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Abstract

In the presence of permanent spatial heterogeneity, local dispersal, especially short-range

dispersal, can facilitate coexistence by concentrating low-density species in the areas

where their rates of increase are higher. We present a framework for predicting the

effects of local dispersal on coexistence for arbitrary forms of dispersal and arbitrary

spatial patterns of environmental variation. Using the lottery model as an example, we

find that local dispersal contributes to coexistence by enhancing the effects of

environmental variation on scales longer than typical dispersal distances, which can be

characterized solely by the variance of the dispersal kernel. Higher moments of the

dispersal kernel are not important.
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I N T R O D U C T I O N

Local dispersal in a spatially heterogeneous environment can

cause population levels to build up in favourable areas,

which enhances coexistence mechanisms that are present

when species differ in their responses to the environment.

However, many models employ global dispersal for the sake

of tractability and hence underestimate the possibilities for

coexistence. Of the studies that consider how local dispersal

affects species coexistence, most of them focus on the

capacity of local interactions to generate aggregated popu-

lation distributions in a uniform environment, so that

competing species are segregated to some degree (Hassell

et al. 1994; Comins & Hassell 1996; Durrett & Levin 1997;

Kerr et al. 2002; Murrell & Law 2003). Spatial variation in

relative abundance is an important factor in coexistence

(Ives 1995); however, we are concerned with how local

dispersal can concentrate a low-density species in those

areas of a heterogeneous environment that most favour it.

The few studies which treat local dispersal in a heteroge-

neous environment give conflicting results (Comins &

Noble 1985; Bolker 2002). We explain these differences and

present a framework capable of dealing with a broad variety

of dispersal types and, explicitly spatial environmental

variation, to derive some general insights into the effects

of local dispersal on species coexistence.

Both long-lasting environmental heterogeneity and spe-

cies-specific responses to the environment are necessary for

local dispersal to enhance the likelihood of coexistence. If

the distribution of favourable habitat is different for each

species – i.e. there are species-specific environmental

responses – then a species which has become temporarily

sparse will be able to exploit areas that favour it with

relatively little interspecific competition (because the area is

not so favourable to its competitors) or intraspecific

competition (because it is sparse). In contrast, individuals

from a more plentiful species face relatively strong

intraspecific competition when in a favourable area. In

other words, there is a strong, positive covariance between

environmental conditions and competition for the plentiful

species but only a weak covariance for the sparse species.

Such differences in covariance between environment and

competition drive the ‘spatial storage effect’ (Chesson

2000a) mechanism for coexistence, which can be present

even with global dispersal. If the environmental differences

are permanent (persistent over multiple generations), then

local dispersal helps concentrate the sparse species in the

areas that favour it and where it is least limited by

interspecific competition. In this way, spatial variation and

local dispersal boost the average per capita birth rates of

sparse species and facilitate coexistence.

The spatial storage effect and the effects of local

population buildup are quantified in Chesson (2000a) based

on a generic, discrete-time model. If we define n
ðprÞ
jx ðt þ 1Þ

as the expected density of species j offspring produced at

location x at time t + 1, then
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n
ðprÞ
jx ðt þ 1Þ ¼ kjxðtÞnjxðtÞ; ð1Þ

where njx(t) is the expected density of species j at location x

at time t and kjx(t) is the finite rate of increase of species j at

location x at time t. The offspring then disperse, and

njx(t + 1) represents the expected density of species j at

location x and time t + 1 after dispersal. Note that in

formulating the dynamics in terms of expected density, we

are ignoring demographic stochasticity. This should have

little effect unless the number of individuals at a site is very

low.

We can shift from the local scale to the global scale by

taking a spatial average (indicated by an overbar):

�nnjðt þ 1Þ ¼ kj njðtÞ ¼ kj nj þ Covðkj ; njÞ ¼ ~kjkj njðtÞ; ð2Þ

where

~kjkj ¼ kj þ Covðkj ; mjÞ ð3Þ

mjx ¼ njx

�nnj

: ð4Þ

That is, the global dynamics are like the local production

dynamics but with an effective finite rate of increase ~kjkj equal

to the spatial average of the local rate of increase kjx plus the

covariance between local growth and the relative population

density mjx. The relative population density is simply the

ratio of the local density to the average density over all

locations. The growth–density covariance is taken over

space and accounts for the fact that population levels may

be higher in some locations than in others, and the rate of

increase in these more populous spots will contribute more

to the overall rate of increase of the population. We assume

that species coexist if each species can invade when the

other species are at the equilibrium spatial distributions that

they would attain in the absence of the invader. This means

that each species has a finite rate of increase greater than 1

when it is reduced to low density [the standard invasibility

criterion (Gotelli 1995; Chesson 2000a)]. Thus, the condi-

tion for coexistence is that ~kk > 1 for each species as an

invader. The contribution of the growth–density covariance

to ~kk demonstrates the importance of local dispersal and an

explicitly spatial representation. Local dispersal can cause

population levels to build up in favourable areas, which

makes the growth–density covariance, Cov(kj, mj), positive.

This covariance increases the global finite rate of increase,
~kjkj , and thereby promotes coexistence.

In analogy with ANOVA techniques, the finite rate of

increase ~kjkj can be further partitioned into the primary

effects of the environment, competition, and the interaction

between environment and competition (Chesson 2000a).

Additional manipulations then allow one to re-express ~kjkj as

the sum of effects that do not depend on spatial variation

and the effects of three spatial mechanisms: ‘relative

nonlinearity’ in local rates of increase, the spatial storage

effect and the growth–density covariance [Cov(kj, mj)],

which enhances the spatial storage effect (Chesson 2000a).

Spatially independent coexistence mechanisms, relative

nonlinearity and the spatial storage effect contribute to �kkj ,

and can be present with global dispersal and local dispersal.

The effects of local dispersal – the effects of an explicitly

spatial representation – are contained entirely within

Cov(kj, mj) for the model we use here, although in general,

local dispersal can contribute to components of �kk as well.

In this paper, we use the framework of Chesson (2000a)

to explore the effects of local dispersal on species

coexistence. We present an expression for the growth–

density covariance for arbitrary probability distributions of

dispersal distance (dispersal kernels) and arbitrary patterns

of environmental variation. Using the lottery model

(defined below) as an example, we demonstrate how the

parameter ranges where coexistence is possible increase

when one considers local instead of global dispersal, and

we highlight the effects of different forms of dispersal and

different patterns of environmental variation. We find in

particular that the contribution of local dispersal to

coexistence depends only on environmental variation at

scales longer than typical dispersal distances and that short-

range dispersal facilitates coexistence most effectively.

Furthermore, the variance of the dispersal kernel is

sufficient to characterize dispersal distances – one need

not measure higher moments.

The rest of this paper is organized as follows. In ‘The

lottery model’, we define our example, the lottery model. We

present a general expression for the growth–density

covariance in ‘An expression for the growth–density

covariance’, and discuss the implications of this expression

in ‘Implications’. ‘Synthesis of spatial mechanisms’ is

devoted to a review of the previous work on coexistence

in a heterogeneous environment in the light of this work.

We conclude in ‘Discussion’ with a discussion of our work

and an outline of future directions.

T H E L O T T E R Y M O D E L

We demonstrate our results with the lottery model (Chesson

& Warner 1981; Comins & Noble 1985; Chesson 2000a;

Muko & Iwasa 2000), a model commonly used to

understand the effects of environmental variation on

competitive interactions. Here, we use a spatial version of

the model with dispersing juveniles that compete for space

to become sessile, semelparous adults. The lottery model is

one of the simplest models with which one can demonstrate

the effects of a varying environment and so has achieved the

status of a standard example, much like the Lotka-Volterra
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model or the contact process. The lottery model is most

frequently used to represent marine organisms such as

sessile invertebrates or coral reef fish. In this paper, we

assume that adults die after reproducing, and so here, the

model is perhaps best thought of in terms of annual plants.

In the case of annual plants, ‘juveniles’ are seeds.

For the sake of simplicity, we assume that the environ-

ment is one-dimensional and can be represented as a series

of patches, each of which can support a single individual.

The ability of juveniles of a given species to capture space is

a function of the environment type, which is assumed to

vary in space but not time. The space-capturing ability of

species j at location x is denoted by Ejx. For annual plants,

Ejx could represent the product of germination probability

and early seedling survival probability.

Let njx(t) be the expected density of seeds of species j

competing for space at location x at time t. We imagine that

competition for a site is like a lottery, with the winner

chosen randomly from the seeds competing at that site and

the chances of a species seizing the site proportional to the

number of seeds it has in the competition. This is not a fair

lottery, however. For any given site, seeds from some

species will be more likely to win than those of other

species, with their advantage determined by Ejx. Mathemat-

ically, the expected number of species j individuals that

establish themselves at x and become adults is

EjxnjxP
k Ekxnkx

; ð5Þ

where the sum in the denominator runs over all species. The

per adult fecundity of species j is Fj, so that the number of

species j seeds produced at x that compete at time t + 1 is

n
ðprÞ
jx ðt þ 1Þ ¼ Fj EjxnjxP

k Ekxnkx

: ð6Þ

The mathematical framework introduced in Chesson

(2000a) assumes that local reproduction takes the form

n
ðprÞ
jx ðt þ 1Þ ¼ kjxnjxðtÞ, and so

kjx ¼ Fj EjxP
k Ekxnkx

: ð7Þ

Equation 6 takes the initial number of seeds of each

species, njx, as given and does not include seed dispersal.

After reproduction, seeds disperse to the left and right, with

the probability of dispersing from x to x + z given by the

dispersal kernel, k(z). Thus, combining dispersal with

reproduction, we find

njxðt þ 1Þ ¼
X

y

kðx � yÞkjynjyðtÞ: ð8Þ

Equation 8 states that the number of individuals landing

at location x at time t + 1 is equal to the number of

individuals produced at location y at time t (kjynjy(t)) times

the probability of dispersing from y to x (k(x ) y)), summed

over all y. We want to find Cov(kjx, mjx), so we need eqn 8 not

in terms of population density, njx, but in terms of relative

population density, mjxðtÞ ¼ njxðtÞ=�nnjðtÞ. A small amount of

algebra yields

mjxðt þ 1Þ ¼
X

y

kðx � yÞ kjy

~kjkj

mjyðtÞ: ð9Þ

Note that eqn 9 is valid for all models of the form

n
ðprÞ
jx ðt þ 1Þ ¼ kjxnjxðtÞ. Here we use the lottery model by

taking eqn 7 as our definition of kjy.

In the next section, we restrict our attention to the case of

two species, and it will be useful to derive a few two-species

results here. First, consider the dynamics of the resident in

the absence of the invader:

nrxðt þ 1Þ ¼ Fr Erxnrx

Erxnrx

¼ Fr : ð10Þ

We see that in a single step, the resident population

achieves a spatially uniform equilibrium distribution,

n�rx ¼ Fr . Then, given a spatially uniform production of

offspring, dispersal preserves the uniformity of their

distribution in space, although individuals do move.

We can now find the invader’s local rate of increase:

kix ¼ FiEix

Erxn�rx þ Eixnix

; ð11Þ

where subscripts i and r denote invader and resident

quantities and n�rx is the equilibrium density of the resident

in the absence of the invader. As the invader density is by

definition very low, we can set nix¼0 in the denominator of

eqn 11, and we know from eqn 10 that n�rx ¼ Fr . Thus,

kix ¼ FiEix

Fr Erx

: ð12Þ

A N E X P R E S S I O N F O R T H E G R O W T H – D E N S I T Y

C O V A R I A N C E

Environmental variation usually occurs on many spatial

scales simultaneously. It would be useful if we could analyse

the contribution of each spatial scale to the growth–density

covariance separately and sum the contributions to obtain

the net effect. Fortunately, Fourier transforms are ideally

suited to this task. Fourier transforms decompose functions

into a sum of sine waves at different frequencies, and one

can loosely think of the Fourier transform of a function,

evaluated at spatial frequency x, as specifying how much of

that function can be represented by a sine wave at frequency

x. (Recall that wave length equals 2p/x.) Using Fourier

transforms, we can separate the environmental variation

into a series of sine waves and analyse the contributions to

coexistence of each spatial scale separately. Thanks to the
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additional properties of Fourier transforms, the effects of

variation at these different spatial scales are additive.

We measure the environmental variation with the

perturbation fix ¼ ðkix=�kkiÞ � 1, which indicates how the

local invader rate of increase differs from its spatial average.

Specializing on the case of a lottery model with two species,

we use eqn 12 to find fix ¼ ðkix=�kkiÞ � 1 ¼ ½ð1=�kkiÞðFi=Fr Þ
ðEix=ErxÞ� � 1. Thus, fix is a measure of how much the

ratio of the invader and resident environmental responses

varies from spatial uniformity. Our expression for the

growth–density covariance will use the spectral density of fi,

Sf(x), which is proportional to the square of the Fourier

transform of fi. (Fourier transforms and spectral densities

are defined precisely in Appendix.)

We can now present our primary result:

Covðki ; miÞ ¼ �kki

1

2p

Z p

�p

~kkðxÞSfðxÞ
1 � ~kkðxÞ

dx; ð13Þ

where ~kkðxÞ is the Fourier transform of the dispersal kernel

and Cov(ki, mi) is the standard covariance over space of the

two quantities ki and mi, i.e. ðkiðxÞ � �kkiÞðmiðxÞ � �mmiÞ.
Equation 13 states that the growth–density covariance is

proportional to [ ~kkðxÞ=ð1 � ~kkðxÞÞ], which contains infor-

mation about how much dispersal occurs at frequency x,

summed over frequency, with Sf(x) weighting each term by

how much environmental variation is present at that

frequency.

It is the ratio of the invader and resident environments and

not their separate values which are important for the lottery

model. It therefore makes sense to measure the environ-

mental responses on a logarithmic scale, so that the species

are treated symmetrically [ln(E1/E2) ¼ ) ln(E2/E1)]. Let

ln(FjEj) ¼ lj + �jx, j ¼ i, r, where lj is constant, and �jx,

representing deviations away from lj, has spatial mean zero.

Then ~kiki , the invader’s global scale finite rate of increase, is

~kiki ¼ ðli � lr Þ þ
1

2
Varð�i � �r Þ þ Covðki ; miÞ: ð14Þ

In the absence of spatial variation, ~kiki would equal the

fitness difference, li ) lr. A spatially varying environment

adds to ~kiki via 1
2
Var(�i ) �r) (the storage effect) and Cov(ki, mi)

(the growth–density covariance). [Relative nonlinearity,

another component of �kk defined in (Chesson 2000a), is zero

for the lottery model.] The storage effect term and the

growth–density covariance are stabilizing terms that, if strong

enough, overcome fitness differences and permit coexistence

as discussed in Chesson (2000b).

As an example, consider two species, 1 and 2, whose space-

capturing abilities have the ratio ln(E1x/E2x) ¼ b sin (xex).

The choice of a sinusoidally varying environment is decidedly

artificial. However, as noted previously, the contributions to

coexistence from multiple spatial scales are additive, and so

for simplicity, we consider environmental variation at a single

frequency. Figure 1 shows how strongly the environment

must vary (b) for the species to coexist given a ratio of adult

fecundities (F1/F2). Recall that for a species to coexist, ~kk must

be greater than 1 for both species, where ~kk ¼ �kkþCovðki ; miÞ.
In region I, both species can coexist even if dispersal is

global. Here, �kki > 1 for both species as invaders; the

spatial storage effect is strong enough to overcome the

fitness disadvantage of the inferior competitor. In region II,

both species can coexist if there is limited dispersal. (This

figure was generated using a particular choice of dispersal

kernel, but, as discussed in ‘Implications’, any kernel with the

same variance would result in the same boundary.) Here,
�kki < 1, but Cov(ki, mi) lifts ~kk above 1. This is the extra

coexistence region provided by Cov(ki, mi). In region III,

coexistence is not possible.

I M P L I C A T I O N S

The way information about dispersal enters our expression

for growth–density covariance has important consequences.

Our knowledge of dispersal is contained in the Fourier

transform of the dispersal kernel, ~kkðxÞ. For all kernels,
~kkð0Þ ¼ 1, as the Fourier transform of a function evaluated

at zero frequency is simply the integral of the function from

)1 to 1, and, being probability distributions, all kernels

integrate to 1. The transform ~kkðxÞ is close to 1 for x
close to zero [for x small, ~kkðxÞ 
 1 � 1

2
VarðkÞx2], and so

 

 

 

 

 

 

 

Figure 1 Coexistence region for environmental sensitivity (b) vs.

the logarithm of the adult fecundity ratio (F1/F2). The environ-

ment varies according to ln(E1x/E2x) ¼ b sin(xex). The frequency

of environmental variation, xe, is 0.1, and is measured in radians. In

region I, coexistence is possible even if dispersal is global, while in

region II, coexistence is only possible if there is limited dispersal.

Coexistence is not possible in region III. The dispersal kernel

for this figure had a variance of 13.2. (Only the variance of

the dispersal kernel matters. See ‘Implication’ for a discussion of

this.)
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~kkðxÞ=ð1 � ~kkðxÞÞ is large when x is small1. These large

values dominate the integral in eqn 13. This has two

important implications.

First, as the integral in eqn 13 is dominated by low

frequencies, we can replace ~kkðxÞ by the first two terms of

its Taylor expansion about x ¼ 0: ~kkðxÞ 
 1 � 1
2

VarðkÞx2.

Thus, eqn 13 becomes

Covðki ; miÞ ¼ �kki

1

2p

Z p

�p

SfðxÞð2 � VarðkÞx2Þ
VarðkÞx2

dx: ð15Þ

Unless all the environmental variation is at frequencies

that are high relative to 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðkÞ

p
, this approximation is

highly accurate: none of the figures in this paper would

change by more than a penwidth were we to use this

approximation. This means that we can ignore higher order

moments, which depend increasingly on the hard-

to-measure tails of the dispersal kernel, and rely simply on

the variance, which is much easier to estimate. This is in

contrast to invasion studies, in which the invasion speed is

determined largely by the tails of the invader’s dispersal

kernel (Mollison 1991; Kot et al. 1996). Figure 2 shows how

the coexistence region depends on
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðkÞ

p
.

Second, only environmental variation at wavelengths

longer than typical dispersal distances contributes much

to Cov(ki, mi). Mathematically, this is easy. The factor

[(2)Var(k)x2)/(Var(k)x2)] is large for 1=x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðkÞ

p
,

and the standard deviation of the dispersal kernel,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðkÞ

p
,

can be thought of as a characteristic dispersal distance.

Wavelength equals 2p/x, and so this inequality means that

the factor [(2)Var(k)x2)/(Var(k))] gives a lot of weight to

wavelengths much larger than the characteristic dispersal

distance. This finding stresses the importance of short-range

dispersal, because it means that smaller values of Var(k) give

larger ranges of frequencies at which environmental

variation contributes significantly to the growth–density

covariance and give stronger contributions at those fre-

quencies. This finding also makes sense biologically. If

favourable areas are large relative to typical dispersal

distances, then offspring of adults in favourable areas are

likely to remain in those areas, which encourages population

buildup there and enhances the spatial storage effect.

Figure 3 shows coexistence regions as a function of the

characteristic dispersal distance,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðkÞ

p
, and the wave-

length of the environmental variation.

S Y N T H E S I S O F S P A T I A L M E C H A N I S M S

Our work extends the findings of studies that consider

species coexistence in a lottery model with permanent

spatial heterogeneity but confine themselves to global

dispersal for the sake of tractability (Chesson 1985; Muko

& Iwasa 2000). Not only have we shown how to

incorporate local dispersal and identified the importance

of population buildup in favourable areas, but, by thinking

in terms of the storage effect, we can also give intuitive

explanations for results such as the Muko and Iwasa
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Figure 2 Coexistence region for characteristic dispersal distance

[
ffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðkÞ

p
] vs. the logarithm of the adult fecundity ratio (F1/F2).

The environment varies according to ln(E1x/E2x) ¼ b sin(xe x).

The frequency of environmental variation, xe, is 0.1, and is

measured in radians, while b ¼ 1. In region I, coexistence is

possible even if dispersal is global, while in region II, coexistence

is only possible if there is limited dispersal. Coexistence is not

possible in region III.
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Figure 3 Coexistence region for characteristic dispersal distance

[
ffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðkÞ

p
] vs. the wavelength of the environmental variation. The

environment varies according to ln(E1x/E2x) ¼ b sin(xex). The

ratio of adult fecundities (F1/F2) is 2, while b ¼ 1. Coexistence is

not possible with global dispersal, but is possible with limited

dispersal in region II. Coexistence is not possible in region III.

1ð~kkðxÞ=ð1 � ~kkðxÞÞ is infinite when x ¼ 0. However, for nonpathological

examples, Sf(x) ¼ 0 when x ¼ 0, and so the potential pole is suppressed.

Dispersal, heterogeneity, and coexistence 305

�2003 Blackwell Publishing Ltd/CNRS



finding that although spatial variation in mortality enables

coexistence, variation in fecundity does not (Muko &

Iwasa 2000). As dispersal is global, juveniles competing in

a given patch come from all over the system. As there is

no connection between fecundity in that patch and the

competition experienced by juveniles that have landed

there, plentiful species do not pay the price of high

intraspecific competition in favourable areas. In the

terminology of the storage effect, there is no covariance

between the environment experienced and the competition

experienced. Note, however, that if dispersal were local, so

that competing juveniles were more likely to have come

from the patch in question than from any other patch,

then population levels would build up in high fecundity

sites, and the resulting increase in competition would limit

output from those sites. Thus, spatially varying fecundity

could enable coexistence in the presence of local dispersal.

Alternatively, variation in mortality can introduce covari-

ance between environment and competition in the

presence of either global or local dispersal. Where the

environment favours adult persistence, there will be few

vacancies for juveniles to occupy, and competition will be

strong. The sedentary nature of the adults acts much like

local retention of juveniles.

This work also extends studies which allow for some

fraction of the offspring to be retained locally while the

others disperse globally, such as in Chesson (2000a) and

Comins & Noble (1985). Such stark representations of local

retention offer a very clearcut, if unrealistic, demonstration

of the importance of local buildup. It is shown in Chesson

(2000a)) that this kind of local retention leads to a positive

Cov(ki, mi).

One way researchers have incorporated explicit space

without adding too much complexity is by limiting their

arena to two patches. Our findings parallel those of two-

patch studies of coexistence, such as Pacala & Roughgarden

(1982) and Amarasekare & Nisbet (2001). Amarasekare and

Nisbet present a model with two patches of different

quality, Lotka–Volterra competitive dynamics, and migra-

tion between patches at constant rates (Amarasekare &

Nisbet 2001). They find that for two of their three

situations, dispersal rates must be below critical thresholds

for species to coexist. Likewise, Pacala and Roughgarden,

working with diffusive movement in a two-patch compe-

tition model, found that dispersal of the resident increases

competition in the habitat with the lower carrying capacity

(Pacala & Roughgarden 1982). If an invader disperses into

this area too frequently, then it is overwhelmed by the

competition, and coexistence is not possible. We can restate

the results of both of these studies by saying that the invader

population must be partially retained in the areas which

favour it, i.e. the growth–density covariance must be

sufficiently positive.

The benefit of our approach over two-patch models is

that we can accommodate arbitrary forms of environmental

variation and arbitrary forms of dispersal. This helps to

ensure the generality of our results as well as yielding

insights that are only possible in this framework, such as the

importance of kernel variance. One study that follows this

more general approach is that of Bolker and Pacala, who

investigate coexistence mechanisms in a homogeneous

environment (Bolker & Pacala 1999). Although it is not

identified explicitly, Cov(ki, mi) plays an important role in

their coexistence criteria as well. If we return to the discrete

time approximation used in their derivation, we can say that

�nnI ðt þ dtÞ 
 ~kkI �nnI ðtÞ, where

~kkI ¼ 1 þ rI 1 � �nnI þ ð�cc II=�nnI Þ
KI

� bIR½�nnR þ ð�ccIR=�nnI Þ�
KR

� �
dt ;

ð16Þ

�nnI and �nnR are spatial averages of the invader and resident

populations, and �ccII and �ccIR are spatial covariances averaged

over a convolution of the dispersal and competition kernels.

After some work, we can identify �kkI as 1 þ rIf1 � �nnI=KI �
bIR�nnR=KRgdt and Cov(ki, mi) as rI ½ð��ccII=KI �nnI Þ�
ðbIR�cc IR=KR�nnI Þ�dt . Note that without the Cov(ki, mi) term,

this would reduce to a Lotka–Volterra competition model.

For both Bolker and Pacala’s model and ours, the effects of

an explicitly spatial representation are contained in

Cov(ki, mi), and for both studies, Cov(ki, mi) features

prominently in the coexistence criteria.

Bolker has also discussed heterogeneous environments

and has noted how population buildup in favourable areas

fortifies species persistence, although he has not addressed

species coexistence in this context (Bolker 2002). In

particular, he notes that the greater the spatial variability in

the environment, the more advantageous short-range

dispersal is, as it tends to keep offspring in favourable

areas.

As our environmental variation is fixed in time, ‘fugitive’

strategies, in which an inferior competitor can coexist with

a superior competitor by being swifter to discover and

colonize newly available habitat (Levins & Culver 1971;

Hastings 1980; Tilman 1994), are not applicable. If there

were temporal and spatial variation, we would expect the

emphasis on local retention of offspring to change.

Comins and Noble consider the lottery model with

spatiotemporal variation in the environment (Comins &

Noble 1985). They obtain analytic results for global

dispersal and use simulations to investigate nearest-neigh-

bour dispersal. In contrast with our results, they find that

dispersal distances must be much larger than the scale of

spatial variation in the environment if species are to

coexist. The difference arises because they consider pure

spatiotemporal variation, in which the environment at each
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location changes over time independently of the environ-

ment at other locations. If favourable areas persist, then

the best strategy of an organism is to settle offspring

nearby, in the hope that they will land in a similarly

favourable spot. However, if good patches are ephemeral,

then the best strategy is to send offspring far and wide

in the hope that a few of them will find a new good

patch.

D I S C U S S I O N

In this paper, we have derived an expression for the

covariance between relative population density and local

growth and demonstrated how this increases the parameter

space over which coexistence is possible. The covariance

expression is dominated by the low frequency terms. This

has the consequence that local dispersal contributes to

coexistence by enhancing the effects of environmental

variation on scales longer than typical dispersal distances.

Short-range dispersal facilitates coexistence most effectively.

Restating this result somewhat differently, the scales of

environmental variation that contribute significantly to the

growth–density covariance depend on the scale of dispersal.

Even if two species experience an identical pattern of

environmental variation, the species with shorter-range

dispersal will have a larger growth–density covariance

because it is sensitive to environmental variation at a greater

range of spatial scales and because the contributions within

that range will be larger. The domination of the low

frequency terms also means that dispersal distances can be

characterized solely by the variance of the dispersal kernel –

higher moments can be ignored. Biologically, this reflects

the fact that rare, long-distance dispersal does not appre-

ciably affect the degree of population buildup in favourable

locations.

We have seen that short-range dispersal can provide a

significant advantage when environmental variation is

effectively permanent. If favourable areas are transient

(e.g. carrion, puddles), then it is advantageous for at least

some offspring to disperse long distances so that they can

colonize newly favourable areas before the natal site

becomes unfavourable. Such a situation might select for a

leptokurtic dispersal kernel, with most offspring staying

close to home and a few dispersing broadly. The more

rapidly the environment changes, the more important long-

distance dispersal will be, so that there may be an ideal

balance between short and long-range dispersal for a given

turnover rate (Levin et al. 1984).

The view of coexistence presented in this paper is a

niche differentiation perspective. Within the context of the

lottery model, the niche is Grubb’s regeneration niche,

and Ej represents environmental features favouring the

establishment of species j (Grubb 1977). We assume that

the environment varies in space and that the different

species have different resource needs and tolerances, so

that each perceives a different spatial pattern of environ-

mental quality. This variation is a semi-permanent feature

of the environment, such as soil type, aspect or exposure,

and so we find that the likelihood of coexistence is most

enhanced when typical dispersal distances are short with

respect to typical lengthscales of environmental variation,

so that the offspring of individuals in favourable areas

tend to remain in those areas, and populations of each

species accumulate in the areas that favour them.

Additional mechanisms for coexistence operate in spatially

varying environments, such as relative nonlinearity or the

spatial storage effect without the enhancement of local

population buildup [see Chesson (2000a)], but these do

not depend on dispersal distance and are beyond the

scope of this paper.

Our expression for the growth–density covariance (eqns

34 and 13) holds not just for the lottery model but for any

model that can be written in the form njx(t + 1) ¼P
yk(x ) y)kjynjy(t). However, the interpretation of the

covariance expression is more complicated if the resident’s

equilibrium distribution in the absence of the invader (n�rx ) is

not spatially uniform. In that case, Sf(x) will be a function

not only of the environmental variation, but also of n�rx .

While it will still be true that it is the low frequency

components of Sf(x) which matter, we will no longer be

able to interpret this simply as long wavelength environ-

mental variation. Similarly, �kki will depend on n�rx , which will

make it more difficult to compute. On the other hand, we

should still be able to replace the Fourier transform of the

dispersal kernel, ~kkðxÞ, with 1 � 1
2

VarðkÞ. In the context of

the lottery model, n�rx will not be spatially uniform if adult

fecundity varies in space, if the number of the individuals

able to occupy a site (here set to 1) varies in space, or if

juveniles compete not only within a site but also to some

degree with juveniles at neighboring sites. These issues are

the subjects of future studies.
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A P P E N D I X . D E R I V A T I O N O F T H E

G R O W T H – D E N S I T Y C O V A R I A N C E F O R M U L A

We begin with eqn 9 and assume that the invader has

reached an equilibrium pattern of relative density. Thus,

mix ¼
X

y

kðx � yÞ kiy

~kiki

miy; ð17Þ

where the sum runs over all space.

We assume small perturbations from spatial uniformity in

mix and kix, defining

uix ¼ mix � 1 ð18Þ

fix ¼ kix

�kki

� 1; ð19Þ

where uix and fix are O(r) and r is a small parameter2. (By

g(x) ¼ O(r2), we mean that
gðxÞ
r2

��� ��� can be made less than or

equal to any positive constant K for r2 small enough.)

Substituting these definitions into the equation for the

invader relative density at equilibrium, eqn 17, and simpli-

fying, we find

uix ¼ 1

1 þ w

X
y

kðx � yÞðuiy þ fiy þ uiyfiy � wÞ; ð20Þ

where

w ¼
~kiki � �kki

�kki

¼ Covðki ; miÞ
�kki

: ð21Þ

The growth–density covariance equals �kki times fiui, so,

apart from the proportionality constant �kki , we could find

Cov(ki, mi) at lag d by multiplying both sides of eqn 20 by

fi,x)d and taking the spatial average. (We will ultimately want

only the covariance at lag 0, but it is helpful to solve for the

covariance as a function of lag, as we want to take the

Fourier transform.) However, if the system is spatially

stationary, the spatial average will be equal to an expectation

over an ensemble of replicates. We therefore set lag d equal

to x, so that we are multiplying by fi0, and take the

expectation instead. Denoting the expected value by ÆÆæ, we

define

/ðxÞ ¼ hfi0uixi ð22Þ
RðxÞ ¼ hfi0fixi ð23Þ
gðxÞ ¼ hfi0uixfixi; ð24Þ
and noting that Æfi0(uiyfiy)æ ¼ Æfi0(uiyfiy)w)æ, we find

/ðxÞ ¼ 1

1 þ w

X
y

kðx � yÞ½/ðyÞ þ RðyÞ þ gðyÞ�: ð25Þ

This is a convolution and is most easily solved by taking

the Fourier transform, which turns convolutions into

2The formalism presented in Chesson (2000a) assumes that E varies over a

finite interval of length r.
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products. We use the following definition of the discrete

Fourier transform:

~ff ðxsÞ ¼
XN=2

j¼�N=2þ1

f ðxjÞe�ixsxj ; ð26Þ

f ðxnÞ ¼
1

N

XN=2

s¼�N=2þ1

~ff ðxsÞeixsxn ; ð27Þ

where N is the number of lattice points, D is the distance

between lattice points, xj ¼ jD, and xs ¼ s(2p)/(ND).

Taking the discrete Fourier transform of eqn 25, we obtain

~//ðxsÞ ¼
1

1 þ w
~kkðxsÞ½~//ðxsÞ þ ~RRðxsÞ þ ~ggðxsÞ� ð28Þ

and thus

~//ðxsÞ ¼
~kkðxsÞ½ ~RRðxsÞ þ ~ggðxsÞ�

1 � ~kkðxsÞ þ w
: ð29Þ

Cov(mi, ki) at lag 0 is simply �kki/ð0Þ, so all that remains is

to take the inverse Fourier transform of eqn 29 and to

evaluate it at x ¼ 0:

/ð0Þ ¼ 1

N

XN=2

s¼�N=2þ1

~kkðxsÞ½ ~RRðxsÞ þ ~ggðxsÞ�
1 � ~kkðxsÞ þ w

: ð30Þ

As we only seek an approximation to O(r2), we can drop

~ggðxÞ from the numerator and w from the denominator in

eqn 30. Thus,

Covðki ; miÞ ¼
�kki

N

XN=2

s¼�N=2þ1

~kkðxsÞ ~RRðxsÞ
1 � ~kkðxsÞ

: ð31Þ

We can relate this expression more directly to our rate of

increase perturbation, fix, by noting that R(x) is the spatial

autocorrelation of fi at lag x. This allows us to use the

Wiener–Khinchin theorem, which states that the auto-

correlation of a function at lag x is equal to the inverse

Fourier transform of the function’s spectral density,

evaluated at x. Thus,

RðxnÞ ¼
1

N

XN=2

j¼�N=2þ1

SfðxjÞeixj xn ; ð32Þ

where the spectral density of fi, Sf(xj), equals 1
N

~fifiðxjÞ
�� ��2,

and

~RRðxsÞ ¼ SfðxsÞ: ð33Þ

Thus,

Covðki ; miÞ ¼
�kki

N

XN=2

s¼�N=2þ1

~kkðxsÞSfðxsÞ
1 � ~kkðxsÞ

: ð34Þ

If Sf(xs) and ~kkðxsÞ do not contain any Kronecker delta

functions (dij¼1 if i¼j, 0 if i „ j), then it is safe to go to the

limit of an infinite domain (N fi 1):

Covðki ; miÞ ¼ �kki

1

2p

Z p

�p

~kkðxÞSfðxÞ
1 � ~kkðxÞ

dx: ð35Þ

(We have here set D to 1.) This is our primary result.
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