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Université de Lille 1

UFR de Mathématique
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Abstract

Let fi, i = 1, . . . , n, be copies of a random variable f and N be an Orlicz
function. We show that for every x ∈ Rn the expectation E‖(xifi)n

i=1‖N is maximal
(up to an absolute constant) if fi, i = 1, . . . , n, are independent. In that case we
show that the expectation E‖(xifi)n

i=1‖N is equivalent to ‖x‖M , for some Orlicz
function M depending on N and on distribution of f only. We provide applications
of this result.

1 Introduction and main results

Let fi, i = 1, . . . , n, be identically distributed random variables. We investigate here
expectations

E ‖(xifi(ω))n
i=1‖N ,

where ‖ · ‖N is an Orlicz norm. We find out that these expressions are maximal (up to an
absolute constant) if the random variables are in addition required to be independent.

In case the random variables are independent we get quite precise estimates for the
above expectations. In particular, let f1, ..., fn be independent standard Gauß variables
and let the norm on Rn be defined by ‖z‖k,∗ =

∑k
i=1 z∗i , where (z∗i )i is the non-increasing

rearrangement of the sequence (|zi|)i. Then we have for all x ∈ Rn

c1‖x‖M ≤ E ‖(xifi(ω))n
i=1‖k,∗ ≤ c2‖x‖M ,

where the Orlicz function is M(t) = 1
k
e
− 1

(kt)2 , t < 1/(2k), M(1) = 1. This case is of
particular interest to us. In a forthcoming paper ([2]) these estimates are applied to
obtain estimates for various parameters associated to the local theory of convex bodies.
Let us note that in the case k = 1 the norm ‖ · ‖k,∗ is just the `∞-norm.

Some of the methods that are used here have been developed by Kwapień and Schütt
([4], [5], [9], and [10]).

In this paper we consider random variables with finite first moments only. In the
proofs of our results we assume that the random variables have continuous distributions,
i.e. P{ω|f(ω) = t} = 0 for every t ∈ R. The general case follows by approximation. We
define the following parameters of the distribution. Let f be a random variable with a
continuous distribution and with E|f | < ∞. Let tn = tn(f) = 0, t0 = t0(f) = ∞, and for
j = 1, . . . , n− 1

(1) tj = tj(f) = sup
{
t | P{ω| |f(ω)| > t} ≥ j

n

}
.

Since f has the continuous distribution we have for every j ≥ 1

P{ω| |f(ω)| ≥ tj} = j
n
.

We define the sets

(2) Ωj = Ωj(f) = {ω| tj ≤ |f(ω)| < tj−1}
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for j = 1, . . . , n. Clearly, for all j = 1, . . . , n

P (Ωj) = 1
n
.

Indeed

Ωj = {ω| tj ≤ |f(ω)| < tj−1} = {ω| tj ≤ |f(ω)|} \ {ω| tj−1 ≤ |f(ω)|}.

Therefore we get
P (Ωj) = j

n
− j−1

n
= 1

n
.

We put for j = 1, . . . , n

(3) yj = yj(f) =

∫
Ωj

|f(ω)|dP (ω).

We have

n∑
j=1

yj = E|f | and tj ≤ nyj < tj−1 for all j = 1, . . . , n.

We recall briefly the definitions of an Orlicz function and an Orlicz norm (see e.g.
[3, 6]). A convex function M : R+ → R+ with M(0) = 0 and M(t) > 0 for t 6= 0 is called
an Orlicz function. Then the Orlicz norm on Rn is defined by

‖x‖M = inf

{
ρ > 0 :

n∑
i=1

M (|xi|/ρ) ≤ 1

}
.

Clearly, if two Orlicz functions M , N satisfy M(t) ≤ aN(bt) for every positive t then
‖x‖M ≤ ab‖x‖N for every x ∈ Rn. Thus equivalent Orlicz functions generate equivalent
norms. In other words to prove equivalence of ‖x‖M and ‖x‖N it is enough to prove
equivalence of M and N . Moreover, to define an Orlicz norm ‖ · ‖M it is enough to define
an Orlicz function M on [0, T ], where M(T ) = 1.

Any Orlicz function M can be represented as

M(t) =

∫ t

0

p(s)ds,

where p(t) is non-decreasing function continuous from the right. If p(t) satisfies

(4) p(0) = 0 and p(∞) = lim
t→∞

p(t) = ∞

then we define the dual Orlicz function M∗ by

M∗(t) =

∫ t

0

q(s)ds,
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where q(s) = sup{t : p(t) ≤ s}. Such a function M∗ is also an Orlicz function and

‖x‖M ≤ |||x||| ≤ 2‖x‖M ,

where ||| · ||| is the dual norm to ‖ · ‖M∗ (see e.g. [6]). Note that the condition (4) in fact
excludes only the case M(t) is equivalent to t. Note also that q satisfies condition (4) as
well and that q = p−1 if p is an invertible function.

We shall need the following property of M and M∗ (see e.g. 2.10 of [3]):

(5) s < M∗−1(s)M−1(s) ≤ 2s

for every positive s.
The aim of this paper is to prove the following theorem.

Theorem 1 Let f1, . . . , fn be independent, identically distributed random variables with
E|f1| < ∞. Let N be an Orlicz function and let sk, k = 1, . . . , n2, be the non-increasing
rearrangement of the numbers∣∣yi

(
N∗−1( j

n
)−N∗−1( j−1

n
)
)∣∣ , i, j = 1, . . . , n,

where yi, i = 1, . . . , n, is given by (3). Let M be an Orlicz function such that for all
` = 1, . . . , n2

M∗

(∑̀
k=1

sk

)
= `

n2 .

Then, for all x ∈ Rn

1
8
‖x‖M ≤ E‖(xifi(ω))n

i=1‖N ≤ 8 e
e−1

‖x‖M .

Corollary 2 Let f1, . . . , fn be independent, identically distributed random variables with
E|f1| < ∞. Let M be an Orlicz function such that for all k = 1, . . . , n

M∗

(
k∑

j=1

yj

)
= k

n
.

Then, for all x ∈ Rn

c1‖x‖M ≤ E max
1≤i≤n

|xifi(ω)| ≤ c2‖x‖M ,

where c1, c2 are absolute positive constants.

Proof. We choose p big enough so that the `p-norm ‖ · ‖p approximates the supremum
norm ‖ · ‖∞ well enough (p = n suffices). We consider N(t) = |t|p. This means that for
all t > 0 we have

N ′(t) = ptp−1 and N ′−1(t) = (1
p
t)

1
p−1 .
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Therefore

N∗(t) =

∫ t

0

N ′−1(s)ds =

∫ t

0

(1
p
s)

1
p−1 ds = p−

1
p−1 (1− 1

p
)t1+

1
p−1 .

Thus
N∗−1(t) = p

1
p ( p

p−1
)

p−1
p t1−

1
p .

With this we get

N∗−1( j
n
)−N∗−1( j−1

n
) = p

1
p ( p

p−1
)

p−1
p (( j

n
)1− 1

p − ( j−1
n

)1− 1
p ).

By the Mean Value Theorem we get for j ≥ 2

p
1
p (1− 1

p
)

1
p n−1+ 1

p j−
1
p

≤ N∗−1( j
n
)−N∗−1( j−1

n
)

≤ p
1
p (1− 1

p
)

1
p n−1+ 1

p (j − 1)−
1
p .

For sufficiently big p we have for all j with 1 ≤ j ≤ n

1

n
≤ N∗−1( j

n
)−N∗−1( j−1

n
) ≤ 2

n
.

Now we choose ` = kn and get

k∑
i=1

yi ≤
∑̀
j=1

sj ≤ 2
k∑

i=1

yi,

which implies the corollary. 2

Corollary 3 Let f1, . . . , fn be independent, identically distributed random variables with
E|fi| = 1. Let k ∈ N, 1 ≤ k ≤ n, and let the norm ‖ · ‖k,∗ on Rn be given by

‖x‖k,∗ =
k∑

i=1

x∗i ,

where x∗i , i = 1, . . . , n, is the decreasing rearrangement of the numbers |xi|, i = 1, . . . , n.
Let M be an Orlicz function such that M∗(1) = 1 and for all m = 1, . . . , n− 1

M∗

(
m∑

j=1

yj

)
= m

kn
.

Then, for all x ∈ Rn

c1‖x‖M ≤ E‖(xifi(ω))n
i=1‖k,∗ ≤ c2‖x‖M ,

where c1, c2 are absolute positive constants.
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Clearly, Corollary 3 implies Corollary 2. We state them separately here, since the
proof of Corollary 3 is more involved. We could argue in the proof of this corollary in the
same way as in the proof of Corollary 2. But it is less cumbersome to use the lemmas on
which Theorem 1 is based.

Proof. Let ε > 0 will be specified later. Consider the vector

z =
(1, . . . , 1, ε, . . . , ε)

[n
k
] + (n− [n

k
])ε

,

where the vector contains [n
k
] coordinates that are equal to 1. (For technical reasons we

require that all the coordinates of z are nonzero, otherwise the function M∗ might not
be well defined.) First we show that if ε is small enough then for every x ∈ Rn

(6) c1‖x‖k,∗ ≤ n−n+1
∑

1≤j1,...,jn≤n

max
1≤i≤n

|xizji
| ≤ c2‖x‖k,∗.

To obtain this we observe first that we can choose ε so small that we can actually consider
the vector z̄ = (1, . . . , 1, 0, . . . , 0)/[n

k
] instead. By Lemma 7 we have

cn

n∑
i=1

si(x, z̄) ≤ n−n+1
∑

1≤j1,...,jn≤n

max
1≤i≤n

|xiz̄ji
| ≤

n∑
i=1

si(x, z̄),

where sl(x, z̄) is the decreasing rearrangement of the numbers |xiz̄j|, i, j = 1, . . . , n. On
the other hand,

k∑
i=1

x∗i ≤
n∑

i=1

si(x, z̄) ≤ n/k

[n/k]

k∑
i=1

x∗i ≤ 2
k∑

i=1

x∗i .

Let N be an Orlicz function that satisfies

N∗

(
k∑

i=1

zi

)
= k/n.

Lemma 5, Lemma 9, and inequalities (6) imply

c3‖x‖N ≤ ‖x‖k,∗ ≤ c4‖x‖N

for some absolute constants c3, c4. Clearly, N∗−1( j
n
) − N∗−1( j−1

n
) = zj. Now we apply

Theorem 1 to the Orlicz function N and obtain the numbers sk and the function M as
in the statement of Theorem 1. Choosing ε small enough we obtain

s1 = · · · = s
[
n
k

]
= ([n

k
] + (n− [n

k
])ε)−1y1

s
[
n
k

]+1
= · · · = s

2[
n
k

]
= ([n

k
] + (n− [n

k
])ε)−1y2

...

s
(n−1)[

n
k

]+1
= · · · = s

n[
n
k

]
= ([n

k
] + (n− [n

k
])ε)−1yn.
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The following numbers sk, k = n[n
k
]+1, . . . , n2, are all smaller than εy1. Since

∑n
j=1 yj =

Efi = 1, we get
∑n2

k=1 sk = 1, which means M∗(1) = 1 and

j[
n
k

]∑
i=1

si =
[n
k
]

[n
k
] + (n− [n

k
])ε

j∑
i=1

yi.

This means that for j = 1, . . . , n

M∗

(
[n
k
]

[n
k
] + (n− [n

k
])ε

j∑
i=1

yi

)
=

j[n
k
]

n2
.

Therefore there are absolute constants c and C such that

c
j

kn
≤ M∗

(
j∑

i=1

yi

)
≤ C

j

kn
.

Theorem 1 implies the result. 2

Remark. In particular in the proof we get that for every x ∈ Rn

(7) cn‖x‖k,∗ ≤ n−n+1
∑

1≤j1,...,jn≤n

max
1≤i≤n

|xiz̄ji
| ≤ cn,k‖x‖k,∗,

where cn = 1− (1− 1/n)n and cn,k = n
k
/[n

k
] ≤ 2.

Theorem 4 Let f1, . . . , fn, g1, . . . , gn be identically distributed random variables. Sup-
pose that g1, . . . , gn are independent. Let M be an Orlicz function. Then we have for all
x ∈ Rn

E ‖(xifi(ω))n
i=1‖M ≤ 16e

e− 1
E ‖(xigi(ω))n

i=1‖M .

Remark The subspaces of L1 with a symmetric basis or symmetric structure can be
written as an average of Orlicz-spaces, more precisely: the norm in such a space is
equivalent to an average of Orlicz-norms. Thus our theorems and corollaries extend
naturally (for subspaces of L1 with a symmetric basis see [1] and for the case of symmetric
lattices see [7]).

2 Proofs of the theorems

To approximate Orlicz norms on Rn we will use the following norm. Given a vector
z ∈ Rm with z1 ≥ z2 ≥ · · · ≥ zm > 0 denote

‖x‖z = maxPn
i=1 ki=m

n∑
i=1

(
ki∑

j=1

zj

)
|xi|.
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In this definition we allow some of the ki to be 0 (setting
∑0

i=1 zj = 0).

The following lemma was proved by S. Kwapień and C. Schütt (Lemma 2.1 of [5]).

Lemma 5 Let n, m ∈ N with n ≤ m, and let y ∈ Rm with y1 ≥ y2 ≥ · · · ≥ ym > 0, and
let M be an Orlicz function that satisfies for all k = 1, . . . ,m

M∗

(
k∑

i=1

yi

)
=

k

m
.

Then we have for every x ∈ Rn

1
2
‖x‖y ≤ ‖x‖M ≤ 2‖x‖y.

Remark. Note that for every Orlicz function M there exists a sequence y1 ≥ y2 ≥
· · · ≥ ym > 0 such that

M∗

(
k∑

i=1

yi

)
=

k

m

for every k ≤ m.

Because of Lemma 5, to prove both our theorems it is enough to prove the following
proposition.

Proposition 6 Let f1, . . . , fn be identically distributed random variables (not necessarily
independent). Let N be an Orlicz function and denote

zj = N∗−1( j
n
)−N∗−1( j−1

n
), j = 1, . . . , n.

Let s = (sk)k ∈ Rn2

be the non-increasing rearrangement of the numbers |yizj|, i, j =
1, . . . , n, where the numbers yi, i = 1, . . . , n, are given by (3). Then, for all x ∈ Rn

E‖(xifi(ω))n
i=1‖z ≤ 2

cn
‖x‖s,

where cn = 1− (1− 1/n)n > 1− 1/e.
Moreover, if the random variables f1, . . . , fn are independent then for all x ∈ Rn

1
2
‖x‖s ≤ E‖(xifi(ω))n

i=1‖z.

To prove this proposition we need lemmas 7 – 11.

Lemma 7 Let ai,j, i, j = 1, . . . , n, be a matrix of real numbers. Let s(k), k = 1, . . . , n2,
be the decreasing rearrangement of the numbers |ai,j|, i, j = 1, . . . , n. Then

cn

n

n∑
k=1

s(k) ≤ n−n

n∑
j1,...,jn=1

max
1≤i≤n

|ai,ji
| ≤ 1

n

n∑
k=1

s(k),

where cn = 1− (1− 1
n
)n. Both inequalities are optimal.
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Proof. Both expressions

n−n

n∑
j1,...,jn=1

max
1≤i≤n

|ai,ji
| and

n∑
k=1

s(k)

are norms on the space of n× n-matrices. We show first the right hand inequality. The
extreme points of the unit ball of the norm

∑n
k=1 s(k) are – up to a permutation of the

coordinates – of the form
(ε1a, ε2b, ε3b, . . . , εn2b)

with a ≥ b ≥ 0, a + (n − 1)b = 1, and εi = ±1, i ≤ n2. This means that such a matrix
has the property: The absolute values of the coordinates are b except for one coordinate
which is a. We get

n−n

n∑
j1,...,jn=1

max
1≤i≤n

|ai,ji
| = 1

n
a + n−1

n
b = 1

n
.

Now we show the left hand inequality. Clearly, we may assume that at most n coordinates
of the matrix are different from 0. Next we observe that we may assume that for each
row in the matrix there is at most one entry that is different from 0. In fact we may
assume that this is the first coordinate in the row. Now we average the nonzero entries,
leaving us with the case that all nonzero coordinates are equal. In fact, we may assume
that these coordinates equal 1.

Thus max1≤i≤n |ai,ji
| takes the value 0 or 1. In fact, it takes the value 0 exactly

(n− 1)n

out of nn times. It follows

n−n

n∑
j1,...,jn=1

max
1≤i≤n

|ai,ji
| = 1− (1− 1

n
)n,

which proves the lemma. 2

Lemma 8 Let ai,j,k, i, j, k = 1, . . . , n, be nonnegative real numbers. Let s`, ` = 1, . . . , n3,
be the decreasing rearrangement of the numbers ai,j,k, i, j, k = 1, . . . , n. Then

1

2n2

n2∑
`=1

s` ≤ n−2n
∑

1≤j1,...,jn≤n

1≤k1,...,kn≤n

max
1≤i≤n

ai,ji,ki
≤ 1

n2

n2∑
`=1

s`.

Proof. The right hand inequality is shown as in Lemma 7. For the left hand inequality
we use here a counting argument.
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Note that without loss of generality we may assume that the sequence {sk} is strongly
decreasing. There are exactly n2n−2 out of n2n multiindices (j1, . . . , jn, k1, . . . , kn) such
that

max
1≤i≤n

ai,ji,ki
= s1.

Now we estimate for k ≥ 2 how many multiindices there are such that

max
1≤i≤n

ai,ji,ki
= sk.

Clearly, one of the coordinates ai,ji,ki
has to equal sk, but none of these coordinates may

equal sj for j = 1, . . . , k − 1. The second condition means that for every i (except for
the row with the coordinate equal to sk) there are jk

i coordinates that have to be avoided
and

∑n
i=1 jk

i = k − 1. Let us assume that the coordinate that equals sk is an element of
the first row. This leaves us with

n∏
i=2

(n2 − jk
i )

multiindices. Therefore we get

n−2n
∑

1≤j1,...,jn≤n

1≤k1,...,kn≤n

max
1≤i≤n

ai,ji,ki
≥ 1

n2

n2∑
k=1

sk

n∏
i=2

(
1− jk

i

n2

)

≥ 1

n2

n2∑
k=1

sk

(
1− k − 1

n2

)

≥ 1

n2

n2 + 1

2n2

n2∑
k=1

sk,

since
n2∑

k=1

ksk =
n2∑

j=1

n2∑
k=j

sk =
n2∑

j=1

(
n2∑

k=1

sk −
j−1∑
k=1

sk

)

≤
n2∑

j=1

(
n2∑

k=1

sk −
j − 1

n2

n2∑
k=1

sk

)
=

n2 + 1

2

n2∑
k=1

sk.

That completes the proof. 2

Lemma 9 Let n ∈ N, and let y ∈ Rn with y1 ≥ y2 ≥ · · · ≥ yn > 0. Then we have for
x ∈ Rn

cn‖x‖y ≤ n−n+1
∑

1≤j1,...,jn≤n

max
1≤i≤n

|xiyji
| ≤ ‖x‖y,

where cn = 1− (1− 1
n
)n.
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Proof. We show the right hand inequality. By Lemma 7

n−n+1
∑

1≤j1,...,jn≤n

max
1≤i≤n

|xiyji
| ≤

n∑
k=1

sk(x, y),

where {sk(x, y)}k≤n2 is the non-increasing rearrangement of {|xiyj|}i,j≤n. Therefore there
are numbers ki, i = 1, . . . , n, with

∑n
i=1 ki = n such that

n−n+1
∑

1≤j1,...,jn≤n

max
1≤i≤n

|xiyji
| ≤

n∑
i=1

|xi|
ki∑

k=1

yk ≤ ‖x‖y.

Now we show the left hand inequality. By Lemma 7

cn

n∑
k=1

sk(x, y) ≤ n−n+1

n∑
j1,...,jn=1

max
1≤i≤n

|xiyji
|.

Therefore, we have for all numbers ki, i = 1, . . . , n, with
∑n

i=1 ki = n

cn

n∑
i=1

|xi|
ki∑

k=1

yk ≤ n−n+1

n∑
j1,...,jn=1

max
1≤i≤n

|xiyji
|.

The result follows by definition of ‖ · ‖y. 2

Lemma 10 Let f1, . . . , fn be independent, identically distributed random variables with
E|f1| < ∞. Let yj, j = 1, . . . , n, be defined as in (3). Let ‖ · ‖ be a 1-unconditional norm
on Rn. Then we have for all x ∈ Rn

n−n+1

n∑
j1,...,jn=1

‖(xiyji
)n
i=1‖ ≤ E‖(xifi(ω))n

i=1‖.

Proof. Let tj(fi) and Ωi
j := Ωj(fi), i, j ≤ n, be defined by (1) and (2). Since the

functions fi, i = 1, . . . , n, are identically distributed, the numbers ti(fj) do not depend
on the functions fj. Below we will write just tj.

For j1, . . . , jn with 1 ≤ j1, . . . , jn ≤ n we put

Ωj1,...,jn =
n⋂

i=1

Ωi
ji
.

Since f1, . . . , fn are independent we have

P (Ωj1,...,jn) = n−n.

10



For (j1, . . . , jn) 6= (i1, . . . , in) we have

Ωj1,...,jn ∩ Ωi1,...,in = ∅.

Using this and the unconditionality of the norm we obtain

E‖(xifi(ω))n
i=1‖ =

n∑
j1,...,jn=1

∫
Ωj1,...,jn

‖(xifi(ω))n
i=1‖dP (ω)

≥
n∑

j1,...,jn=1

∥∥∥∥∥
(

xi

∫
Ωj1,...,jn

|fi(ω)|dP (ω)

)n

i=1

∥∥∥∥∥
= n−n+1

n∑
j1,...,jn=1

∥∥(xiyji
)n
i=1

∥∥ .

For the last equality we have to show∫
Ωj1,...,jn

|fi(ω)|dP (ω) = n−n+1yji
.

We check this. The functions

|fi|χΩi
ji
, χΩ1

j1
, . . . , χΩi−1

ji−1

, χΩi+1
ji+1

, . . . , χΩn
jn

are independent. Therefore we get∫
Ωj1,...,jn

|fi(ω)|dP (ω) =

∫
Ω

|fi(ω)|χΩ1
j1
· · ·χΩn

jn
dP (ω)

= n−n+1

∫
Ωi

ji

|fi(ω)|dP (ω).

2

Lemma 11 Let f1, . . . , fn be identically distributed random variables (not necessarily
independent) with E|f1| < ∞. Let yj, j = 1, . . . , n, be defined as in (3). Let z1 ≥
z2 ≥ · · · ≥ zn ≥ 0. Let sk(x, y, z), k = 1, . . . , n3, be the decreasing rearrangement of the
numbers |xiyjzk|, i, j, k = 1, . . . , n. Then we have for all x ∈ Rn

n−n
∑

1≤k1,...,kn≤n

E max
1≤i≤n

|xizki
fi(ω)| ≤ 2

n

n2∑
k=1

sk(x, y, z).

Proof. Let µ be the normalized counting measure on {k = (k1, . . . , kn)|1 ≤ k1, . . . , kn ≤
n}. For i = 1, . . . , n define the functions ζi : {k = (k1, . . . , kn)|1 ≤ k1, . . . , kn ≤ n} → R,
i = 1, . . . , n, by ζi(k) = zki

and we put

Λi =

{
(ω,k)

∣∣∣∣ |xiζi(k)fi(ω)| = max
1≤`≤n

|x`ζ`(k)f`(ω)|
}

.

11



We may assume that the sets Λi, i = 1, . . . , n, are disjoint. In case they are not disjoint,
we make them disjoint. Therefore

n∑
i=1

P × µ(Λi) = 1.

We define numbers λi and sets Λ̃i, i = 1, . . . , n, by

P × µ{(ω,k)||ζi(k)fi(ω)| ≥ λi} = P × µ(Λi) and Λ̃i = {(ω,k)||ζi(k)fi(ω)| ≥ λi}.

The existence of these numbers λi follows from the continuity of distribution of the
functions fi (cf. definition of tj(f)). We have

n∑
i=1

P × µ(Λ̃i) = 1

and

Λ̃i =
n⋃

`=1

{k|ζi(k) = z`} × {ω||fi(ω)| ≥ λi

z`
}.

Since µ{k|ki = `} = µ{k|ζi(k) = z`} = 1
n

we get

P × µ(Λ̃i) = 1
n

n∑
`=1

P{ω||fi(ω)| ≥ λi

z`
}.

As in the previous lemma we denote

Ωi
j = Ωj(fi) = {ω|tj ≤ fi(ω) < tj−1}.

For (i, `) we choose ji,` = 1 if t1 ≤ λi

z`
and ji,` with

tji,`
≤ λi

z`

< tji,`−1

otherwise. Then we have

{ω||fi(ω)| ≥ λi

z`
} ⊆ {ω||fi(ω)| ≥ tji,`

} =

ji,`⋃
i=1

Ωi
j

and

{ω||fi(ω)| ≥ λi

z`
} ⊇ {ω||fi(ω)| ≥ tji,`−1} =

ji,`−1⋃
i=1

Ωi
j,

setting ∪0
j=1Ω

i
j = ∅. Therefore we have

1 =
n∑

i=1

P × µ(Λ̃i) =
n∑

i=1

1
n

n∑
`=1

P
{

ω||fi(ω)| ≥ λi

z`

}
≥

n∑
i=1

1
n

n∑
`=1

P

ji,`−1⋃
j=1

Ωi
j

 .

12



Thus we get

n2 ≥
n∑

i,`=1

(ji,` − 1),

which gives us

2n2 ≥
n∑

i,`=1

ji,`.

By the definitions of the sets Λi and Λ̃i we obtain

n−n
∑
k

E max
1≤i≤n

|xiζi(k)fi(ω)| =
n∑

i=1

∫
Λi

|xiζi(k)fi(ω)|dP (ω)dµ(k)

≤
n∑

i=1

∫
Λ̃i

|xiζi(k)fi(ω)|dP (ω)dµ(k).

Since Λ̃i ⊆
⋃n

`=1

(
{k|ζi(k) = z`} ×

⋃ji,`

j=1 Ωi
j

)
,

n−n
∑
k

E max
1≤i≤n

|xiζi(k)fi(ω)| ≤ 1
n

n∑
i=1

n∑
`=1

|xiz`|
∫

Sji,`
j=1 Ωi

j

|fi(ω)|dP (ω)

≤ 1
n

n∑
i=1

n∑
`=1

|xiz`|
ji,`∑
j=1

yj.

Since 2n2 ≥
∑n

i,`=1 ji,`, we get

n−n
∑
k

E max
1≤i≤n

|xiζi(k)fi(ω)| ≤ 1
n

2n2∑
i=1

si(x, y, z) ≤ 2
n

n2∑
i=1

si(x, y, z).

2

Proof of Proposition 6. Let t`, ` = 1, . . . , n3, denote the decreasing rearrangement of
the numbers ∣∣xiyj

(
N∗−1( k

n
)−N∗−1(k−1

n
)
)∣∣ , i, j, k = 1, . . . , n.

Then, by definitions of the numbers sl, there are numbers ki with
∑n

i=1 ki = n2 such that

n2∑
`=1

t` =
n∑

i=1

|xi|
ki∑

`=1

s`,

setting
∑0

`=1 s` = 0. Moreover, for every numbers mi with
∑n

i=1 mi = n2 we have

n2∑
`=1

t` ≥
n∑

i=1

|xi|
mi∑
`=1

s`,

13



which means
n2∑
`=1

t` = ‖x‖s.

By Lemma 9

E‖(xifi(ω))n
i=1‖z ≤ 1

cn
n−n+1

∑
1≤k1,...,kn≤n

E max
1≤i≤n

|xizki
fi(ω)|

By Lemma 11

E‖(xifi(ω))n
i=1‖z ≤ 2

cn

n2∑
`=1

t` = 2
cn
‖x‖s.

Now we show the “moreover” part of the Proposition. By Lemma 10

E‖(xifi(ω))n
i=1‖z ≥ n−n+1

n∑
j1,...,jn=1

‖(xiyji
)n
i=1‖z.

By Lemma 9

E‖(xifi(ω))n
i=1‖z ≥ n−2n+2

∑
1≤j1,...,jn≤n

1≤k1,...,kn≤n

max
1≤i≤n

|(xiyji
zki

)n
i=1| .

By Lemma 8

E‖(xifi(ω))n
i=1‖z ≥ 1

2

n2∑
`=1

t` = 1
2
‖x‖s,

which proves the proposition. 2

Remark. Using (7) and repeating the proof of Proposition 6 we can obtain estimates
for the constants in Corollary 3. Namely, for every f1, . . . , fn satisfying the condition of
the proposition we have

E‖(xifi(ω))n
i=1‖k,∗ ≤ 2

cn
‖x‖s,

where s = (sl)
n2

l=1 is the non-increasing rearrangement of the numbers |yizj|, 1 ≤ i, j ≤ n,
z = (1, ..., 1, 0, ..., 0)/[n/k]. Moreover, if f1, . . . , fn are independent then

‖x‖s ≤ 2cn,kE‖(xifi(ω))n
i=1‖k,∗.

In particular, we have the variant of Theorem 4 for ‖ · ‖k,∗:

(8) E‖(xifi(ω))n
i=1‖k,∗ ≤

4cn,k

cn

E‖(xigi(ω))n
i=1‖k,∗,

where f1, . . . , fn satisfy the condition of Proposition 6, g1, . . . , gn are independent copies
of f1, and cn,k = n

k
/[n

k
] < 2, cn = 1 − (1 − 1/n)n > 1 − 1/e. Let us note that taking
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m = k([n/k] + 1) and applying the (8) for the sequences (x̄ifi)i≤m, (x̄igi)i≤m, where
x̄ = (x1, x2, . . . , xn, 0, . . . , 0) we obtain

(9) E‖(xifi(ω))n
i=1‖k,∗ ≤

4e

e− 1
E‖(xigi(ω))n

i=1‖k,∗,

since cm,k = 1.

3 Examples

In this sections we provide a few examples. We need the following two lemmas about the
normal distribution.

Lemma 12 For all x with x > 0
√

2π

(π − 1)x +
√

x2 + 2π
e−

1
2

x2

≤
√

2
π

∫ ∞

x

e−
1
2

s2

ds ≤
√

2
π

1
x
e−

1
2
x2

.

The left hand inequality can be found in [8]. The right hand inequality is trivial.

Lemma 13 Let f be a Gauß variable with distribution N(0, 1). Let the numbers tj, yj

be defined by (1) and (3). Then there are absolute positive constants c1, c2, c3 such that

(i) for all 1 ≤ j ≤ n/e we have√
1
2
ln n

j
≤ tj ≤

√
2 ln n

j
and

c1 n√
ln n

≤ exp
(
t21/2

)
≤ c2 n√

ln n
,

(ii) for all 2 ≤ j ≤ n/e we have

1
n

√
1
2
ln n

j
≤ yj ≤ 1

n

√
2 ln n

j−1
and

√
ln n

n
≤ y1 ≤

c3

√
ln n

n
.

Proof. The inequalities for t1 and y1 follow by direct computation. The inequalities for
the yj’s follow from the inequalities for tj’s, since tj/n ≤ yj ≤ tj−1/n for every 2 ≤ j ≤ n.
Let us prove the inequalities for tj’s. By definition

P{ω||f(ω)| ≥ tj} = j
n
.

This means √
2
π

∫ ∞

tj

e−
1
2

s2

ds = j
n
.

15



By Lemma 12 we get

(10)

√
2π

(π − 1)tj +
√

t2j + 2π
e−

1
2

t2j ≤ j

n
≤
√

2
π

1
tj

e−
1
2
t2j .

First we show tj ≤
√

2 ln n
j
. For this we observe that 1

s
e−

1
2
s2

is decreasing on (0,∞).

Suppose now that for some j we have tj >
√

2 ln n
j
. Therefore, using (10), we get

j

n
≤
√

2
π

1
tj

e−
1
2
t2j ≤

√
2
π

1√
2 ln n

j

j

n
.

Thus we have √
2 ln n

j
≤
√

2
π
,

which is not true if e · j ≤ n.

We show now that
√

1
2
ln n

j
≤ tj. The function

√
2π

(π − 1)x +
√

x2 + 2π
e−

1
2

x2

is decreasing on (0,∞). Suppose now

tj <
√

1
2
ln n

j
.

Then we have by (10)

j

n
≥

√
2π

(π − 1)tj +
√

t2j + 2π
e−

1
2

t2j ≥
√

2π

(π − 1)
√

1
2
ln n

j
+
√

1
2
ln n

j
+ 2π

(
j

n

) 1
4

,

which is false for j ≤ n/e. That proves the lemma. 2

Example 14 Let f1, . . . , fn be independent Gauß variables with distribution N(0, 1). Let
M be the Orlicz function given by

M(t) =


0 t = 0

e−3/(2t2) t ∈ (0, 1)

e−3/2 (3t− 2) t ≥ 1.

Then we have for all x ∈ Rn

c‖x‖M ≤ E max
1≤i≤n

|xifi(ω)| ≤ C‖x‖M ,

where c and C are absolute positive constants.
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Proof. It is easy to see that there are absolute constants c1, c2 such that

c1k
√

ln(en/k) ≤
k∑

j=1

√
ln(n/j) ≤ c2k

√
ln(en/k)

for every k ≤ n. Since
∑n

j=1 yj = E |f1| =
√

2/π, Lemma 13 implies for every k ≤ n

(11) c3

k
√

ln(en/k)

n
≤

k∑
j=1

yj ≤ c4

k
√

ln(en/k)

n
,

where c3, c4 are absolute constants.
By the condition of the example, M−1(t) =

√
−3/(2 ln t) on (0, e−3/2). Thus M−1(t) ≈√

3/(2 ln(e/t)) on (0, 1). By (5) we observe

t
√

2 ln(e/t)/
√

3 ≤ M∗−1 (t) ≤ 2t
√

2 ln(e/t)/
√

3.

Taking t = k/n and using (11) we get for every k ≤ n

c5

k∑
j=1

yj ≤ M∗−1(k/n) ≤ c6

k∑
j=1

yj,

where c5, c6 are absolute constants. Applying Corollary 2 we obtain the result. 2

The next example is proved in the same way as the previous one, we just use Corol-
lary 3 instead of Corollary 2 at the end.

Example 15 Let gi, i = 1, . . . , n, be independent Gauß variables with distribution N(0, 1),
k ≤ n, and ‖x‖ =

∑k
i=1 x∗i . Let

M(t) =


0 t = 0

1
k
e−3/(2k2t2) t ∈ (0, 1/k)

e−3/2 (3t− 2/k) t ≥ 1/k.

Then for all λ ∈ Rn we have

c1‖λ‖M ≤ E‖(λigi(ω))n
i=1‖ ≤ c2‖λ‖M ,

where c1 and c2 are positive absolute constants.

The following example deals with the moments of Gauß variables.
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Example 16 Let 0 < q ≤ ln n, aq = max{1, q}, gi, i = 1, . . . , n, be independent Gauß
variables with distribution N(0, 1), and fi = |gi|q, i = 1, . . . , n. Let

M(t) =


0 t = 0

1
k

exp
(
−aq/ (kt)2/q

)
t ∈ (0, t0)

at− b t ≥ t0,

where

t0 =
1

k

(
2aq

q + 2

)q/2

, a =
q + 2

eqkt0
e−q/2, b =

2

eqk
e−q/2.

Then for all λ ∈ Rn we have

cq (caq)
q/2 ‖λ‖M ≤ E‖(λifi(ω))n

i=1‖ ≤ C (Caq)
q/2 ‖λ‖M ,

where 0 < c < 1 < C are absolute constants and ‖x‖ =
∑k

i=1 x∗i .

This example is proved in the same way as the previous two examples. We use that

k
(√

ln(n/k)
)q/2

≤
k∑

j=1

(√
ln(n/j)

)q/2

≤ 2k
(√

ln(n/k)
)q/2

for every k ≤ n/eq and that

caq ≤ (E|g(ω)|q)2/q ≤ Caq

for some absolute positive constants c, C.

Finally we apply our theorem to the p-stable random variables. Let us recall that a
random variable f is called p-stable, p ∈ (0, 2], if the Fourier transform of f satisfies

E exp (−itf) = exp (−c|t|p)

for some positive constant c (in the case p = 2 we obtain the Gauß variable).

Example 17 Let p ∈ (1, 2). Let f1, . . . , fn be p-stable, independent, random variables
with E|fi| = 1. Let k ≤ n and ‖x‖ =

∑k
i=1 x∗i . Let

M(t) =

{
1
k
(kt)p t ∈ [0, 1/k]

pt + (p− 1)/k t > 1/k.

Then for all x ∈ Rn

cp‖x‖M ≤ E‖(λifi(ω))n
i=1‖ ≤ Cp‖x‖M ,

where cp, Cp are positive constants depending on p only.
In particular,

cp|x|p ≤ E max
1≤i≤n

|xifi(ω)| ≤ Cp|x|p,

where | · |p denotes the standard `p-norm.
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Proof. There are positive constants c1 and c2 depending on p only such that for all t > 1

c1t
−p ≤ P{ω| |f(ω)| ≥ t} ≤ c2t

−p.

Thus (
c1

n
j

)1/p

≤ tj ≤
(
c2

n
j

)1/p

.

Repeating the proof of Example 14 we obtain the desired result. 2
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