but they are not in the mathematical register even though they are
concerned with mathematics. These are discussed in Section 2.3 below.

The distinction between the mathematical register and other kinds of
writing that occur in mathematics texts is certainly not precise. We are after
all discussing an aspect of natural language and so cannot expect to give the
mathematical register a mathematical definition. Nevertheless, we believe
that most mathematical writing can be easily seen to contain segments that
are clearly intended to communicate mathematical facts and reasoning, and
are thus in the mathematical register, and other segments that are clearly
not in that register.

Lanham [22, Chapter 6] compares college students taking courses in more
than one department to anthropologists who must come to understand three
or four cultures simultaneously while having only occasional fifty-minute
contacts with each of them. One aspect of mathematical culture is that
mathematicians in speaking and writing pass in and out of the mathematical
register freely and without comment. Like many aspects of any culture, this
practice is commonly quite unconscious. It is a serious challenge to many



students to determine whether a statement is or is not in the mathematical
register, a challenge made more difficult by the fact that neither teacher nor
student normally makes the distinction explicit. A clear articulation of the
concept of the mathematical register (whatever name one uses) should help.

2.1.1 On terminology A “register” of a natural language is a special
form of the language used for certain purposes. A good brief introduction
to the idea is that of Halliday in [13, pages 86ff]. A register may use spe-
cial words, special grammatical constructions (such as “thou” in a religious
register), and words and grammatical constructions with meanings differ-
ent from those in other registers, such as “definition” and “if...then” in
the mathematical register (see 2.2.1 below). Many of these special uses are
surveyed in [2], with references to the literature.

2.1.2 References Steenrod [33, page 1] called the mathematical register
the “formal structure”. That is the earliest reference to it that we know of.
Note that word “formal” also refers to a non-colloquial style of writing.
Writing in the mathematical register can be either formal or informal in
style.

Other writers who have discussed the mathematical register include De-
Bruijn [6] (the “mathematical vernacular” — his work contains a partial tax-
onomy) and F. Schweiger [31, 32]. Laborde [20] discusses mathematics and
language in connection with younger students, and some of her comments
amount to a partial taxonomy. Halliday and Martin [13] study the more
general “scientific register” in depth, but make little mention specifically of
mathematics.

2.2 Kinds of discourse in the mathematical register

We describe briefly the main kinds of discourse in the mathematical regis-
ter. As in any taxonomy, this inevitably involves occasionally stating the
obvious (for example in discussing what a definition or a theorem is). How-
ever, it is important in a taxonomy to state as exactly as possible what
each descriptive term means: we must define “definition”, “theorem” and
so on. The definitions we give are necessarily of the sort a dictionary would
give; they do not constitute mathematical definitions. (As the reader may
check, the definitions of these words actually given by dictionaries are quite
unsatisfactory as descriptions of their use in mathematics.) Giving a precise
description of something “everyone knows” is a valuable exercise which often
uncovers ambiguities and misunderstandings and provides new insights.



2.2.1 Definitions A definition prescribes the meaning of a word or
phrase in terms of other words or phrases that have previously been defined
or whose meanings are assumed known. Note that definitions are distinct in
subtle ways from other kinds of discourse in the mathematical register. For
example, “if” in a definition can mean “if and only if”. This sort of thing
is discussed in [2] and in [19, pp. 71-72].

2.2.2 Specifications A textbook, particularly at the elementary level,
sometimes must describe a type of object for which the author might con-
sider it pedagogically unwise to provide an explicit definition. An explicit
definition might be pedagogically unwise because of its technical difficulty
(for example defining sets as elements of a model of Zermelo-Friankel set
theory) or because it is unrelated to the way in which we usually think of
the object (for example defining an ordered pair (a,b) as {a,b,{a}}.)

A specification is a description of a type of mathematical object that
gives salient features of such objects, but which may fall short of giving a list
of properties that completely determine the type of object. The word “spec-
ification” is not usually used in this context (it was introduced in [42]), but
authors of texts for undergraduate courses often give specifications without
calling them specifications.

A specification may be accompanied by some choice of notation and some
explanation of how the notation serves to denote the relevant properties of
the object being specified. For example, one could describe an ordered pair
of elements of a set S as follows:

“An ordered pair of elements of S is a mathematical object that
determines a first coordinate and a second coordinate, each
of which is an element of S. If the first coordinate of an ordered
pair is a and the second coordinate is b, the ordered pair is
denoted by (a, b). For any two (not necessarily distinct) elements
a and b of S, there is a unique ordered pair with first coordinate
a and second coordinate b.”

Rosen [29, pages 38-39] refers to an ordered n-tuple as a collection,
but then goes on to give salient properties of an ordered triple in terms
similar to the specification of ordered pair just presented. Another example
is the way in which Herstein [15, page 114] uses what might be called a
specification in that he establishes a notation and specifies a canonical form
for an arbitrary member of R[z] (without proof). The article [41] urges
the use of specification. Other examples of specifications of mathematical
objects may be found there and in [42].



2.2.3 Theorems A theorem is a mathematical statement that has been
proved. Calling it a theorem indicates also that it is considered important.
Some authors distinguish between theorems and propositions, the former
being regarded as more important. Lemmas and corollaries are called by
those names to indicate that they are logically subsidiary to (as opposed to
being less important than) some theorem. Here usage is varied and many
theorems that are called lemmas (for example, Schanuel’s Lemma, Konig’s
Lemma and Kuratowski’s Lemma) are not in fact a step in the proof of one
theorem but instead are quite generally useful.

Students need to be told that theorems, propositions, lemmas, and corol-
laries are all assertions that have been proved and that the different names
might be intended by the author to suggest the function or the degree of
importance of the assertion.

2.2.4 Proofs A proof of a mathematical statement is an argument that
shows that the statement is correct. It is important to distinguish between
a proof of a theorem in this sense and a “proof” as studied in a text on
mathematical logic. The latter typically a list or tree of statements in a
formal system, each of which can be deduced from preceding ones by some
explicit rule of the system. (See for example [23], [37] and [10].) A proof in
this sense is a mathematical object about which theorems may be proved!
Unfortunately the phrase “formal proof” is used both to mean a proof as
mathematical object and also to mean a proof in our sense that is written in
a particularly careful and systematic manner. We shall use the word “proof”
only in the sense we have given.

A fine classification of proofs must await further analysis; we merely
mention a preliminary gross classification here:

1. Some proofs in our sense are more or less directly translatable sentence
by sentence into a proof in a formal system. Example:

“If S = T then, by definition, S and T have precisely the
same elements. In particular, this means that = € S implies
that x € T and also z € T implies that x € S. That is,
SCcTandT C S

from [18, p. 40].

2. Some proofs might be described as recipes for constructing proofs in
the mathematical register, for example:



“Lagrange’s identity can be established by “multiplying out”
the right sides of (3.16) and (3.17) and verifying their equal-
ity.”

(from [1, page 112].) It is not clear that anyone has ever produced
a version of formal logic that included a programming language for
writing proofs or transforming proofs into other proofs, but the lack
of such a system does not invalidate the requirement that the proof
“could in principle be translated into some version of formal logic”.

3. Some proofs are merely references, such as

“Proof. See Dunford and Schwartz, volume III, page 495.”

The individual sentences in a proof can also be classified further. The
following is a partial list. Again, these distinctions, if signaled appropriately,
could help inexperienced readers.

1. A proof will contain mathematical statements that follow from previ-
ous statements. We call these proof steps. They are in the math-
ematical register, like theorems, but unlike theorems one must often
deduce from the context the hypotheses that make them true.

2. Restatements. These state what must be proved, or, part way
through a proof, what is left to be proved or what has just been proved.

3. Pointers. These give the location of pieces of the proof that are out
of order, either elsewhere in the current proof or elsewhere in the text
or in another text. References to another text are commonly called
citations.

2.3 Other types of mathematical prose

Mathematical discourse not in the mathematical register falls roughly into
two categories: presentations of mathematics not in the mathematical reg-
ister, although they may contain chunks of prose in the mathematical regis-
ter within them, and miscellaneous discussions that do not directly present
mathematical facts. These are considered in this section and the next. Some
categories overlap with others; the same piece of text can be described as
being of two kinds simultaneously. For instance, fine points (2.3.3) can also
be examples.



2.3.1 Examples We outline here a preliminary taxonomy of the types
of examples that occur in mathematical writing. Although it is customary
to label pieces of mathematical prose as theorems, proofs, corollaries and the
like, it is unusual to distinguish examples explicitly by the various purposes
that they serve. It appears to us that inexperienced readers would benefit
by having the type of example labeled.

1. An easy example is an example that can be immediately verified
to be an example with the information already provided, or that is
already familiar to the reader. Easy examples are often given imme-
diately before or after a definition. Thus an introduction to group
theory may introduce the integers on addition or the cyclic group of
order two, describing it both in terms of modular arithmetic and as
symmetries of an isosceles triangle.

2. If an easy example is given before the definition, we call it a moti-
vating example. We have noted a sharp difference of opinion among
both students and writers as to whether it is appropriate to have any
motivating example at all. Those in favor of having them usually argue
that having the example in mind gives the reader something to which
he or she may relate various facets of the general, abstract definition
as it is being presented. Those opposed usually say that one can’t
tell from the example how it is an example (that is, which aspects
are salient) until the definition is known. (However, in giving the ex-
ample, one may point out the salient features and mention explicitly
that the definition following is intended to capture those features more
precisely and generally.)

3. A delimiting example is an example with the smallest possible num-
ber of elements or an example with degenerate structure. The trivial
group is a delimiting example of a group, and the discrete and indis-
crete topological spaces are delimiting topological spaces.

It is always worthwhile to try out a purported theorem on delimiting
examples. Also, beginning readers appear to have trouble applying
definitions to the empty set or singletons. Consider such questions as
these:

(a) What is the value of 07

(b) Does the 0-dimensional linear space have a basis?



(c) Can the empty set carry a group structure? A semigroup struc-
ture?

(d) What is the determinant of the empty matrix?

Consideration of such questions assist students in developing a facility
with logical manipulation and need not be time-consuming.

4. A deceptive non-example is a structure that the reader might mis-
takenly believe to be an example that actually is not. In the case of
groups the set of nonnegative integers with addition as operation is
worth mentioning because it reinforces the idea that one has to pay
close attention to details when verifying whether some object satis-
fies a definition. Many students need a lot of time to get used to the
idea that the degree of precision in mathematics far exceeds that in
day-to-day discourse.

Some books list conclusions that readers might inadvertently jump to
as pitfalls. Bourbaki used the dangerous bend sign Z to indicate such
pitfalls.

5. An elucidating example is one that serves either as a counterexam-
ple to unconscious assumptions that a student is likely to make or as
an example that is discussed in detail to clarify or elucidate the various
facets of the definition. One may repeat the motivating examples here
to tie them in. For instance, the group of symmetries of a square is
not commutative (counterexample to unconscious assumption). The
group of invertible 2 x 2 matrices illustrates that verifying associativity
need not be trivial.

6. A concept that overlaps with the kinds of examples listed above is the
notion of a set of inventory examples, a short list of examples, not
too general and not too special, to keep in mind when considering the
assertions made in the development of the theory. In the early stages
of group theory, for example, one might use Z, the nonzero rationals
with multiplication as operation, the Klein four-group, the symmetric
group on three letters, and perhaps the group of all bijections from
some infinite set to itself.

2.3.2 Applications An application of mathematics involves the recog-
nition that some aspects of a phenomenon in some field of study (not nec-
essarily mathematics) can be seen to be an instance of some mathematical



structure, and that known mathematical facts about the structure yield in-
sights into that phenomenon. For example, crystallographic groups can be
used to describe certain physical properties of crystals. The classification of
such groups put a severe restriction on the sorts of crystals that one may
encounter in nature.

A paragraph that mentions applications is a distinct kind of discourse
discussed in Section 2.4.4. A presentation of an application of a concept,
on the other hand, is a complete piece of exposition in its own right. Such
an exposition may have definitions, perhaps some theorems, and an explicit
discussion of the application.

2.3.3 Fine points and warnings A text may contain small sections
labeled “fine points” or “warnings” that mention exceptional cases, warn
against possible unwarranted assumptions, or describe other usage that may
cause confusion. These fall under other kinds of mathematical discourse
discussed here, but in a hypertext document such things would perhaps be
better labeled as warnings or fine points to give guidance to the user.

2.4 Prose that does not directly present mathematics

The kinds of mathematical discourse discussed in this section do not present
mathematical concepts as such, but rather provide motivation, ways of
thinking about concepts, and so on. Steenrod [33, page 9] provides a similar
discussion.

2.4.1 Mental representations A textbook often tries to give an expla-
nation of a useful way of thinking about a concept. This might be a rough
description, ignoring subtleties, intended as a first approximation. Such a
thing is in many cases an explication of the author’s mental representation
of the concept and may use pictures. Authors often begin such explanations
with words such as “intuitively”, although that word is seriously mislead-
ing since the statements following the word “intuitively” may not be at all
intuitive to a particular reader. It would be better to say something such
as: “A way of thinking about this concept that many mathematicians have
found useful is...”, since different mathematicians, not to mention different
students, have very different mental representations of concepts.
Mathematicians exhibit different attitudes toward the use of mental rep-
resentations in teaching. Some prefer to avoid discussing mental represen-
tations, either because they feel students should develop their own mental
representations or because they want to emphasize the primacy of explicit
and precise definitions, statements of theorems, and proofs. Such things
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are public and checkable, whereas some forms of mental imagery may have
private features that are difficult to communicate.

Many mathematicians hold, however, that the more distinct mental rep-
resentations one has and the more facility one has in going back and forth
among these, the better one’s understanding. One can hardly deny that cer-
tain facts become particularly transparent in certain representations. Also,
different representations have different associations and this can help one’s
grasp of a concept.

Many articles in the book [34] discuss mental representation (under var-
ious names, often “concept image”) in depth, particularly [35], [9] and [14].
See also [8, page 163], [16], [36], [41].

Mental imagery is discussed from a philosophical point of view, with
many references to the literature, by Dennett [7, Chapter 10], Chapter 10.
Lakoff [21] is concerned with concepts in general, with more of a linguistic
emphasis. One of Lakoff’s points is that human categories are not generally
defined as the set of all things that have certain properties (mathemati-
cal concepts are all like that), but (to vastly oversimplify) typically have
prototypical members, and one reasons about the category primarily by con-
sidering the prototypes. (See also [28].) Halliday and Martin [13, Chapter 8]
is concerned with scientific concepts. It is notable that the only mention in
that text of a concept that is like a mathematical concept in being an inter-
section of sets with defining predicates is in one paragraph on page 152. All
the other types of concepts discussed do not fit the mathematical model at
all.

2.4.2 Usage notes Usage notes describe variations in terminology and
symbols in the literature. Students are often confused by such variations,
particularly since often students don’t realize that there are variations.

This phenomonenon often involves some very common notation. Exam-
ples include the following;:

1. For some authors the natural numbers start at 0 and for others they
start at 1.

2. For some authors the statement “r is positive” (for a real number r)
means r > 0; for others it means r > 0. (The former is apparently
nearly universal in American secondary schools, but the latter is used
in many European systems. It dates back at least to Bourbaki [5,

pp. 4-5.)
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3. For some authors the expression A C B means A is a subset of B
(specifically allowing A = B); for others it means A is included in
but not equal to B (strictly included in B). It appears that the former
usage is more common in upper-level and graduate texts and the latter
is more common in undergraduate texts. This is discussed further in
[2].

Recommendations We urge that authors tell their readers about all the
variations in terminology that they know of. Authors may harbour strong
prejudice about what constitutes correct terminology, and discuss pros and
cons of other extant usage, but, to suppress alternative usage appears arro-
gant to us. Moreover, to us it seems particularly irresponsible for a textbook
not to mention common variations in usage.

We recommend that an author not use an old word or symbol with a new
meaning. It is too late to suppress the variation in the meaning of “positive”
or the inclusion symbol, but we hope that in the future authors who wish
to revise the terminology or symbolism would introduce entirely new words
or symbols instead of changing the meaning of an old one.

2.4.3 Historical discussions Historical discussions occur principally in
two ways. Many authors of undergraduate texts include short biographies
of mathematicians who invented the concepts and results being discussed.
Such ideas fascinate some but bore others. At any rate, this is a mode of
writing that appears in mathematical texts; we will call it history.

2.4.4 Pointers Pointers are statements that tell the reader where to
go for further information, either elsewhere in the same document or in
some other document. One of the great advantages of hypertext is that it
allows the reader efficient access to the text being pointed to. In fact, text
that points to more information in the same body of writing will essentially
disappear in hypertext, to be replaced by buttons or words to click on.

3 Mathematical writing styles

The second author has taught discrete mathematics from the set [42] of
classnotes for about eight years. These notes are written using TEX, which
has made it possible to revise them each time the course was taught. The
original desire was to make the notes easy to read, and so an effort was made
to write in a flowing, persuasive manner that carried the reader along. Over
the years, the author came to realize that students had difficulty disentan-
gling the purposes of the different parts of the text. As a result, the text
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has been gradually broken down into finer and finer bits, each labeled ac-
cording to its nature: definition, theorem, discussion, fine points, warnings
about possible misunderstanding, discussion of usage of words, example,
applications, and so on.

The result is that the notes have evolved from flowing mathematical
prose (an extreme style that we will call the Narrative Style) into another
extreme, a sort of engineering manual style with nearly every paragraph
labeled and numbered — that we will call the Labeled Style.

Let us agree to say that a book is in the Narrative Style if it contains
sections that typically are a page or more in length, with little in the way of
set-off statements other than displayed equations and perhaps theorems. In
contrast, we consider a book in which nearly every paragraph is numbered
and perhaps carries a caption in a way that indicates its purpose to be
in Labeled Style. The word “labeled” here refers to the labeling of the
paragraph not (or not only) by its subject matter, but by its intent —
example, remark, definition, and so on.

Two well-written books that illustrate the two styles are those by Gra-
ham, Knuth, and Patashnik [12] (Narrative Style) and by Barendregt [3]
(Labeled Style). The book by Barendregt is formal in style and divided into
sections with clear labels such as “Examples”, “Theorem”, “Remark” and
so on that give the intent of the section. The Graham-Knuth-Patashnik
book is written in clear, flowing prose with very few subdivisions. Some def-
initions and theorems are so labeled but others are stated without special
indication.

3.1 Examples of the styles

In this section, we illustrate the two styles by two presentations of integer
division, written specifically for this article, although they are based on [42].
An attempt has been made to keep the styles of the two examples at the
same (colloquial/informal) register.

3.1.1 An example of the Narrative Style

1. Division

An integer n is said to divide an integer m if there is an integer ¢
for which m = gn. For example, 3|6, since 6 = 2 x 3. The integer n
is called a factor of m if n divides m. The symbol for “divides” is a
vertical line: n | m means n divides m, or n is a factor of m.
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Don’t confuse the vertical line “|”, a verb meaning “divides”, with

the slanting line “/” used in fractions. The expression “3 | 6” is a
sentence, but the expression “6/3” is the name of a number, and does
not form a complete sentence by itself.

Because 6 = (—2) x (—3), it follows that —3|6. On the other hand,
it is not true that 4 | 14 since there is no integer g for which 14 = 4q.
There is of course a fraction ¢ = 14/4 for which 14 = 4q, but 14/4 is
not an integer.

Because 0 = 0 x 0, 0 divides itself. However, 0 divides no other
integer, since if m # 0, then there is no integer ¢ for which m = ¢ x 0.

Other familiar properties of integers are defined in terms of division.
For example, an integer n is even if 2 | n.

2. Properties of Division

Some properties of division are listed in the following theorem. Part
(b) implies that 0 is even.

Theorem a. Fvery integer is a factor of itself.
b. Fvery integer is a factor of 0.
c. 1 is a factor of every integer.

To prove (a), note that if m is any integer, then m = 1 x m, so
by Definition 1.1, m divides itself. Similarly the fact that m = m x 1
means that (c) is true.

Part (b) may be surprising. Here is why that statement is true: for
any integer m, 0 = m x 0, so by Definition 1.1, m is a factor of 0. O

3.1.2 An example of the Labeled Style In this presentation of the
Labeled Style, we have followed the suggestion by Steenrod [33] that the
section numbers be outdented. He said that doing that was typographically
difficult, but these days it is a trivial change to the TEX header file.

1. Division

1.1 Definition An integer n divides an integer m if there is an integer
q for which m = ¢n.

Related terminology The integer n is called a factor of the integer
m if n divides m.

Notation The symbol for “divides” is a vertical line: n | m means n
divides m, or n is a factor of m.
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1.2 Example 3|6, since 6 =2 x 3.

44‘77

Warning Don’t confuse the vertical line , a verb meaning “di-
vides”, with the slanting line “/” used in fractions. The expression
“3|6” is a sentence, but the expression “6/3” is the name of a number,
and does not form a complete sentence by itself.

1.3 Example Because 6 = (—2) x (—3), it follows that —3| 6. On the
other hand, it is not true that 4|14 since there is no integer ¢ for which
14 = 4q. There is of course a fraction ¢ = 14/4 for which 14 = 4q, but
14/4 is not an integer.

1.4 Example Because 0 = 0 x 0, 0 divides itself. However, 0 divides
no other integer, since if m # 0, then there is no integer ¢ for which
m=q X 0.

1.5 Definition An integer n is even if 2 | n.

2. Properties of division

Some properties of division are listed in the following theorem. Part
(b) implies that 0 is even.

2.1 Theorem a. Every integer is a factor of itself.
b. Every integer is a factor of 0.
c. 1 is a factor of every integer.

Proof If m is any integer, then m = 1 x m, so by Definition 1.1,
m divides itself. Hence (a) is true. Similarly the fact that m =m x 1
means that (¢) is true.

Part (b) may be surprising. Here is why that statement is true: for
any integer m, 0 = m X 0, so by Definition 1.1, m is a factor of 0. O

3.1.3 Paragraph numbering The Labeled Style could incorporate an
even more extreme form of numbering in which every paragraph has a sep-
arate number. We observe a decided split of opinion among expositors con-
cerning the question: Should everything be numbered or only the important
things? The argument for numbering everything in undergraduate texts is
that it allows ease of reference. The argument against is that numbering
serves to indicate importance, and this device fails, if everything is num-
bered.
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3.2 Discussion of the two styles

Perhaps most mathematicians prefer the Narrative Style. Steenrod [33,
page 2| advocated labeling the informal parts of the text, but it is not clear
whether he meant to use formal labels as in the example of Labeled Style
above, or that the lead sentence should indicate clearly the point of the
paragraph or the subsection.

However, the Labeled Style, we think, has the advantages of uniformity
and clarity of structure that makes it much more accessible to the reader.
This is one of the statements in this article that lend themselves to being in-
vestigated by methods used in educational research, for instance by running
pilot programs with control groups.

Let us consider definitions in more detail. As mentioned before, novices
often do not readily appreciate abstraction. Thus the idea that, in simple
cases, one can prove a theorem by writing out the definitions of the terms
involved is new to many students.

Clear awareness of the significance of definitions and their use, we sug-
gest, helps avert several problems that surface only later. The instructor
could therefore engage in a two-part process with the students to help them
understand the idea of definition:

1. The instructor can explain its constitution-like nature: everything to
be said about the concept being defined must ultimately refer back
to the definition. The definition is the source of all truth about the
object defined.

2. Then the instructor must spend some time training the students to
pick definitions out of texts such as Graham-Knuth-Patashnik [12].

In the example of the Narrative Style in section 3.1.1, the first definition
is signaled by the phrase “is said to”. Such usage is, however, not uniform
and although skilled readers have no trouble at all with this sort of thing,
we have encountered bright students who are quite inept at catching the
significance of various statements.

If a text has definitions that are clearly, uniformly and explicitly labeled,
the instructor has one fewer task. Once a concept such as ”definition” has
been explained, the students can take advantage of the fact that they are
displayed as such. The Labeled Style thus saves one from having to teach
the students the many ways in which that authors writing in the Narrative
Style indicate their definitions.
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The argument on the other side is that if mathematicians do not teach
students the ways in which definitions and other types of discourse in the
mathematical register are signaled in the Narrative Style, who will? And if
we are going to teach it, why not use texts written in the Narrative Style as
examples?

Some students, undoubtedly, absorb this information without being taught,
and in fact may often not be conscious of this knowledge, and have much
more skill than others at picking up clues to the logical structure of mathe-
matical prose than others do. The labeled style can help the ones who are
not so skilled and can hardly hurt the skilled ones. Of course, this variation
in students’ reading skills is a big factor in their performance in courses
other than mathematics, as well.

3.2.1 Caveat We have argued that using the labeled style will make it
easier for students to pick out the intent of each passage in a mathematical
text and as such will be useful for students beginning to study abstract
mathematics. We emphasize, however, that persuading the students that
the definitions must be taken literally and must be used in proofs is much
more difficult than teaching them to recognize a definition when they see it.
However, it is not necessary that every writer on the problems of teaching
write only about the most difficult problems, any more than it is necessary
for every mathematician to work on the Riemann Hypothesis!

Discussion of the problems with definitions in teaching may be found in
[27] and [39].

4 Hypertext

Hypertext was invented to facilitate navigation through a collection of inter-
related topics. The rough idea is that the text is read on a computer screen,
and at any point in the exposition, the reader can perform some action (for
example, clicking on a word) to obtain more information about some topic,
to see illustrations, or to explore related topics.

The form of a hypertext interface is a subject of current research. Con-
sider the difficulties that occur when, for example, the reader follows a trail
of concepts and wants to return to some specific spot in the trail [25]. Con-
sider what happens if a student wants to ask a question about a specific
topic: one needs an unambiguous way to refer to each piece of the text. A
survey of this topic is the book by Nielsen [26] (if you were reading this in
a hypertext system, you could click on this to get the full reference) which
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contains an excellent annotated bibliography.

4.1 Modes of discourse in hypertext

A suitable hypertext document should allow a reader to select further text
or illustrations not only with control over the concept being presented, but
also with control over the kind of presentation of the topic. We imagine the
reader clicking on the word “group”, for example, and being given a choice
of more examples, discussion of the motivation of the concept, references
for further study, and so on. We hope that the analysis of the conceptual
differences between different kinds of mathematical prose given in Section 2
will provide authors of hypertext documents an understanding of the sorts
of choices it is reasonable for them to offer the reader, thus contributing to
a perspicacious navigation system for the document.

The classification given here is probably too fine to be used in hypertext:
the reader can be confused by too many distinctions concerning what can
be read next. Icons or words describing the modes of discourse must be
carefully chosen. Ultimately, the best organization of hypertext will have to
be determined by observing its use.

Finally, we mention that many mathematicians object to a style of writ-
ing such as the Labeled Style in which the text is subdivided finely into
three or four levels of numbered sections; often in discussions the objection
is in part to the numbers themselves. However, in hypertext, the numbers
(and even subtitles, although that might be unwise for other reasons) can
be omitted. A cross reference may involve merely an underlined word (al-
though it could be a number) one clicks on to jump to the section being
referred to.
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