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abstract: Spatial coexistence depends on a variety of biological
and physical processes, and the relative scales of these processes may
promote or suppress coexistence. We model plant competition in a
spatially varying environment to show how shifting scales of dis-
persal, competition, and environmental heterogeneity affect coexis-
tence. Spatial coexistence mechanisms are partitioned into three
types: the storage effect, nonlinear competitive variance, and growth-
density covariance. We first describe how the strength of each of
these mechanisms depends on covariances between population den-
sities and between population densities and the environment, and
we then explain how changes in the scales of dispersal, competition,
and environmental heterogeneity should affect these covariances. Our
quantitative approach allows us to show how changes in the scales
of biological and physical processes can shift the relative importance
of different classes of spatial coexistence mechanisms and gives us a
more complete understanding of how environmental heterogeneity
can enable coexistence. For example, we show how environmental
heterogeneity can promote coexistence even when competing species
have identical responses to the environment.

Keywords: coexistence, competition, dispersal, kernels, spatial het-
erogeneity, spatial scale.

Regional-scale ecological dynamics depend on biological
and physical processes occurring at several spatial scales,
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and changes in the relative scales of these processes can
significantly alter regional-scale dynamics (Lande et al. 1999;
Levin 2000; Bolker 2003; E. W. Seabloom, O. N. Björnstad,
B. M. Bolker, and O. J. Reichman, unpublished manuscript).
In particular, spatial mechanisms of coexistence in com-
munities of sessile organisms such as plants depend on the
scales of environmental heterogeneity, competition between
and within species, and dispersal. Other studies have shown
how the balance between scales of interspecific and intra-
specific competition (Murrell and Law 2003), between scales
of competition and dispersal (Bolker and Pacala 1999), or
between scales of dispersal and environmental heterogeneity
(Snyder and Chesson 2003) can affect competitive outcome,
but researchers are only now beginning to consider all three
spatial scales (E. W. Seabloom, O. N. Björnstad, B. M.
Bolker, and O. J. Reichman, unpublished manuscript).

Species coexist if each species can increase when rare
(Gotelli 1995). This article concentrates on species’ recovery
rates as the foundation of coexistence and explains how
different spatial coexistence mechanisms increase or de-
crease that recovery rate. In order to consider multiple co-
existence mechanisms, variable scales of dispersal and com-
petition, and environmental variability across a range of
spatial scales, we have relied on three tools: spatial inter-
action kernels, Fourier analysis, and a partitioning of the
invader growth rate. Spatial interaction kernels are functions
that define how the strengths of biological processes change
with distance. For example, competition kernels define how
the competitive effect of one individual on another declines
with their distance apart, while dispersal kernels define the
probability that a seed disperses a given distance. Fourier
analysis, presented in more detail in “Our Mathematical
Approach,” simplifies the analysis of the interaction between
different kernels. It also allows us to consider arbitrary pat-
terns of environmental variation without having to choose
a particular form in advance. Finally, we partition spatial
mechanisms of coexistence into three broad classes—the
storage effect, nonlinear competitive variance, and growth-
density covariance—and explain how each is promoted or
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suppressed by the interplay of competition, dispersal, and
environmental heterogeneity (Chesson 2000a).

This partitioning allows us to explore the relative im-
portance of multiple coexistence mechanisms acting si-
multaneously. It also provides a more complete understand-
ing of how spatial variability in environmental conditions
promotes coexistence. For example, previous analyses of
spatial coexistence have focused on source-sink dynamics,
where different species thrive in different locations and dis-
persal from favorable locations subsidizes populations in
unfavorable locations. Our analysis will show that environ-
mental heterogeneity can promote coexistence even when
species experience identical patterns of environmental
favorability.

The rest of the article is organized as follows. We present
our model of the local scale dynamics in “Local Dynamics:
The Lottery Model” and shift to the regional scale in “The
Regional Growth Rate and Coexistence.” We then briefly
outline our mathematical approach in “Our Mathematical
Approach.” In “Resident Population Distribution,” we cal-
culate the equilibrium spatial distribution of a single species,
which we use in later analyses of invasibility. We use the
invasibility criterion for coexistence so that two species co-
exist if each species in monoculture can be invaded by the
other species. “Spatial Variation Mechanisms” is broken into
subsections devoted to the storage effect, nonlinear com-
petitive variance, and growth-density covariance. This ar-
ticle intends to provide an intuitive understanding of how
these spatial coexistence mechanisms work while at the same
time providing the full mathematical justification for the
mathematically inclined. To facilitate these dual aims, “Spa-
tial Variation Mechanisms” contains descriptions for both
audiences. In particular, each subsection includes a narrative
description of what is going on based on the mathematical
insights presented earlier in the subsection. We present a
hypothetical example of two competing annual plants in “A
Hypothetical Example” and discuss what we would expect
for each species as invader, while in “The Scale of Envi-
ronmental Variability,” we briefly discuss the sensitivities of
the storage effect, nonlinear competitive variance, and
growth-density covariance to different spatial scales of en-
vironmental variability. The main body of the article con-
cludes with “Discussion.” Derivations of the quantitative
expressions for each term are presented in the appendix in
the online edition of the American Naturalist, as is a sum-
mary of the basic framework developed by Chesson (2000a).

Local- and Regional-Scale Dynamics

Local Dynamics: The Lottery Model

For specificity, we base our analysis on the lottery model,
one of the standard examples for competition theory, anal-

ogous to the Lotka-Volterra model for predator-prey dy-
namics or the contact process for spatial spread (Chesson
and Warner 1981; Comins and Noble 1985; Chesson
2000a; Muko and Iwasa 2000). We use a version of the
lottery model based on annual plant communities, with
dispersing juveniles that compete in continuous space to
become sessile, semelparous adults. For simplicity, we de-
fine our model in one-dimensional space; however, our
conclusions do not change in higher dimensions.

In the classical lottery model (Chesson and Warner
1981), the environment is assumed to have an important
role in determining the number of seeds at a location
through effects on reproduction. Once at a location, how-
ever, all seeds are assumed to have an equal chance of
success. Thus, the success of any individual seed is in-
versely related to the total number of seeds present. In the
presence of spatial environmental variation, however, the
competitive ability of a seed may depend on environmental
conditions at the seed’s location. Thus, we assume that
the success of a seed of species j is not constant but is
proportional to environmental response , a spatiallyE (x)j

varying, species-specific quantity reflecting the effects of
the environment for location x and species j. By extension
of the lottery idea, a seed’s success again diminishes as the
density of neighboring seeds increases, but the competitive
effect of a neighbor now declines with distance and de-
pends on the neighbor’s environmental response. We now
write this verbal account in terms of formulas and then
return to discuss environmental response and competition
in greater detail.

If a species j seed lands at location x at time t, where
it has environmental response and experiences com-E (x)j

petition , then the probability that it will establishC (x, t)j

itself and produce seeds is defined to be . WeE (x)/C (x, t)j j

assume that an adult of species j produces seeds (speciesFj

j has per capita fecundity ). The per capita local finiteFj

growth rate ( ) then equals the probability of estab-l (x, t)j

lishment times the per capita fecundity, making the num-
ber of species j seeds produced at x between times t and

equal tot � 1

l (x, t)n (x, t), (1)j j

where

F E (x)j j
l (x, t) p .j C (x, t)j

(Alternatively, we may assume that represents com-C (x, t)j

petitive processes after establishment, so representsE (x)j

the probability of establishment, and per capita fecundity
is reduced to by competition. The mathematicalF /C (x, t)j j
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development here covers both possibilities or any com-
bination of them.)

After the seeds are produced, they disperse with a
species-specific probability of traveling a distance z.k (z)j

Thus, the number of seeds landing at location x at time
( ) is equal to the number of seeds pro-t � 1 n (x, t � 1)j

duced at location y between times t and times thet � 1
probability of dispersing from y to x, summed over all y,
or

�

n (x, t � 1) p k (x � y)(l (y, t)n (y, t))dy. (2)j � j j j

��

To fully specify the model, we need to define the en-
vironmental response ( ) and competition ( ) of speciesE Cj j

j. Environmental response can be any demographicE (x)j

parameter that is sensitive to the environment; in the con-
text of annual plants, might represent a germinationE (x)j

probability. We assume that a species’ environmental re-
sponse varies in space but not in time. We are therefore
considering environmental variation that can be treated
in models as static, to a good approximation, such as
aspect, exposure, and soil type. Different species may re-
spond to different environmental variables or may respond
differently to the same environmental variables, and so

is species specific.E (x)j

We define competition as the multiple by which the
local growth rate is decreased in the presence of neigh-
bors: C (x, t) p (l (x, t) without neighbors)/(l (x, t)j j j

. We assume that competition de-with neighbors) C (x, t)j

pends on how far away the neighbors of the focal plant
are, what species they belong to, and how favorable their
environments are. Individuals in favorable environments
may grow larger or germinate earlier and thus have a
greater competitive effect. We account for the effect of the
environment on competition in a simple way by weighting
the densities of the competitors by their environmental
responses. Thus, the local competitive contribution of spe-
cies k is .E (x)n (x)k k

The effect of competitors also declines with distance
from the focal individual, and so the local competitive
contribution of species k is weighted by competition kernel

, which represents the effect of a species k individualU (z)jk

on a species j individual at a distance z. The shape of the
kernel will depend on the range of the competition be-
tween the two species. For example, short-range compe-
tition leads to a narrow competition kernel. Competitors
close to the focal individual contribute strongly to the total
competition experienced by an individual, while those fur-
ther away contribute only weakly (fig. 1, left). Long-range
competition is represented by a low, broad kernel, so in-

dividuals over a wide area around the focal individual
contribute similarly to the total competition experienced
by the focal individual (fig. 1, right). Without loss of gen-
erality, we assume that the competition kernel integrates
to 1. Under this assumption, the total competitive effect
of species k on the focal individual is a weighted average
of the local competitive effects:

�

U (x � y)(E (y)n (y))dy. (3)� jk k k

��

A weighted average of this kind, of the form
, is called a convolution, represented� K(x � y)N(y)dy∫��

by ; equation (3) would be expressed as(K ∗ N)(x)
.(U ∗ (E n ))(x)jk k k

Finally, we must sum the competitive effects from dif-
ferent species of competitor k. Thus, the total competition
experienced by an individual of species j at location x is

C (x) p U ∗ (E n )(x). (4)�j jk k k
k

The Regional Growth Rate and Coexistence

Coexistence is defined over some spatial extent, most sen-
sibly the scale at which the community is effectively closed
(Chesson 2000b). We call this scale the regional scale, and
any measure of coexistence must deal with regional-scale
densities and growth rates rather than with densities and
dynamics at a particular spot. We define the regional-scale
population density as the spatial average of the local pop-
ulation density ( ) and define the regional scale growthn
rate at time t, , as the regional density at timel̃(t) t � 1
divided by the regional scale density at time t: l̃(t) p

. Thus, the regional scale dynamics are givenn (t � 1)/n (t)j j

by

˜n (t � 1) p l (t)n (t). (5)jj j

We can relate the regional-scale growth rate to the local
growth rate by noting that andn (x, t � 1) l (x, t)n (x, t)j j j

must have the same spatial average because dispersal only
redistributes offspring. Thus, l̃ (t) p n (t � 1)/n (t) pj j j

. Defining relative population densityl (t)n (t)/n (t)j j j

as the local population density scaled by the averagen (x, t)j

population density, , we see that ˜n (x, t) p n (x, t)/n (t) lj j jj

is equal to . Thus, the regional-scale growth ratel (t)n (t)j j

is the average of the local growth rate weighted by the
relative population density, so locations with higher pop-
ulation densities contribute more to the regional-scale
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Figure 1: Short- and long-range competition kernels. The competition kernel indicates how much a competitor of species k affects anU (y)jk

individual of species j if they are separated by distance y. All competition kernels are normalized to 1 (the area under the curve equals 1), which
means that the total strength of competition is the same for all pairs of species. If both species have taproots and largely vertical growth habits,
then competition will tend to be short range, and the competition kernel will be narrower, as in the figure on the left. On the other hand, if one
or both plants have laterally spreading roots or sprawling growth habits, then competition will tend to be longer range, and the competition kernel
will be wider, as in the figure on the right. Some forms of apparent competition, such as shared pathogens or herbivores, may also produce long-
range competition.

growth rate. Finally, we note that can be split intol (t)n (t)j j

. The average of is 1 byl (t)n (t) � Cov (l , n )(t) n (x, t)j j jj j

definition, and so

l̃ (t) p l (t) � Cov (l , n )(t). (6)j j jj

We use the standard mutual invasibility criterion for
coexistence, which states that species coexist if each species
can increase from a regionally low density (“invade”) in
the presence of its competitors (the “residents”), which
are not constrained to low density. Thus, the species coexist
if each species has a sufficiently high regional-scale recov-
ery rate from low density ( ). We will use subscriptl̃ 1 1i

i to denote invader quantities and subscript r to denote
resident quantities, while subscript j represents generic
species quantities.

Following Chesson (2000a), we partition into the suml̃i

of nonspatial coexistence mechanisms ( ), the storage ef-′l̃i

fect ( ), nonlinear competitive variance ( ), andDI DN
growth-density covariance ( ):Dk

′˜ ˜l ≈ l � DI � DN � Dk. (7)i i

The terms , , and are quantitative measures ofDI DN Dk

the contributions of the storage effect and so forth to the

invader’s regional-scale growth rate. When they increase
the growth rate ( and positive, negative), theyDI Dk DN
help the invader to persist in the presence of its compet-
itors. The storage effect, nonlinear competitive variance,
and growth-density covariance all depend on environ-
mental variability and are stabilizing terms that, if strong
enough, can overcome fitness differences and permit co-
existence as discussed by Chesson (2000b). We discuss each
in detail in “Spatial Variation Mechanisms” and in the
appendix. Their most general forms are summarized in
“Summary of the Basic Framework” in the appendix and
presented in detail by Chesson (2000a). We do not discuss
nonspatial coexistence mechanisms in the body of the ar-
ticle, but we do present a calculation of for the lottery′l̃i

model in “Nonspatial Coexistence Mechanisms” in the
appendix.

Our Mathematical Approach

Fourier transforms, our primary tool for this analysis, par-
tition variance into contributions from different spatial
scales by reexpressing functions as sums of sine and cosine
waves at different spatial frequencies, q, proportional to
1 over the period of the sine or cosine. The Fourier trans-
form of a spatial function is denoted .˜f(x) f(q)
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Two properties make Fourier transforms especially use-
ful for this problem. First, the contributions of different
spatial scales are additive, so we can study single scales of
environmental variation without worrying that we may be
missing interactions between scales. Second, spatial vari-
ances and covariances, which form the heart of the storage
effect, nonlinear competitive variance, and growth-density
covariance, have very simple representations in terms of
Fourier transforms in which convolutions are reduced to
products.

Covariances figure prominently in our analysis. A co-
variance (e.g., ) is the product of the correla-Cov (E , C )j j

tion between two quantities times the product of their
standard deviations. A covariance can therefore be large
if either the correlation is large or the standard deviations
are large. The correlation can be taken between two quan-
tities evaluated at the same location (e.g., andE (x)j

) or between quantities evaluated at points a certainC (x)j

distance (“lag”) apart (e.g., and , where the lagE (x) C (y)j j

is ). The covariances in the expressions for , ,x � y DI DN
and are unlagged.Dk

The details of our calculations are left to the appendix.
However, a few words are necessary here to render the
notation of the final results intelligible. For simplicity, we
perform an invasibility analysis for only two species. We
proceed by considering small deviations of the environ-
mental response and the relative population density from
their average values, ande (x) { E (x)/E � 1 u (x) {j j jj

, where the variation in E is assumed to be smalln (x) � 1j

and the variation in is assumed to be of the same ordern

of magnitude.

Resident Population Distribution

The resident’s equilibrium spatial distribution in the ab-
sence of the invader determines the competitive landscape
for both the resident and the invader. In “Preliminary
Calculations” in the appendix, we show that the equilib-
rium spatial distribution of , the deviation of theu (x, t)r

resident relative population density from its spatial aver-
age, equals the convolution of the environmental deviation

with another kernel, :e (x) M(z)r

�

u (x) p M(x � y)e (y)dy p (M ∗ e )(x). (8)r � r r

��

The kernel gives the response of the resident pop-M(z)
ulation density to environmental variation a distance z
away; in equation (8), is calculated by weighting theu (x)r

resident environmental variation at y by andM(x � y)
integrating over y. We leave the expression for M(x � y)

to the appendix and note simply that it depends on res-
ident dispersal and resident-resident competition. We
more commonly use the Fourier transform of equation
(8). Fourier transforms turn convolutions into products,
giving the convenient expression

˜˜ ˜u (q) p M(q)e (q). (9)r r

When is large, it will amplify the effects of , so˜ ˜M(q) e (q)r

resident density has a large response and varies strongly
at frequency q, and when is small, it will dampenM̃(q)
the effects of , and resident density will have only aẽ (q)r

weak response. The full resident population distribution
is then the sum of its responses at all frequencies.

The response function is hump shaped. ThisM̃(q)
means that resident density can best track environmental
variation (larger populations in more favorable areas,
smaller populations in less favorable areas) within the
range of frequencies defining the extent of the hump,
which is determined by the interplay between resident
dispersal and resident-resident competition. The peak be-
comes higher and more pronounced as the scale of resident
dispersal becomes shorter and the scale of resident-
resident competition becomes longer (see fig. 2), indicat-
ing that resident population density is best able to track
the resident environmental response when the environ-
ment varies at an intermediate scale, resident dispersal is
short range, and resident-resident competition is long
range, a pattern found in other studies as well (Rough-
garden 1974; Gurney and Nisbet 1976). Short-range dis-
persal seems an obvious requirement for close tracking of
the environment because local retention will cause the
population density to build up in favorable areas. Long-
range competition means that individuals in unfavorable
areas compete not only with the few neighbors that share
their environment but also with the many individuals in
nearby favorable environments, driving population
troughs even lower. Similarly, the competition of individ-
uals in favorable areas is averaged over both high- and
low-density areas, reducing their competitive load and al-
lowing population peaks to rise still higher (see also
Roughgarden 1974).

This allows us to understand why is hump shaped.M̃(q)
Population density will not be able to track very short
scale environmental variation because plants gather their
resources and disperse their seeds over some area, and
these processes cause the plant to experience an average
of its local environment. Environmental variation over too
short a scale gets averaged out. On the other hand, resident
population density also has a limited ability to track large-
scale variation. When environmental heterogeneity is at a
scale that is much larger than the scale of competition,
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Figure 2: Resident population density’s response to environmental variation. The response function shows how resident relative populationM̃(q)
density responds to environmental variation at different spatial frequencies q via the equation . The response to multiple frequencies˜˜ ˜u (q) p M(q)e (q)r r

of variation is the sum of the responses to single frequencies. The function is hump shaped, indicating that resident population densityM̃(q)
responds most strongly to intermediate frequencies of variation. The peak in becomes higher and sharper as resident dispersal becomes shorterM̃(q)
range and resident-resident competition becomes longer range, reflecting the resident population density’s increased ability to track environmental
variation at these frequencies. Laplacian kernels were used for resident dispersal and resident-resident competition: k (x) p 1/(2a ) exp (�FxF/a ),r r r

. The characteristic dispersal scale, given by the mean of , is thus , and the characteristic scale of competitionU (x) p 1/(2b ) exp (�FxF/b ) FxF arr rr rr r

is . (See the end of “Storage Effect.”) For the solid line, both dispersal and competition are relatively long range, with and , whileb a b p 10.0rr r rr

for the light dotted line, dispersal and competition are both short range, with and . The heavy dotted line shows the combination thata b p 1.0r rr

makes the largest: short-range dispersal ( ) and long-range competition ( ).M̃(q) a p 1.0 b p 10.0r rr

individuals in crowded, favorable locations experience lit-
tle release of competitive pressure. Likewise, individuals
in sparsely populated, unfavorable areas are not suppressed
by those in crowded areas. Because populations cannot
track environmental conditions, environmental variation
does not increase spatial variation in population density.
The ability of the residents to track their environment at
various spatial scales will affect how the strengths of our
coexistence mechanisms change with the scale of environ-
mental heterogeneity because, as we shall see, all of these
coexistence mechanisms rely on variation in resident pop-
ulation density.

Spatial Variation Mechanisms

Storage Effect

Whenever the effects of the environment and competition
on local growth interact (i.e., their combined effect cannot
be expressed as a sum of a function of the environment
and a function of competition), the invader’s regional-
scale growth rate depends on the covariance of E and C
(Chesson 2000a). For example, in our model, l (x) pi

, which cannot be written in the formFE (x)/C (x)i i

, and so will depend on˜l (x) p f(E ) � g(C ) li i i i

. The storage effect incorporates both theCov (E , C )i i

strength of the interaction and the covariance. While the
strength of the interaction is often the same for both res-
idents and invaders, their environment-competition co-
variances typically differ. A common resident species will
be crowded by conspecifics in favorable areas, so com-
petition is strong ( is large) where the environment isCr

favorable (Er is large), and thus is large andCov (E , C )r r

positive. We consider only the initial growth of the invader
from a globally low density, so the invader is too sparsely
distributed to compete much with itself. Additionally, if
it prefers different environmental conditions than the res-
idents or if it competes with residents over a broad area,
then neither will it experience much of an increase in
competition with residents. Hence, the invader frequently
experiences little increase in competition when in a fa-
vorable area, so is small. The storage effectCov (E , C )i i

thus represents the degree to which invaders, relative to
residents, are able to exploit favorable areas without en-
countering increased competition.

For our spatial lottery model, the storage effect ( ) isDI
given by

DI p F Cov (E , C ) � F Cov (E , C ), (10)r r r i i i

where we evaluate the competition terms with invader
density set to 0 and and are the resident and invaderF Fr i
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Table 1: Response of storage effect components to dispersal and competition
scales

Component
of DI

Invader
dispersal

Resident
dispersal

Resident-resident
competition

Resident-invader
competition

Cov (E , C )r r NA Shorter Shorter NA
Cov (E , C )i i NA Shorter Longer Shorter

Note: For each component of , shorter indicates that the component increases as theDI

length scale grows shorter, and longer indicates that the component increases as that length

scale grows longer. NA means that that biological process does not affect the quantity in

question.

fecundities. (See “Derivation of ” in the appendix for aDI
derivation.) Thus, the storage effect is here simply the
difference of the covariances between environment and
competition for the resident and the invader, weighted by
their fecundities.

To understand the factors affecting the covariances in
these models, we can expand the environment-competi-
tion covariances in terms of covariances involving ej

( ), the relative deviation of the environmental re-j p i, r
sponse from its spatial average, and , the deviation ofur

the resident equilibrium relative population density from
1, its spatial average. Here,

Cov (E , C ) ≈ [U ∗ (Cov (e , u ) � Cov (e , e ))], (11)r r rr r r r r

Cov (E , C ) ≈ [U ∗ (Cov (e , u ) � Cov (e , e ))], (12)i i ir i r i r

where we evaluate the competition terms with invader
density set to 0. The covariances on the right-hand side
are evaluated at a range of lags—giving the relationships
between resident density fluctuations and resident and in-
vader environmental fluctuations at different distances
apart—and are then convolved with competition kernel

. The whole expression is then evaluated at toU x p 0jr

give the unlagged covariance . (See “DerivationCov (E , C )j j

of ” for a derivation of eqq. [11], [12].)DI
Equations (11) and (12) show that environment-

competition covariances for both resident and invader de-
pend on covariances of the resident and invader environ-
ments with the resident density ( ) and with theCov (e , u )j r

resident environment ( ), reflecting the fact thatCov (e , e )j r

competition depends on both the local resident density
and the resident’s environment, as expressed in equation
(4).

The covariance of invader or resident environment ej

with resident environment will be larger when eitherer

or varies more and when and are correlated (whiche e e ej r j r

is necessarily true for the covariance of the resident en-
vironment with itself). The covariances with resident den-
sity will be larger when the resident population density
varies more. As shown in “Resident Population Distri-
bution,” resident density varies more when resident dis-

persal is short range and resident-resident competition is
long range. These covariances are then convolved with
(averaged over) the competition kernels and . TheU Urr ir

larger the spatial scale of the competition, the more the
averaging will tend to blur the covariances, making them
smaller. Table 1 summarizes the effects of dispersal and
competition scales on and .Cov (E , C ) Cov (E , C )i i r r

The size of the storage effect will depend on both the
magnitude and the sign of . From the above,Cov (E , C )i i

we see that the magnitude of will be maximizedCov (E , C )i i

when resident dispersal is short range and resident-
resident competition is long range, increasing the variation
in resident density ( ), and when resident-invader com-ur

petition is short range ( narrow), preserving the co-Uir

variance. The case of is a little trickier. MakingCov (E , C )r r

resident dispersal short range will always increase
. However, has competing effects. Short-Cov (E , C ) Ur r rr

range resident-resident competition preserves the covari-
ances of resident environmental response with itself and
with resident density but reduces the variation in resident
density, whereas long-range competition increases varia-
tion but diminishes the covariances. In the end, preserving
the covariances is the more important effect so that

is maximized when resident-resident compe-Cov (E , C )r r

tition is short range. (In “Derivation of ,” we show thatDI
is equal to an integral over q, whose integrandCov (E , C )r r

is approximately equal to in the21 � 6 Var (k ) Var (U )qr rr

range that dominates the integral. Thus, isCov (E , C )r r

decreased when we increase the range of either resident
dispersal or resident-resident competition.)

The difference between and de-Cov (E , C ) Cov (E , C )r r i i

termines the storage effect ( ), and so will be largerDI DI
when is small and positive or large andCov (E , C )i i

negative. It is not clear in this formulation when
will be positive or negative. However, if weCov (E , C )i i

consider environmental variation at a single spatial fre-
quency, we can show that is positive when theCov (E , C )i i

invader and resident environments are in phase—meaning
that both species tend to favor the same environments—
and negative when they are out of phase. (See “Derivation
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Table 2: Response of lottery model growth rate components to dispersal and competition scales

Component
of l̃i

Invader
dispersal

Resident
dispersal

Resident-resident
competition

Resident-invader
competition

Storage effect ( )DI NA Shorter Shorter Longer ( and in phase)E Ei r

Inconsistent Shorter ( and out of phase)E Ei r

Nonlinear competition variance
(magnitude) ( )aFDNF NA Shorter Longer Shorter

Growth-density covariance ( )Dk Shorter Inconsistent Inconsistentb Inconsistent ( and in phase)E Ei r

Inconsistentc Inconsistentd Shorter ( and out of phase)E Ei r

Note: For each component of , shorter indicates that the component increases as the length scale grows shorter, and longer indicates thatl̃

the component increases as that length scale grows longer. NA means that that biological process does not affect the quantity in question.

Inconsistent means that the effect of that spatial scale depends on the spatial scales and relative magnitudes of resident and invader environmental

variation.
a will be positive if and negative if the reverse is true.DN Var (C ) 1 Var (C )r i

b Unless resident dispersal and resident-invader competition are both long range, in which case, shorter.
c Unless resident-invader competition is short range and resident-resident competition is long range, in which case, shorter.
d Longer if resident-invader competition is short range or otherwise inconsistent.

of .”) The net effects of changing dispersal and com-DI
petition scales on are summarized in table 2.DI

We can use the above mathematical insights to construct
an intuitive picture of what is happening. For the storage
effect to benefit the invader, the covariance between en-
vironment and competition must be larger (more positive)
for the resident than it is for the invader so that the res-
ident’s growth is more strongly limited when it is in a
favorable environment. This can happen in two ways.

If, on average, residents and invaders prefer different
environments, residents will be dense in areas that are
environmentally unfavorable for the invader. In order for
the invaders to benefit from this spatial pattern, the com-
petitive effect of the residents on the invaders must be
short range ( must be narrow). This ensures that in-Uir

vaders in a favorable location will incur minimal com-
petition from nearby clusters of residents. Thus, if we were
considering a resident that germinated best in clay-rich
soils and an invader that fared better in sandy soils, the
invader would benefit more from the storage effect if both
species had relatively compact growth habits and root
masses so that invaders in sandy patches did not compete
too much with residents in nearby clay patches. In ad-
dition, if the resident environment varies strongly (so that
maximizing is more important than maxi-Cov (E , C )r r

mizing ), then resident-resident competitionF Cov (E , C )Fi i

must be sharply focused (short range) so that resident
growth is strongly limited in particularly favorable areas.
However, if the resident environment is not varying
strongly (so that maximizing becomes moreF Cov (E , C )Fi i

important), long-range resident-resident competition can
help to focus resident population density into the (mod-
erately) more favorable areas, leaving low-density areas for
invaders to exploit. Returning to our example, this means
that if the resident were very sensitive to soil conditions,

with high germination rates when soil conditions were just
right, then the invader would benefit if residents competed
mostly with their immediate neighbors so that resident
competition was strong in areas with high germination
rates and the number of residents that reach maturity was
limited. On the other hand, if resident germination rates
varied only weakly with environmental conditions, then
variation in soil type alone would not cause the resident
to cluster much in favorable areas. However, long-range
competition between residents, caused perhaps by laterally
reaching root systems or low, sprawling growth, would
amplify the resident’s response to environmental variation
and cause it to cluster in the higher germination areas,
freeing up space for the invader.

If residents and invaders grow best in similar habitats,
the storage effect ( ) will be maximized when resident-DI
resident competition is short range and resident-invader
competition is diffuse/long range. This boosts the invader
growth rate because residents in favorable areas limit
themselves more than they limit invaders. Suppose, for
example, that both the resident and invader germinated
best in clay-rich soil. The invader would then tend to be
mixed in among the residents. However, if the resident
had a taproot while the invader had diffuse, laterally
spreading roots, with a similar overall volume, then the
competitive pressure on the resident would be determined
largely by its crowded immediate neighborhood, while the
invader would experience an average of both the crowded
local surroundings and potentially less crowded areas far-
ther away.

In either case, short-range resident dispersal strengthens
the storage effect. This concentrates the resident popula-
tion in favorable areas, increasing crowding and strength-
ening the covariance between resident environment and
competition.
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Figure 3: Storage effect and nonlinear competitive variance plotted against environmental wavelength for a sinusoidally varying environment. The
strength of the storage effect is indicated by the solid line, and the dotted line shows the strength of nonlinear competitive variance. Invader dispersal
is long range ( ), and resident dispersal is short range ( ), while resident-invader competition is short range ( ), and resident-a p 10.0 a p 2.0 b p 2.0i r ir

resident competition is long range ( ). The phase difference f between resident and invader environments equals p. Here and in figure 4,b p 5.0rr

, , and the wavelength of the environmental heterogeneity, , is given on the X-axis. To create this figure and figureF p F p 1 B p B p 0.6 2p/qi r r i e

4, the local dynamics according to equation (2) were simulated on a computer, and , , and were calculated by measuring variances andDI DN Dk

covariances according to their definitions in equations (A36), (A57), and (A63) in the online-only appendix. These plots of and so forth thereforeDI
do not include the approximations made in the final expressions for these quantities.2O(j )

To understand how this measure, which applies to per-
sistence of an individual species in competition with an-
other species, affects species coexistence, we need to con-
vert it into a community measure. Chesson (2003) shows
how this is done by taking a weighted average of overDI
all species as invader. Here (and in the other D measures
discussed later), the weights are equal to 1, and the average
is the ordinary average.

Figure 3 shows an example of how the strength of the
storage effect changes with the scale of environmental het-
erogeneity. Because the contributions of different spatial
scales are additive, it makes sense to consider resident and
invader environments varying at a single spatial frequency,

. In figures 3 and 4, the resident environment isqe

, and the invader environment isE (x) p ln [B sin (q x)]r r e

. (Because of the quotientE (x) p ln [B sin (q x � f)]i i e

structure of in the lottery model, the assumptions listedl j

in “Summary of the Basic Framework” about the size of
perturbations in E and C are best met if environmental
response is measured on a logarithmic scale.) Resident and
invader environments are in phase when and pre-f p 0
cisely out of phase when . Figure 3 plots the storagef p p

effect ( ) as a function of the wavelength of the envi-DI
ronmental heterogeneity, . In figure 3, as in figure 4,2p/qe

Laplacian forms are used for the dispersal and com-
petition kernels: ,k (x) p 1/(2a ) exp (�FxF/a ) U (x) pj j j jr

. The scale parameters and have1/(2b ) exp (�FxF/b ) a bjr jr j jr

units of length and give an indication of the width of the
kernel. For example, the mean dispersal distance of species
j, , is .� FxFk (x)dx a∫�� j j

Nonlinear Competitive Variance

If growth drops off rapidly as competition initially in-
creases from 0 but then reaches an asymptotic rate that is
insensitive to further increases, then an organism in a
highly variable competitive landscape will be able to take
advantage of rare opportunities for quick growth with little
risk of offsetting losses. Conversely, if growth is insensitive
to low levels of competition but drops off rapidly when
competition becomes high, then a species with the same
mean level of competition will perform better if it is ex-
posed to uniformly intermediate levels of competition and
escapes damaging extremes. Nonlinear competitive vari-
ance gauges the relative abilities of the invader and resident
to take advantage of rare opportunities and avoid dam-
aging extremes.

Mathematically, the benefits or perils of varying com-
petition arise from averages of nonlinear functions. The
regional growth rate is an average of the local growth rate
over a landscape in which the strength of competition
varies. Because nonlinear functions weight their arguments
unevenly, the average of a nonlinear function ( ) doesl(C)
not equal the nonlinear function of the average ( ),l(C)
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Figure 4: Growth-density covariance plotted against environmental wavelength for a sinusoidally varying environment. Invader dispersal is short
range ( ), while resident dispersal is long range ( ). The competition kernels are identical and long range ( ). Thea p 2.0 a p 100.0 b p b p 10.0i r ir rr

phase difference f is 0. All other parameters are as given in figure 3. (Because the calculation of growth-density covariance can be sensitive to finite
domain size, its strength has been shown separately from those of the storage effect and nonlinear competitive variance, using parameter values
that minimize that sensitivity.)

which means that the regional growth rate in a varying
environment may be greater or less than the regional
growth rate in a constant environment with the same
mean. If the local growth rate decreases rapidly with com-
petition and then levels off (rare opportunities, few risks),
then greater variation in competition will boost the re-
gional (average) growth rate. For example, in this model,
the local growth rate is proportional to . The growth1/C
rate is very large for small C, providing opportunities for
rapid growth, but it declines only slowly as C increases
beyond a certain point. Figure 5 shows a graphical dem-
onstration of this for the simplistic case where competition
takes only two values.

Nonlinear competitive variance depends both on the
nonlinearity of the local growth rate and on the variance
of competition. In “Derivation of ” in the appendix,DN
we show that for our model,

DN p Var (C ) � Var (C ), (13)r i

where we evaluate both competition terms with invader
density set to 0. The coefficients before the variances
(unity) come from the way in which local growth depends
nonlinearly on competition and are the same because l

is proportional to for both species. The competition1/C
variances will be different, however, if the species have
different competition kernels. (See “Derivation of ” forDN
a derivation of the general expression for nonlinear com-
petitive variance.)

In this model, the resident and invader growth rates
look like figure 5a, not figure 5b. When competition is
low, the growth rate increases rapidly with further declines
in competition, but when competition is high, the growth
rate declines only slowly as competition increases. Both
species therefore benefit from variable competitive envi-
ronments. The invader gains an advantage when its com-
petitive environment varies more than the resident’s does,
as shown by equation (13). (Recall that enters theDN
expression for the regional invader growth rate with a
minus sign: .)′˜ ˜l p l � DI � DN � Dki i

The invader will have a larger competition variance than
the resident when the resident density varies strongly (be-
cause resident population density is the source of com-
petition) and resident-invader competition is more nar-
rowly focused than resident-resident competition, so
invaders close to peaks of resident density experience high
competition, and invaders further from peaks of resident
density experience low competition. This is reflected in
the mathematical expressions for and inVar (C ) Var (C )r i

the lottery model, derived in “Derivation of ”:DN

Var (C ) ≈ Var [U ∗ (u � e )], (14)r rr r r

Var (C ) ≈ Var [U ∗ (u � e )]. (15)i ir r r

(The contribution to competition from a single point is
normally the product of resident density and environment,

, but to a satisfactory approximation for variancen (x)E (x)r r
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Figure 5: Effects of varying competition on the average growth rate. We assume a uniform environmental response and plot local growth as a
function of competition. When competition equals everywhere, then local growth takes the same value everywhere, and the spatial average ofC
the growth rate can be read directly from the graph. However, if each location has either competition or , such that the average competitionC C1 2

is , then the average growth rate increases (if growth vs. competition is concave-up) or decreases (if growth vs. competition is concave-down) byC
the amount of the bold arrow. (For the simplistic case in which competition takes only two values with equal probability, the average growth rate
is found by taking the midpoint of the line segment connecting the growth rates at high and low competition.) Intuitively, the average growth rate
increases when competition varies if the increase in the growth rate at low competition is not offset by the decrease in the growth rate at higher
competition.

calculations, the effects of density and environment can
be treated as additive, .) Looking at the expressionu � er r

for , we see that if resident-resident competition isVar (C )r
diffuse so that is a low, broadly peaked function,U (x)rr

then the convolutions with will smear out most of theUrr

variation in and , leaving the variance small. Similarly,u er r

looking at , if resident-invader competition is nar-Var (C )i
rowly focused so that is a sharply peaked function,U (x)ir

then the convolutions with will preserve much of theUir

variation in and , allowing the variance to be sub-u er r

stantial. Of course, there must be variation in , the res-ur

ident population density, to preserve. As explained in “Res-
ident Population Distribution,” the resident population
density varies more strongly as the spatial scale of resi-
dent dispersal decreases and the spatial scale of
resident-resident competition increases, so long-range
resident-resident competition increases the magnitude of
nonlinear competitive variance in two ways. The effects
of different scales of dispersal and competition are sum-
marized in table 2, while figure 3 shows an example of
how the strength of nonlinear competitive variance
changes with the scale of environmental heterogeneity.

“Derivation of ” contains a Fourier representationDN
of (eq. [A67]). The expression for vanishes ifDN DN

; thus, the two competition kernels, and ,˜ ˜U p U U Urr ir ir rr

must be different for to be nonzero. This requirementDN
occurs because the growth rates for both species are non-
linear in C in the same way (the two are not relatively
nonlinear), and so arises entirely from differences inDN
their competitive variances, which come in turn from dif-
ferences in their competition kernels.

Constructing an intuitive picture from the mathemat-
ics, short-range resident dispersal and long-range
resident-resident competition cause the resident popula-
tion distribution to respond more sensitively to resident
environmental variation, leaving low-density areas in
which invaders will experience low competition and high
growth rates. Although this process also creates high-
density areas in which invaders experience high compe-
tition because of the way in which local growth is nonlinear
in competition ( ), these high-competition areasl ∝ 1/C
do not decrease the local growth rates as much as the low
competition areas increase them. Short-range resident-
invader competition ensures that the competitive pressure
on invaders comes mostly from the local resident density
and environment and not from an average over high- and
low-density areas. Long-range resident-resident competi-
tion, in addition to increasing variability in resident pop-
ulation density, means that residents are less able to take
advantage of their own low-density areas because com-
petitive pressure on residents comes from a broad spatial
region that may encompass both high- and low-density
zones.

Nonlinear competitive variance will promote the co-
existence of the community if the average of over allDN
species as invader is negative (Chesson 2003). The average
of will of course be negative if it is negative for bothDN
species individually. Looking at the Fourier representation
of (eq. [A67]), we can see that this will happen ifDN
competition within species is longer range than compe-
tition between species ( and narrow and˜ ˜U (q) U (q)11 22

and broad). (This situation was also found˜ ˜U (q) U (q)12 21
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to promote coexistence by Murrell and Law [2003], though
for a different reason. See “Discussion.”) This may be
possible if there is long-range apparent competition due
to specialist predators or pathogens.

Growth-Density Covariance

Growth-density covariance ( ) measures the degree toDk

which the resident and invader populations accumulate in
favorable locations. While population buildup must ulti-
mately lead to crowding and a reduced growth rate, for
questions of coexistence, we consider only the initial re-
covery of invader populations from regionally low den-
sities, and so population retention in favorable locations
is beneficial for the invader.

For the lottery model, growth-density covariance is
given by the difference in the covariance between local
growth rate l and relative population density for resi-n

dents and invaders:

Dk p Cov (l , n ) � Cov (l , n), (16)i i r r

where again, and are calculated with invader densityl nj j

set to 0 and the covariances are evaluated at 0 lag. (See
“Derivation of ” in the appendix for a derivation of eq.Dk

[16]. For the most general form, see the review of the
general framework in “Summary of the Basic Frame-
work.”) will be positive if relative populationCov (l , n )j j

density is high where growth rate is high, so willn l Dkj j

be positive if population density concentrates in high-
growth areas to a greater extent for the invader than for
the resident.

For this model, is proportional to the in-Cov (l , n )i i

tegral of the product of and , where˜ ˜ ˜k (q)/[1 � k (q)] R(q)i i

depends on the Fourier transform of resident-invaderR̃(q)
competition ( ), the response of the resident to itsŨ (q)ir

environment ( ), and the Fourier transforms of theM̃(q)
resident and invader environments ( and ). (See˜ ˜e (q) e (q)r i

“Derivation of ” for the full expression.) Meanwhile,Dk

Cov (l , n) ≈r r

Cov (e , u ) � [U ∗ (Cov (e , u ) � Cov (u , u ))], (17)r r rr r r r r

where, as with , the covariances that are convolved withDI
the competition kernel are functions of a lag and theUrr

entire convolution is evaluated at 0. (See “Derivation of
” for a derivation.)Dk

We can derive some simple insights from these
expressions. The resident growth-density covariance,

, is approximately equal to the covariance be-Cov (l , n)r r

tween the resident environment and the resident relative
density, . The other terms,Cov (e , u ) U ∗ (Cov (e , u ) �r r rr r r

, are generally small because if resident-Cov (u , u ))r r

resident competition is short range, will not vary muchur

(see “Our Mathematical Approach”), but if resident-
resident competition is long range, then the two covari-
ances will be averaged away by their convolution with the
broadly peaked competition kernel . The statementUrr

means that the residents will ac-Cov (l , n) ≈ Cov (e , u )r r r r

cumulate in favorable locations ( will be larger)Cov (l , n)r r

if the residents can track their environment well, which
requires short-range dispersal and long-range competition
with each other, as discussed in “Resident Population
Distribution.”

In the integral for invader growth-density covariance,
becomes very large for˜ ˜k (q)/(1 � k (q)) q Ki i

, so the smaller is, the greater the1/21/(Var (k )) Var (k )i i

range of frequencies is over which is large.˜ ˜k (q)/(1 � k (q))i i

The standard deviation of the invader dispersal kernel,
, can be thought of as representing typical in-1/2(Var (k ))i

vader dispersal distances, so can be quite largeCov (l , n )i i

when invader dispersal is short range ( small) andVar (k )i
environmental variation is present at scales much larger
than typical dispersal distances ( ). (This1/2q K 1/(Var (k ))i

is discussed further in Snyder and Chesson 2003.) Al-
though we have reached this result mathematically, it is
not surprising that short-range dispersal helps the invader
to accumulate in favorable locations.

What is less clear are the roles of resident-resident and
resident-invader competition and resident dispersal in de-
termining . This is difficult to tease out ana-Cov (l , n )i i

lytically, but plotting for different combinations ofR̃(q)
phase difference between resident and invader environ-
ments, magnitudes of resident and invader environments,
and dispersal and competition scales reveals some patterns
for the case when resident- and invader-favorable areas
are largely distinct. In this case, short-range resident-
invader competition increases . Short-rangeCov (l , n )i i

resident dispersal also increases , although ifCov (l , n )i i

resident-invader competition is long range and resident-
resident competition is short range, the effect is min-
imal. Long-range resident-resident competition in-
creases , although if resident dispersal andCov (l , n )i i

resident-invader competition are long range, the effect is
again minimal.

The effects of changing the spatial scales of dispersal
and competition on the components of are summarizedDk

in table 3. In practice, the size of often dom-Cov (l , n )i i

inates , both because of the size of and be-˜Cov (l , n) Rr r

cause of the amplifying effect of . The net effects˜ ˜k /(1 � k )i i

of changing dispersal and competition scales are sum-
marized in table 2.

Let us use these mathematical insights to construct an
intuitive picture of what is happening. Short-range invader
dispersal increases by helping the invader populationDk
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Table 3: Response of growth-density components to dispersal and competition scales

Component
of Dk

Invader
dispersal

Resident
dispersal

Resident-resident
competition

Resident-invader
competition

Cov (l , n )i i Shorter Inconsistent Inconsistent Inconsistent ( and in phase)E Ei r

Shortera Longerb Shorter ( and out of phase)E Ei r

Cov (l , n )r r NA Shorter Longer NA

Note: For each component of , shorter indicates that the component increases as the length scale grows shorter,Dk

and longer indicates that the component increases as that length scale grows longer. NA means that that biological

process does not affect the quantity in question. Inconsistent means that the effect of that spatial scale depends on

the spatial scales and relative magnitudes of resident and invader environmental variation.
a Minimal effect if resident-invader competition is long range and resident-resident competition is short range.
b Minimal effect if resident dispersal and resident-invader competition are both long range.

to accumulate in favorable locations. The other situations
about which we can say something definite occur when
residents and invaders prefer different environments, so
any peaks of resident density are offset from the areas most
favorable to invaders. Short-range resident-invader com-
petition reduces the competitive effect of residents in fa-
vorable areas on invaders in their own favorable areas,
increasing there and thereby increasing andl Cov (l , n )i i i

. Resident population density can be focused in favor-Dk

able resident areas, reducing its presence in favorable in-
vader areas, if resident dispersal is short range or resident-
resident competition is long range, as explained in
“Resident Population Distribution.” However, because this
increases in addition to , the netCov (l , n) Cov (l , n )r r i i

effect on depends on which covariance dominates. AtDk

least for the Laplacian kernels that we have used, long-
range resident-resident competition consistently increases

when resident and invader environments are out ofDk

phase, whereas the effects of short-range resident dispersal
depend on the magnitudes and spatial scales of resident
and invader environments.

Figure 4 shows an example of how the strength of
growth-density covariance changes with the scale of en-
vironmental heterogeneity. Growth-density covariance will
promote coexistence in the community as a whole if the
average of over all species as invader is positive (Ches-Dk

son 2003).

A Hypothetical Example

Suppose that we are investigating coexistence between two
annual plant species. One, which we shall call dandelion-
like, has light, winged seeds able to travel long distances,
prefers sandy soil, and has a taproot. The other, which we
shall call lupine-like, also has a taproot but has heavy seeds
that remain close to the parent plant and prefers clay-rich
soil. It also has a specialist insect predator. If we suppose
that competition is largely for underground resources,

competition between dandelion-like individuals and be-
tween dandelion-like and lupine-like individuals should
be short range because their root systems do not have
much lateral extent. Direct competition between lupine-
like individuals will also be short range, but the presence
of the insect predator will add apparent competition. Let
us suppose that the insect is fairly mobile so that total
competition between lupine-like individuals is long range.
What do we expect , , and will look like for eachDI DN Dk

of these two species as invader?
When the dandelion-like species is the invader, invader

dispersal is long range, so we expect little growth-density
covariance. Resident-invader competition is short range,
resident-resident competition is long range, and andEi

are out of phase. Looking at table 2, we see that theEr

short-range resident-invader competition should increase
the size of the storage effect, although the effect of resident-
resident competition is unclear. Meanwhile, nonlinear
competitive variance could be substantial. Because
resident-resident competition is longer range than
resident-invader competition, will be negative, bene-DN
fitting the invader. Figure 6 shows , , and plottedDI DN Dk

against environmental wavelength for a sinusoidally vary-
ing environment.

Now consider the lupine-like species as the invader.
Invader dispersal is short range, so growth-density covar-
iance may be substantial. In this case, resident-resident
and resident-invader competition are both short range.
Let us suppose that these competition kernels are actually
the same. In this case, there will be no nonlinear com-
petitive variance. As before, the short-range resident-
invader competition will increase the storage effect. The
values of and are plotted against environmentalDI Dk

wavelength in figure 7.

The Scale of Environmental Variability

Nonlinear competitive variance, the storage effect, and
growth-density covariance each peak at intermediate scales
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Figure 6: Regional-scale growth rate components plotted against environmental wavelength for the dandelion-like species as invader. ( ,a p 100.0i

, , , phase difference . All other parameters are as in fig. 3.) The light dotted line shows the storage effect, thea p 2.0 b p 2.0 b p 10.0 f p pr ir rr

solid line shows nonlinear competitive variance, and the heavy dotted line shows growth-density covariance.

of environmental heterogeneity because they all rely on
variation in resident density ( appears in the expressionsur

for , , and ), and resident density varies only inDN DI Dk

response to environmental heterogeneity at intermediate
spatial scales. For relative nonlinearity, it is clear why this
should be so because relative nonlinearity arises from var-
iance in competition, which comes from variance in res-
ident density. Likewise, the storage effect relies on covar-
iance between resident environmental response and
resident competition and hence on covariance between
resident environment and resident density. Growth-
density covariance ( ) is more complicated. At firstDk

glance, it would seem as though the less resident density
varies, the stronger would be because is large whenDk Dk

the invader population is concentrated in favorable lo-
cations and the resident population is more evenly dis-
tributed. However, growth-density covariance measures
how strongly the invader population is concentrated in
areas with a high growth rate, which is a result not only
of a large environmental response but also of low com-
petition. When resident density varies a little bit, it affords
opportunities for lower competition and larger invader
growth rates.

Discussion

Our models show how different scales of dispersal, com-
petition, and environmental heterogeneity can interact to
promote or suppress spatial mechanisms of coexistence.
We connect these spatial scales to their effects on coex-
istence in two steps: we express the invader’s regional-

scale growth rate in terms of various covariances and then
show how these covariances are strengthened or weakened
by changes in biological and physical scales.

We have also presented an extension of relative nonli-
nearity, a previously known mechanism of coexistence.
Both relative nonlinearity and its extension, nonlinear
competitive variance, result from a variable competitive
landscape and growth that is a nonlinear function of com-
petition. Distinguishing the two involves the concept of
limiting factors (Levin 1970). Both and are limitingC Ci r

factors because the invader and resident growth rates de-
pend on them and they reflect competition. When com-
petition kernels are the same for all pairs of species
( ), then invader competition andU p U p U p U11 12 21 22

resident competition become equal ( ), andC p C p Ci r

and are functions of the same limiting factor, C.l li r

Relative nonlinearity applies when the growth rates of dif-
ferent species are different nonlinear functions of the same
limiting factors. For example, if the growth rate of species
1 were and the growth rate of species 2 werel p E /C1x 1x

, then there would be relative nonlinearity.2l p E /C2x 2x

Nonlinear competitive variance allows the growth rates of
different species to be nonlinear functions of different lim-
iting factors. This could mean the same nonlinear function
of different factors, which is the case here. Because invader
and resident competition involve different competition
kernels, and are different limiting factors, and soC Ci r

and are the same nonlinear function (the reciprocall li r

function) of different limiting factors. The nonlinear com-
petitive variance that we have here depends on the fact
that and have different variances and that each ofC Ci r
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Figure 7: Regional-scale growth rate components plotted against environmental wavelength for the lupine-like species as invader. ( ,a p 2.0 a pi r

, , phase difference . All other parameters are as in fig. 3.) The light dotted line shows the storage effect, and the heavy100.0 b p b p 2.0 f p pir rr

dotted line shows growth-density covariance.

them have nonlinear effects on growth. More details are
given in “Derivation of .”DN

Connections with Existing Literature

By partitioning the invader’s regional-scale growth rate
into contributions from different classes of coexistence
mechanisms, we are able not only to indicate the relative
importances of different mechanisms in different circum-
stances but also to give a more complete understanding
of how environmental heterogeneity can promote coex-
istence. Most discussions of coexistence in heterogeneous
environments have been framed in terms of source-sink
dynamics or a “spatial mass effect” (Shmida and Whittaker
1981; Shmida and Ellner 1984). (Classically, a sink refers
only to a place in which the local finite growth rate isl jx

!1 even in the absence of competition; however, we use
this term more loosely to refer to any place in which l jx

is !1.) It is assumed that species’ responses to the envi-
ronment are dissimilar, so different locations favor differ-
ent species, and a species’ most favorable locations act as
a source, subsidizing less favorable areas where the pop-
ulation would ordinarily decline. However, we have shown
that environmental heterogeneity can promote coexistence
when species’ environmental responses are similar or even
identical, as long as they experience competition on dif-
ferent spatial scales. A species can gain an advantage by
being less limited by competition in its favorable areas
( ) or by being better at retaining its population in fa-DI
vorable areas ( ). It is even possible for environmentalDk

variation itself to promote coexistence, whether species

have similar or different responses, as long as the two
species experience different variation in competition
( ). Pacala and Roughgarden (1982) give an example ofDN
coexistence via growth-density covariance when the species
have similar habitat preferences. They discuss a two-patch
model in which both the resident and invader have a
higher carrying capacity in patch 1 than in patch 2. Short-
range dispersal in the context of this model means local
retention, while long-range dispersal means dispersal into
the other patch. In the absence of dispersal between
patches, high competition from the resident would make
both patches sinks for the invader, but resident dispersal
causes a net flow of residents to the patch with the lower
carrying capacity (patch 2), lowering interspecific com-
petition enough in patch 1 for the invader to survive there.
This patch may then become a source of invaders for patch
2. In a second example, the invader could survive in both
patches in the absence of dispersal, but resident dispersal
raises the resident population in patch 2, potentially in-
creasing the invader’s competition there to the point that
patch 2 becomes a sink for the invader. The invader can
then persist only if it has sufficient local retention (i.e.,
short-range dispersal) in patch 1.

Of course, if species have dissimilar environmental re-
sponses, source-sink dynamics can arise, and these can be
created by either the storage effect or growth-density co-
variance. Which mechanism is active depends on the de-
tails of how the environmental response affects local
growth . The storage effect measures the covariancel jx

between the different effects of environmental response
and competition on growth. If environmental response has
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no direct effect on growth but instead changes onlyl jx

indirectly via its effect on competition, defined as the frac-
tional reduction of the growth rate in the presence of
neighbors, then there can be no storage effect, although
growth-density covariance is possible. A number of the
articles that discuss coexistence via source-sink dynamics
demonstrate growth-density covariance (Muko and Iwasa
2000; Amarasekare and Nisbet 2001; Codeço and Grover
2001; Levine and Rees 2002). (A further discussion of
growth-density covariance in existing articles can be found
in “Synthesis of Spatial Mechanisms” in Snyder and Ches-
son 2003.) Other source-sink discussions feature a storage
effect (Shmida and Ellner 1984; Chesson 1985; Comins
and Noble 1985) or a combination of both (Mouquet and
Loreau 2002).

Another well-known spatial coexistence mechanism is
the competition-colonization trade-off (Tilman 1994), in
which a far-dispersing inferior competitor is able to persist
by being better at colonizing newly available habitat. Long-
distance dispersal is beneficial to the invader when there
is a competition-colonization trade-off but is not a feature
of any of the spatial coexistence mechanisms we have dis-
cussed. The reason for this is that we consider fixed spatial
environmental variation only—there are no temporal fluc-
tuations in environmental conditions to open up new hab-
itat—and we assume that the resident has reached a stable
equilibrium where the effects of demographic stochasticity
are negligible; the resident will not become locally extinct
because of either cyclic dynamics or chance demographic
events. Because there is no new habitat to exploit, long-
distance dispersal can cause the invader to experience a
net loss of population only from the most favorable areas.

We are unaware of any studies showing that spatial rel-
ative nonlinearity or nonlinear competitive variance has
played a significant role in coexistence. This is unsurpris-
ing. Nonlinear competitive variance requires a nonzero
spatial scale for competition, and few studies have con-
sidered the scale of competition. When competition occurs
only at a point (zero-length scale), then only relative non-
linearity is possible, and, as already discussed by Chesson
(2000a), relative nonlinearity is unlikely to be a prominent
spatial coexistence mechanism, although its analog for
temporal variation can be important (Abrams 2004).

A few articles have considered the spatial scales of both
dispersal and competition. Our work is most closely re-
lated to that of Murrell and Law (2003), who include both
dispersal and competition kernels, although the environ-
ment is homogeneous. Murrell and Law make the scales
of intraspecific competition equal ( ) and theU (x) p U (x)rr ii

scales of interspecific competition equal ( )U (x) p U (x)ir ri

and find that when species have identical dispersal kernels
and life-history parameters, the species coexist if inter-
specific competition occurs on a shorter scale than intra-

specific competition. This matches our finding that if in-
terspecific competition occurs on a shorter scale than
intraspecific competition, nonlinear competitive variance
( ) will increase the regional-scale invasion rates of bothDN
species. Local dispersal drives both species to aggregate,
and diffuse intraspecific competition does little to oppose
the formation of conspecific clusters. This means that there
are gaps in resident density for the invader to exploit and
that the invader is able to track these gaps. Meanwhile,
shorter scale interspecific competition prevents residents
from having too strong an effect on the interiors of invader
clusters. Although there is no environmental heterogeneity,
this coexistence mechanism is effectively a form of growth-
density covariance, in which the invaders track not a fa-
vorable physical environment but enemy-free space. Of
course, in this form, coexistence will be promoted as res-
ident-resident competition becomes longer, not shorter,
because that is what causes gaps for the invaders to inhabit.

This work is also connected with that of Bolker (2003),
who considers the effects of environmental heterogeneity
along with dispersal and competition kernels. Although
Bolker does not explicitly address coexistence, he does note
that short-range dispersal allows more offspring to be re-
tained in favorable environments and thereby becomes
more advantageous as environmental heterogeneity in-
creases. This again is a form of growth-density covariance.

Testing the Robustness of Our Conclusions

We have shown how , , and respond to changesDI DN Dk

in the spatial scales of dispersal, competition, and envi-
ronmental variation in the lottery model. While the lottery
model is a useful caricature of several biological systems,
it is important to ask how well our conclusions generalize
to systems with fundamentally different dynamics. We
have tried to show that our mathematical conclusions
make intuitive sense: it is reasonable, for example, that
short-range dispersal allows the invader to accumulate in
favorable locations and thus increases growth-density co-
variance. This gives us hope that our conclusions are likely
to be broadly valid. Nonetheless, how would one go about
testing these ideas?

One approach is theoretical. One could use different
models or simply different definitions of competition and
proceed mathematically as we have here to see whether
our conclusions remain valid. The second approach is em-
pirical. This approach, which is already in use (Melbourne
et al. 2004; Sears 2004), begins by defining a model for
the population dynamics of an experimental system in
terms of an empirically defined E and C. (Having l pro-
portional to is generally a good choice, at least withinE/C
one life-history stage.) One then makes experimental mea-
surements of , , and C for both the invader and then E
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resident as they vary over a landscape so that the relevant
variances and covariances can be determined and ,DI

, and estimated.DN Dk

In articles by Melbourne et al. (2004) and Sears (2004),
a species that had recently been driven to low density
served as the invader, while a common species served as
the resident. These studies begin with a slight modification
of the model used here in which C is measured at different
points in space by standard neighbor-removal experiments
(Goldberg et al. 1999); E is characterized as an effect on
fecundity, and natural spatial variation in the environment
is measured and detected on the basis of plant performance
in the absence of neighbors. Measuring the spatial distri-
butions of both invader and resident allows one to estimate

and . Having obtained C, E, and for each species, itn n ni r

is possible to measure all of the covariances and variances
in the expressions for , , and . Measuring theDI DN Dk

effects of nonlinear competitive variance has not yet been
attempted because it was not understood before the work
in this manuscript, but in principle, it is not of greater
difficulty than measuring the other effects discussed here.

The storage effect and growth-density covariance will
promote persistence of a species if their corresponding
measures ( and ) are positive. Thus, measuringDI Dk DI
and to see whether they are significantly positive is aDk

test of the hypothesis that these mechanisms contribute
to persistence of that species. Similarly, nonlinear com-
petitive variance contributes to persistence if is neg-DN
ative, and so one should test whether is significantlyDN
negative.

The true power of our approach, however, lies in its
ability to distinguish both the absolute and the relative
degrees to which different mechanisms are contributing
to coexistence and not simply to determine their presence
or absence. By quantifying the strengths of different mech-
anisms, we can also determine the degree to which en-
vironmental variation may be diminishing persistence by
different mechanisms. For example, if the resident has a
stronger tendency to aggregate in high-growth areas than
the invader, then will be negative.Dk

This study has focused on the contributions of envi-
ronmental variation on persistence as the root of coexis-
tence, and coexistence is certainly promoted when envi-
ronmental variation increases the regional-scale growth of
all species as invader. It is also possible, however, that a
mechanism promotes coexistence in the community as a
whole by giving a boost to a subordinate species (positive

or , negative ) while disadvantaging a dominantDI Dk DN
(negative or , positive ). One can determineDI Dk DN
whether there is an overall coexistence-promoting effect
by combining separate species values into an overall com-
munity level D value, using a weighted average over species
(Chesson 2003). As mentioned above, the weights are 1

in the models given here, so the weighted average is an
ordinary average. Evidence against the hypothesis that the
mechanism contributes to coexistence in the community
in this way consists of finding a negative community-level
value of or or a positive community-level value ofDI Dk

.DN
In this article, we have a range of predictions about the

ways that the scales of dispersal, competition, and envi-
ronmental variation affect the strength of these coexistence
mechanisms. Testing hypotheses of this sort has not been
attempted yet but is not infeasible and might be done as
an extension of the above procedures for determining
mechanism strength. We give just one example of how this
might be done to test predictions about scales of envi-
ronmental variation. We give just one example of how
scales might be manipulated. Soil temperatures at and be-
fore the time of rainfall are known to be important en-
vironmental factors affecting germination of annual plants
(Baskin and Baskin 1998). Shading has major effects on
soil temperature and can vary dramatically in space. In
Southwestern deserts with both winter and summer an-
nual communities, standing dead grass, which is spatially
variable, affects shading of winter annuals during the fall
germination season (P. Chesson, personal observation).
This shading is conveniently subject to manipulation and
in principle allows flexible manipulation of the scale of
environmental factors. Scales of competition might be in-
vestigated by using species with root systems of different
spatial extents, and dispersal can be manipulated by bag-
ging plants and hand dispersing seeds. We admit that there
are many challenges in performing such experiments, but
they are not infeasible and in principle allow the effects
of interacting scales on the coexistence mechanisms pre-
sented here to be tested. Further development of such
experimental designs, their field implementation, and the
statistical tests associated with them are the subjects of this
article and future work of P. Chesson and collaborators.

Among other advantages, investigating species coexis-
tence by partitioning growth rates into terms correspond-
ing to different mechanisms is especially suited to empir-
ical investigation because it allows multiple mechanisms
to be considered simultaneously in a single system, and
the quantification of different mechanisms leads imme-
diately to assessment of their relative importance. More
subtle hypotheses about the factors affecting these relative
importances can then be considered theoretically and po-
tentially experimentally in the future.
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