
A Analytic approximation for invader fitness (elec-

tronic supplement)

As discussed in Section 2.3 (“Defining fitness”), we assume that fluctuations in fecundity
and germination are small relative to their means and for all species j write

Fj(t) = 〈Fj〉t(1 + fj(t)) (A.1)

gj(t) = 〈gj〉t(1 + Ωj(t)), (A.2)

where fj and Ωj are O(σ). We also assume that fluctutations in germination and fecundity
causes O(σ) fluctuations in competition and the resident populations, so that

Ci(t) = 〈Ci〉t(1 + ci(t)) (A.3)

nj(t) = 〈nj〉t(1 + ηj(t)), j = 1, 2. (A.4)

Substituting the perturbative expressions for germination, fecundity, and competition
into the expression for the yearly invader growth rate, λi(t), we find that

λi(t) =
gi(t)Fi(t)

Ci(t)
+ si(1− gi(t)) = λ(0)(1 + ζ

(1)
i (t) + ζ

(2)
i (t), (A.5)

where λ(0) is the growth rate in the absence of environmental variation:

λ(0) =
〈gi〉t〈Fi〉t
〈Ci〉t

+ si(1− 〈gi〉t), (A.6)

ζ
(1)
i (t) is the first order contribution to the fluctuating growth rate:

ζ
(1)
i (t) =

1

λ(0)

〈gi〉t〈Fi〉t
〈Ci〉t

[Ωi(t) + fi(t)− ci(t)]−
si〈gi〉t
λ(0)

Ωi(t), (A.7)

and ζ
(2)
i (t) is the second order contribution to growth:

ζ
(2)
i (t) =

1

λ(0)

〈gi〉t〈Fi〉t
〈Ci〉t

[
Ωi(t)fi(t)− (Ωi(t) + fi(t))ci(t) + c2

i (t)
]
. (A.8)

From eq. 7, we know that

ri = lnλ
(0)
i + 〈ζ(2)

i 〉t −
1

2
〈ζ(1)2

i 〉t. (A.9)

Using our definitions for the ζ
(1)
i and ζ

(2)
i , we find

〈ζ(2)
i 〉t =

1

λ(0)

〈gi〉t〈Fi〉t
〈Ci〉t

[Cov(Ωi, fi)− Cov(Ωi + fi, ci) + Var(ci)] (A.10)
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〈ζ(1)2

i 〉t =
1

λ(0)2

(
〈gi〉t〈Fi〉t
〈Ci〉t

)2

[Var(Ωi + fi) + Var(ci)− 2Cov(Ωi + fi, ci)]

+
1

λ(0)2 (si〈gi〉t)2 Var(Ωi)−
2

λ(0)2 si〈gi〉t
〈gi〉t〈Fi〉t
〈Ci〉t

[Var(Ωi) + Cov(Ωi, fi)− Cov(Ωi, ci)] .

(A.11)

Substituting these into our expression for ri gives us eq. 8 or, equivalently, eq. 9, with

A1 =
1

λ(0)

〈gi〉t〈Fi〉t
〈Ci〉t

(A.12)

A2 =
1

λ(0)
si〈gi〉t. (A.13)

This form is useful for insight, but in order to actually calculate fitness, we need to
express ri entirely in terms of environmental fluctuations (Ωi and fi). This we do by
writing fluctuations in invader competition (ci) in terms of fluctuations in the resident
population densities (η1 and η2) and writing these population fluctuations in terms of
environmental fluctuations.

Let us first relate fluctuations in competition to fluctuations in resident population
densities. Substituting our expression for n1(t) and n2(t) into the definition of Ci(t), we
find that to O(σ)

〈Ci〉t = γi1〈g1〉t〈n1〉t + γi2〈g2〉t〈n2〉t (A.14)

ci(t) = Di1(Ω1 + η1) +Di2(Ω2 + η2), (A.15)

where

Di1 =
γi1〈g1〉t〈n1〉t
〈Ci〉t

(A.16)

Di2 =
γi2〈g2〉t〈n2〉t
〈Ci〉t

. (A.17)

We now relate population fluctutations to environmental fluctuations by returning
to the population dynamics, eqs. 1 and 2. We substitute our perturbative expressions
for nj, gj, and Fj into the equations for dynamics and expand to O(σ). Treating the
resident population fluctuations, η1 and η2, as components of a vector η and similarly for
germination fluctuations (Ω) and fecundity fluctuations (f), we find that to O(σ),

η(t+ 1) = Aηη(t) + AΩΩ(t) + Af f(t), (A.18)

where

Aη11 = κ1(1−D11) + s1(1− 〈g1〉t) Aη12 = −κ1D12 (A.19)

Aη21 = −κ2D21 Aη22 = κ2(1−D22) + s2(1− 〈g2〉t), (A.20)
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AΩ11 = κ1(1−D11)− s1〈g1〉t AΩ12 = −κ1D12 (A.21)

AΩ21 = −κ2D21 AΩ22 = κ2(1−D22)− s2〈g2〉t, (A.22)

Af 11 = κ1 Af 12 = 0 (A.23)

Af 21 = 0 Af 22 = κ2, (A.24)

where

κ1 =
〈g1〉t〈F1〉t

γ11〈g1〉t〈n1〉t + γ12〈g2〉t〈n2〉t
= s1(1− g1) (A.25)

κ2 =
〈g2〉t〈F2〉t

γ21〈g1〉t〈n1〉t + γ22〈g2〉t〈n2〉t
= s2(1− g2) (A.26)

and

Djk =
γjk〈gk〉t〈Fk〉t

γj1〈g1〉t〈n1〉t + γj2〈g2〉t〈n2〉t
. (A.27)

We can thus write

η(t) =
t−1∑
j=0

Aη
t−1−j [AΩΩ(j) + Af f(j)] (A.28)

=
∞∑
j=0

[MΩ(t− j)Ω(j) + Mf (t− j)f(j)] , (A.29)

where

MΩ(s) =

{
Aη

s−1AΩ s > 0
0 s ≤ 0

(A.30)

and similarly for Mf (with Af instead of AΩ). The vector of resident population fluc-
tuations, η(t), is now expressed as a convolution of kernels (MΩ and Mf ) and their
respective environmental fluctutions (Ω and f). We can dispose of the convolutions by
taking a temporal Fourier transform:

M̃Ω(ω) =
∞∑
s=0

MΩ(s)e−iωs =
∞∑
s=1

Aη
s−1AΩe

−iωs =
∞∑
s=0

(
Aηe

−iω)s AΩe
−iω. (A.31)

The eigenvalues of MΩ all have modulus less than 1, so this expression converges to(
I−AΩe

−iω)−1
e−iωAΩ =

(
eiωI−AΩ

)−1
AΩ. (A.32)

After a similar calculation for M̃f (ω), we arrive at

η̃(ω) =
(
eiωI−AΩ

)−1
AΩΩ̃(ω) +

(
eiωI−Af

)−1
Af f̃(ω). (A.33)
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The transfer functions (eiωI−AΩ)
−1

AΩ and (eiωI−Af )
−1

Af f̃(ω) are 2 × 2 matrices
with complex elements. It is helpful to put these in polar notation, so that, for example,

η̃1(ω) = RΩ11e
iφΩ11

(ω)Ω̃1(ω) + Rf 11e
iφf11

(ω)f̃1(ω) + RΩ12e
iφΩ12

(ω)Ω̃2(ω) + Rf 12e
iφf12

(ω)f̃2(ω),
(A.34)

where, for example, RΩ11 is the modulus of (eiωI−AΩ)
−1

AΩ and φΩ11 is its phase.
The reader may (or may not) remember that we are trying to relate the population

fluctuations to the environmental fluctuations. We have done so. This plus the Wiener-
Khinchin theorem allows us to calculate the variances and covariances in our expression
for invader fitness (ri).

For example, ri depends on Cov(fi, ci), the covariance between invader fecundity and
competition. We use eq. A.14 to substitute for ci and learn that Cov(fi, ci) depends
on Cov(fi, η1), the covariance between invader fecundity and the population density of
resident 1. Enter the Wiener-Khinchin theorem, which states that if two functions f(t)
and g(t) have zero mean, the Fourier transform of Cov(f, g) is given by

F [Cov(f, g)] = lim
N→∞

f̃ ∗(N)(ω)g̃(N)(ω)

N
, (A.35)

where superscript * denotes the complex conjugate and g̃(N)(ω) equals the Fourier trans-

form of g(t) in the limit as N approaches infinity: g̃(N)(ω) =
∑N/2

t=−N/2 g(t) exp(−iωt).
This tells us that

Cov(fi, η1) =
1

2π

∫ ∞
−∞

F [Cov(fi, η1)](ω) dω = lim
N→∞

1

N

1

2π

∫ ∞
−∞

f̃
∗(N)
i (ω)η̃

∗(N)
1 (ω) dω.

(A.36)
Eq. A.34 gives us an expression for η̃1(ω) in terms of environmental fluctuations, so that
the integrand in eq. A.36 becomes

lim
N→∞

RΩ11e
iφΩ11

(ω) f̃
∗(N)
i (ω)Ω̃

(N)
1 (ω)

N
+ Rf 11e

iφf11
(ω) f̃

∗(N)
i (ω)f̃

∗(N)
1 (ω)

N

+ RΩ12e
iφΩ12

(ω) f̃
∗(N)
i (ω)Ω̃

∗(N)
2 (ω)

N
+ Rf 12e

iφf12
(ω) f̃

∗(N)
i (ω)f̃

∗(N)
2 (ω)

N
. (A.37)

What is to be done with all these Fourier transforms of environmental fluctuations?
Here we use the Wiener-Khinchin theorem again and recall, for example, that

lim
N→∞

f̃
∗(N)
i (ω)Ω̃1(ω)

N
= F [Cov(fi,Ω1)], (A.38)

where the covariance is a function of lag time. These environmental covariances charac-
terize the ecological situation under consideration and are treated as inputs. (See second
appendix.) For example, if the two species germinate in different years, then Cov(g1, g2)
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will be negative. If there is predictive germination, then Cov(gj, fj) will be positive. If
germination is positively autocorrelated, then Cov(g1, g1) will have a different form than
if germination fluctuates independently from year to year.

In summary, we have expressed invader fitness ri in terms of variances and covariances
of environmental fluctuations and fluctuations in competition. Since invader competition
is a function of resident density, we can rewrite fitness in terms of variances and covari-
ances of environmental fluctuations and resident population fluctuations. These resident
population fluctuations can in turn be expressed in terms of environmental fluctuations,
so that ultimately, invader fitness becomes a function of environmental variances and
covariances.

B The Fourier transforms of environmental covari-

ances (electronic supplement)

We found that allowing germination or fecundity to be positively autocorrelated had
little effect on our results, so for all the figures in this paper, we assume that germination
and fecundity are uncorrelated between years (white noise). Using the Wiener-Khinchin
theorem, it can be shown that for a white noise process ζ(t) with variance Var(ζ), the
Fourier transform of the autocovariance is constant and equal to the variance:

F [Cov(ζ, ζ)](ω) = Var(ζ). (B.1)

Thus
ζ̃(ω) = eiθ

√
Var(ζ), (B.2)

where θ is a phase angle to be determined.
The correlation between two sources of environmental variation is equal to the cosine

of their phase difference. We measure all phase differences relative to the germination
of species 1 and determine the phase angles for g2, f1, and f2 by considering correlation
structure. Thus, we say that

g̃2(ω) = eiθ(g1,g2)
√

Var(g2), (B.3)

where the phase difference θ(g1, g2) is 0 if the two species germinate in the same years
(Corr(g1, g2) = 1) and π if the two species germinate in different years (Corr(g1, g2) = −1).
Similarly, if species 2 has no predictive germination, (Corr(g2, f2) = 0), then θ(g2, f2) =
±π/2. We can use these relations to build up others. For example, if θ(g1, g2) = π and
θ(g2, f2) = ±π/2, then θ(g1, f2) = π ± π/2.
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C When should variable germination coevolve in the

absence of predictive germination? (electronic sup-

plement)

If the two species germinate in the same years and there is no predictive germination,
then there is no reason to evolve variable germination: we’ve assumed no predictive
germination and no storage effect is possible. However, we have observed that even if the
species germinate in opposite years, maximizing the contribution of variable germination
to a storage effect, variable germination still does not co-evolve. We present an intuitive
explanation in the Results section. Here we present a mathematical argument.

If there is no predictive germination, the only two fitness terms that depend on invader
germination variance are the storage effect and the fluctuation penalty. As argued in
the Results section, the only way fitness can peak at some non-zero value of invader
germination for both species is if the storage effect increases with invader germination
variance for both species. The part of the storage effect term that varies with invader
germination variance is proportional to

Cov(Ωi, ci) = Di1Cov(Ωi,Ω1 + η1) +Di2Cov(Ωi,Ω2 + η2), (C.1)

and the storage effect increases as Cov(Ωi, ci) becomes more negative. In practice, the
covariance of invader germination with resident germination is much larger than the co-
variance of invader germination with resident densities. In addition, if we assume that
species 1 and 2 germinate in opposite years, the correlation of Ωi with Ωj is 1 if the invader
and resident j are the same species and -1 if they are different species. Thus,

Cov(Ωi, ci) ≈ Di1Cov(Ωi,Ω1) +Di2Cov(Ωi,Ω2) (C.2)

= Di1σΩi
σΩ1 ×

(
1 i = 1
−1 i = 2

)
+Di2σΩi

σΩ2 ×
(
−1 i = 1

1 i = 2

)
, (C.3)

where σΩj
is the standard deviation of species j germination. Thus, Cov(Ωi, ci) will

become more negative as σΩi
increases (i.e., the storage effect will increase with invader

germination variance) when Di1σΩi
σΩ1 < Di2σΩi

σΩ2 for i = 1, and when Di2σΩi
σΩ2 <

Di1σΩi
σΩ1 for i = 2. Using eq. A.16 to substitute for Di1 and Di2 and recalling that we

have set g1 = g2, we find that we require

γ11〈n1〉σΩ1 < γ12〈n2〉σΩ2 i = 1 (C.4)

γ22〈n2〉σΩ2 < γ21〈n1〉σΩ1 i = 2. (C.5)

Putting the two together, we find that the storage effect will increase with invader germi-
nation variance for both species when γ22/γ21 < γ12/γ11 — that is, when

γ11γ22 < γ12γ21. (C.6)
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We therefore expect variable germination to evolve in the absence of predictive variation
when the between-species competition coefficients exceed the within-species competition
coefficients.
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