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Abstract

In a spatiotemporally variable environment, plants use seed dispersal and dormancy to

reduce risk. Intuition suggests that dormancy should be able to substitute for dispersal,

so that dormancy will reduce the optimal mean dispersal distance, and previous

theoretical studies using temporally uncorrelated environments have found this to be

true. I show that in the presence of positive temporal correlations, dormancy instead

increases dispersal: dormancy and dispersal are not interchangeable risk reduction

mechanisms. Dispersal has both costs (seeds landing in unfavourable habitat) and

benefits (seeds being in place to exploit newly favourable habitat). I discuss how the

costs and benefits balance to determine optimal dispersal and how dormancy shifts this

balance, causing dispersal to increase. I also find that an interaction between spatial and

temporal correlations determines whether an evolutionarily stable dispersal distance

exists at all and confirm the expectation that increasing the scale of spatial correlations

causes dispersal to increase.
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I N T R O D U C T I O N

Environmental conditions vary in both space and time.

Among the ways plants cope with this uncertainty are seed

dispersal, which spreads offspring across multiple locations,

and seed dormancy, which spreads seeds across multiple

years. Intuitively, we expect the presence of one risk

reduction strategy to reduce the need for the other:

dormancy, sometimes called dispersal in time, should be

able to substitute for dispersal in space. In apparent

confirmation, several theoretical studies using temporally

uncorrelated environments have shown that if dormancy is

increased, the optimal fraction of offspring that disperse

becomes smaller, so that the optimal mean dispersal

distance is shorter (Venable & Lawlor 1980; Bulmer 1984;

Levin et al. 1984; Klinkhamer et al. 1987; Cohen & Levin

1991).

In an environment with positively autocorrelated

temporal fluctuations, however, this need not be the case.

This fact was first hinted by Cohen and Levin, who used a

model in which the environment took one of two possible

values each year. A fraction of the seeds were distributed

uniformly among all the habitat patches, which had no

explicit spatial configuration, and the rest of the seeds

remained in their natal patch. The researchers noted

briefly that in environments with a positive correlation

between successive years, it is possible for dormancy to

increase the optimal dispersal fraction (Cohen & Levin

1991). In this study, I use a fully spatial model. The

environment varies randomly and is positively correlated

in space and time. I assume that offspring dispersal

distance is exponentially distributed, a common assump-

tion for wind-borne seeds (Kot et al. 1996), and find the

optimal mean dispersal distance with and without dor-

mancy as a function of the distances and time intervals

over which the environment is correlated. Where an

evolutionarily stable state (ESS) exists, I find that

dormancy increases the optimal mean dispersal distance.

Dispersal has both costs (seeds landing in unfavourable

habitat) and benefits (seeds being in place to exploit newly

favourable habitat). By reducing the responsiveness of the

population to newly favourable habitat, dormancy reduces

the benefit of dispersal. However, dormancy also reduces

the number of seeds landing in unfavourable habitat and

thereby reduces the cost of dispersal. The reduction in

cost outweighs the reduction in benefit, so that dispersal
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distance increases. This implies that, far from being

substitutible, dispersal in time may actually interfere with

dispersal in space. If we observe that shorter dispersal

distances are associated with higher dormancy, as is

naively expected, then we cannot infer that dispersal and

dormancy can be substituted for each other but must

instead seek some other explanation.

I also find that when the environment is sufficiently

unpredictable (correlated only over short time intervals),

branching points take the place of ESSs, so that the

population becomes polymorphic. Increasing the scale of

spatial correlations causes the transition from ESS to

branching point to occur at higher levels of environmental

predictability (correlated over longer time intervals).

Dormancy increases the branching point dispersal distance

just as it increases the ESS dispersal distance. Finding the

optimal dispersal distances in the polymorphism is beyond

the scope of this paper. As an approximation, however, I

investigate all-or-nothing dispersal, in which a fraction of

the seeds disperse globally and the rest do not disperse. I

find that dormancy reduces the optimal fraction of

dispersers when the environment is correlated only over

short time intervals and increases the optimal dispersal

fraction when the environment is correlated over longer

time intervals. This suggests that the traditional dormancy–

dispersal tradeoff may hold if the environment is

correlated over a sufficiently short time scale and if,

instead of optimal dispersal distance, we consider the

proportion of far-dispersing seeds in a dispersal poly-

morphism.

M O D E L A N D A N A L Y S I S

Consider the following annual plant model in discrete time

and space. (A similar model is discussed in greater detail in

Snyder & Chesson (2004)). Seeds at location x at time t

germinate with probability G and upon establishing

themselves as adult plants produce a maximum number of

seeds F(x, t ) (fecundity). Fecundity varies across space and

time as a result of local environmental conditions. As a

reminder of this, I refer to fecundity as the environmental

response, or simply �the environment� for short. However,

most individuals will produce fewer than F(x, t ) seeds. Seed

production is reduced by competition, C, which is deter-

mined by a weighted average of the local seedling

population, with weight function U defined so that

more distant seedlings have less of a competitive effect

(U(z) ¼ 1/(2b)e)|z|/b ). Seeds disperse; the dispersal kernel

k(z), with mean dispersal distance a, gives the probability

that a seed will travel a distance z from its parent. Seeds that

do not germinate survive until the following year with

probability s. The density of seeds at location x in year t + 1

is then given by

nðx; t þ 1Þ ¼
X1

y¼�1
kðx � yÞk1ðy; tÞnðy; tÞ þ k2ðx; tÞnðx; tÞ; ð1Þ

where k1(x, t), the per capita contribution of germinating

seeds to next year’s seed bank, is given by

k1ðx; tÞ ¼
Fðx; tÞG
C ðx; tÞ ; ð2Þ

k2(x, t), the per capita contribution of non-germinating

seeds to next year’s seed bank, is given by

k2ðx; tÞ ¼ sð1� GÞ ð3Þ
and competition C(x, t) is given by

C ðx; tÞ ¼
X1

y¼�1
U ðx � yÞGnðy; tÞ: ð4Þ

Dormancy, D, depends on both germination and seed

survival probabilities and can be thought of as the

probability that a seed fails to germinate and survives until

the next year: D ¼ s(1 ) G). For a given pattern of

environmental variation, the optimal dispersal distance

depends only on D and not on s or G independently. (That

is, changes to either s or G result in changes to D, and it is

the value of this compound parameter which determines the

effect on dispersal.)

The environment varies randomly but is positively

correlated in space and time. The correlation between

fecundity values at the same time falls off exponentially with

their spatial separation, the exponential characterized by

spatial correlation length n. Similarly, the correlation

between fecundity values at the same location falls off

exponentially with their separation in time, the exponential

characterized by temporal correlation length s. Thus,

CorrðFðx 0 þ x; t 0 þ tÞ;F ðx 0; t 0ÞÞ ¼

exp
�jxj

n

� �
exp

�jt j
s

� �
: ð5Þ

Environmental conditions are similar over a distance

roughly equal to the spatial correlation length n and over a

time roughly equal to the temporal correlation length s. One

can therefore think of a larger n as indicating a system with a

larger �patch size�, and a larger s as indicating a more

predictable environment.

To find the optimal dispersal distance for environmental

variation at a given spatial and temporal scale, consider a

resident community with mean dispersal distance ar and a

rare mutant type (the �invader�) with mean dispersal distance

ai. (By rare, I mean that the contribution of mutants to

competition is negligible.) The invader population will

increase as long as its regional growth rate (the growth rate

of the spatially averaged population) is positive. However, in
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a time-varying environment, a population’s ultimate fate is

determined by its long-run growth rate �ri , defined as the

geometric average of the yearly growth rate (Lewontin &

Cohen 1969). For a mean resident dispersal distance ar, the

invader’s optimal dispersal distance ai is found by maxim-

izing its long-run regional growth rate:

@�riðai ; ar Þ
@ai

¼ 0: ð6Þ

At equilibrium (Nash equilibrium), the invader can do no

better than to adopt the response of the resident, and so the

optimal dispersal distance a* is found by solving

@�riðai ; ar Þ
@ai

����
ai¼ar¼a�

¼ 0 ð7Þ

and checking to see that this is a maximum (Rice 2004,

ch. 9). If a* is the unique best strategy (i.e. there are no ties),

then the Nash equilibrium is an ESS. All Nash equilibria in

this study are ESSs.

To relate �ri to the local growth rate ki(x, t ) ”
k1i(x, t ) + k2i(x, t ), we must first find the regional growth

rate. Let us denote spatial averages by ÆÆæx and time averages

by ÆÆæt . As shown in Chesson (2000), the spatially averaged

population Ænæx(t ) has dynamics hnixðt þ 1Þ ¼ ~kðtÞhnixðtÞ,
where the regional growth rate ~kðtÞ equals Ækæx(t ) +

Cov(k, m)x(t ), m(x, t ) ¼ n(x, t )/Ænæx, and Cov( f, g)x(t ) is

the spatial covariance of f and g at time t. We finish by taking

the geometric average of the regional growth rate to find the

long-run regional growth rate: �ri ¼ hln ~kiðtÞit . Because

the invader does not contribute to competition, ki does not

depend on the invader’s population distribution and thus

does not depend on ai. Therefore, we can find the optimal

dispersal distance by (numerically) solving

@�riðai ; ar Þ
@ai

����
ai¼ar¼a�

¼ @

@ai

hCovðki ; miÞxit
����
ai¼ar¼a�

¼ 0: ð8Þ

An approximate expression for ÆCov(ki, mi)xæt, valid when

environmental variation is not too large, is derived in

Appendix S1.

R E S U L T S

Evolutionarily stable strategies

Consider first dispersal without dormancy. Figure 1 shows

that the optimal dispersal distance increases as the environ-

ment is correlated on a shorter time scale or a longer spatial

scale. This accords with our intuition. If the temporal

correlation length is long, offspring born in a favourable

location are likely to continue to enjoy favourable conditions

if they disperse short distances and remain close to their

natal site, although the benefit of favourable environmental

conditions must be weighed against the negative conse-

quences of increased competition. Because favourable areas

have higher local growth rates and produce the most

offspring, short-range dispersal causes the population to

accumulate in the favourable areas, and the regional scale

and long-run regional scale growth rates are increased

(Pacala & Roughgarden 1982; Snyder & Chesson 2003;

Abrams & Wilson 2004). When the temporal correlation

length is short, current favourability is no guarantee of

future favourability, so retaining offspring locally is risky.

Instead, long-range dispersal ensures that some offspring

will land in a new favourable location (Gadgil 1971; Levin

et al. 1984; Travis 2001). Spatial scale also affects dispersal

distance. When the environment is correlated over larger

distances, then an individual in an unfavourable environ-

ment will have to send its seeds farther away to find better

conditions (Palmer & Strathmann 1981; Travis 2001).

It is reassuring to see our intuitions about dispersal

distance confirmed, but precisely how is the optimal

dispersal distance determined? The mathematical prescrip-

tion given in eqn 8 is worked through in the online

supplement. The mathematical expressions derived there

can be interpreted as stating that dispersal has two effects on

populations: it distributes the population more evenly in

space, smearing the population distribution, and it reduces

the delay between environmental change and the popula-

tion’s local response, since as offspring disperse more

widely, they are more likely to be in place to take advantage
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Figure 1 Optimal mean dispersal distance vs. the temporal

correlation length (s) for different dormancies (D ) and different

spatial correlation lengths (n). Increasing n or decreasing s increases

the optimal mean dispersal distance. Increasing dormancy reduces

the optimal mean dispersal distance. The continuous lines represent

evolutionarily stable states (ESSs) while the symbols represent

branching points. Increasing the spatial correlation length causes

the transition from branching points to ESSs to occur at a larger

temporal correlation length. In all the figures, the competition

parameter b is 1, the mean fecundity ÆF æx,t is 5 and var(F ) ¼ 0.25.
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of newly favourable habitat. Reducing the response delay is

always advantageous. Whether the extra smearing that

comes from increasing dispersal is advantageous depends on

how rapidly the environment is varying. Consider first

sinusoidal variation in space and time: E(x, t) ¼
B sin (qx) sin (xt). Because this year’s population tends

to be concentrated wherever growth was highest last year,

the population often ends up concentrated in suddenly

unfavourable locations when the environment is changing

rapidly. The population density at location x at time t is

n(x, t) ¼ B ¢ sin (qx) sin (xt + w(q, x)), where the delay,

measured as an angle or �phase shift� w, is at its largest

magnitude. (The population is nearly �180� out-of-phase�
with the environment.) In such a case, the additional

smearing produced by increasing dispersal confers a benefit

because it reduces the population’s concentration in

unfavourable areas. However, when the environment is

changing slowly, this year’s environment is much like last

year’s, so that the population is concentrated in favourable

areas. In this case, the additional smearing produced by

increasing dispersal is disadvantageous.

The environment does not vary sinusoidally, of course,

but instead inevitably varies at multiple time scales. For

example, slower variation due to the El Niño/Southern

Oscillation cycle may be superimposed on more rapid year-

to-year variation. The temporal correlation length s tells us

the balance of fast and slow variation. When s is large, the

environment is predictable for a long time and almost all of

the temporal variation is slow. When s is small, the

environment is predictable for only a short time and a larger

proportion of the variation is fast, although there is still slow

variation present (Fig. 2a).

The optimal dispersal distance is the distance at which the

cost and benefit of increasing dispersal precisely balance, so

that any further increase in dispersal would produce a net

cost. The temporal correlation length (s) helps to determine

the relative magnitudes of the cost and benefit. When s is

large and most variation is slow, the smearing effect of

dispersal is a cost and the delay reduction effect is a benefit.

The two balance at a relatively low mean dispersal distance.

When s is small, most of the variation is rapid, where

dispersal’s smearing effect becomes a benefit. This shift
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Figure 2 (a) The amount of environmental variation present at different time scales for two values of the temporal correlation length. This

plot shows the contribution to Var(F ) from environmental variation at different temporal frequencies. Summing the variation present at all

frequencies yields VarðFÞ=hFi2x;t . (In the notation of the online supplement, this plot shows the spectral density of the environmental

variation, j~�j2ðq;xÞ, integrated over q.) Frequency ¼ 2p/period, and so a small frequency represents slow variation while a large frequency

represents fast variation. The environment with the larger temporal correlation length is more predictable and is composed of a greater

proportion of slow variation. For both (a) and (b), the spatial correlation length n ¼ 0.001. (b) Costs and benefits of increasing dispersal for

variation at different temporal frequencies. Negative values represent costs and positive values represent benefits. Resident and invader

dispersal distances are set equal to the evolutionarily stable state value. The solid and dotted lines show the smearing effect of dispersal with

no dormancy and with D ¼ 0.64 respectively. (In the notation of the online supplement, the lines show the integral over q of

ð@G=@aiÞðq;xÞ cos wðq;xÞ½1 þ ~U 2ðqÞR2ðq;xÞ � 2 ~U ðqÞRðq;xÞcos / ðq;xÞ�, where ai is the mean dispersal distance.) Dormancy reduces

both the costs and the benefits of smearing. The dashed and dash-dotted lines show the delay reduction effect of dispersal with no dormancy

and with D ¼ 0.64 respectively. (In the notation of the online supplement, the lines show the integral over q of

�G ðq;xÞ sin wðq;xÞð@w=@aiÞðq;xÞ½1 þ ~U 2ðqÞR2ðq;xÞ � 2 ~U ðqÞRðq;xÞ cos /ðq;xÞ�). Dormancy reduces the benefit of delay reduc-

tion at all but the smallest frequencies. The total contribution of either smearing or delay reduction to (¶/¶ai)ÆCov(ki,mi)xæt is found by

multiplying the value shown here by the amount of environmental variation present at the same frequency (part a) and summing over

frequency.
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from cost to benefit reduces the overall cost of dispersal,

and the optimal mean dispersal distance increases. Figure 2b

shows the contribution of the smearing and delay-reducing

effects of increasing dispersal as a function of the time scales

of the variation present in the environment. Where an effect

is negative, it is a cost, and where it is positive, it is a benefit.

The total contribution of either effect is found by

multiplying the contribution of the effect at a given time

scale by the amount of environmental variation present at

that time scale and summing over time scales. Adding the

total contributions of smearing and delay reduction gives
@
@ai
hCovðki ; miÞxit

���
ai¼ar¼a�

: The optimality condition, eqn 8,

sets this expression equal to zero and thus states that at the

optimal mean dispersal distance, the costs and benefits of

increasing dispersal precisely balance.

Dormancy changes the cost and benefit of increasing

dispersal, shifting the balance point. Dormancy reduces

smearing because a smaller proportion of the offspring

disperses. This reduces the cost of smearing when the

environment is changing slowly and reduces the benefit of

smearing when the environment is changing rapidly.

Dormancy also causes the current population distribution

to depend on seed production from increasingly long ago,

making the population less responsive to the current

environment and increasing the response delay w. The

delay still decreases as dispersal distance increases, but it

does not decrease as much and takes longer to reach its

limiting value (Fig. 3). The net result is that the benefit

produced by dispersal is reduced over all but the slowest

scales of variation. Figure 2b shows how the smearing and

delay-reducing effects of increasing dispersal change when

dormancy is introduced.

The net result is that in an environment with positive

temporal correlations, dormancy increases the ESS dispersal

distance (Fig. 1). Figure 2 shows that even for relatively

unpredictable environments (small s), much of the variation

is at the longest scales, where dormancy reduces the cost of

dispersal and increases the benefit. There is also plenty of

variation at intermediate time scales, where dormancy

reduces the benefit from delay reduction. This reduced

benefit, however, is more than compensated for by the

reduced cost of smearing. There is relatively little variation

at the shortest time scales, where dormancy reduces the

benefit of both smearing and delay reduction. The smaller s
is, however, the more variation there is at short time scales,

and the less dormancy increases dispersal.

In other words, in an environment with some degree of

predictability (s > 0), the natal location has a greater than

random probability of being favourable again next year, as

opposed to locations significantly farther away than the

spatial correlation length, about which nothing can be

predicted. Dispersal into these unpredictable areas is

therefore costly. By spreading out the germination times

of seeds that may have landed in currently unfavourable

areas, dormancy reduces this cost, and this benefit out-

weighs the cost of delaying the germination of seeds that

have, in fact, landed in currently favourable habitat. The less

predictable the environment is, however, the less dispersing

is any worse than staying in place, and the less benefit

dormancy can provide.

A brief word on branching points

An ESS need not exist. If the temporal correlation length is

sufficiently short, genotypes with different mean dispersal

lengths may coexist. Figure 4 shows how an initially

monomorphic population is drawn to an equilibrium via a

series of invasions. When the resident’s mean dispersal

distance is sufficiently close to the equilibrium value, the

equilibrium reveals itself to be a branching point (Geritz

et al. 1998) and the population becomes polymorphic,

consisting of subpopulations with dispersal distances above

and below the branching point value.

Branching points were termed evolutionary compatible

strategies (ECS) by Cohen & Levin (1991), who defined

them as strategies �that can invade any other single type but

also [are] open to invasion by any type�. Cohen and

Levin found ECSs when there was underlying spatial
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Figure 3 Population response delay w vs. mean dispersal distance.

The population is perfectly out of phase with the environment

when w ¼ )p and perfectly in phase with the environment (no

delay) when w ¼ 0. (See the expressions for mi and w in Appendix

S1.) Increasing the mean dispersal distance reduces delay. (w gets

closer to zero as a increases.) Dispersal does not reduce delay as

much in the presence of dormancy. The population response delay

depends on the precise spatial and temporal scale of environmental

variation. (Recall that a random environment is composed of a

mixture of variation at fast and slow speeds, small and large spatial

extents.) This plot was created using sinusoidal variation with a

spatial period of 12 and a temporal period of 16. Similar patterns

are found at other spatial and temporal scales.
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heterogeneity, so that some spots were more likely to

experience favourable conditions than others, and when

environmental conditions in successive years were negat-

ively correlated. Others have found branching points when

environmental conditions fluctuate temporally and habitat

patches are of different sizes (McPeek & Holt 1992; Mathias

et al. 2001). While the environment does vary at multiple

spatial scales in the present study, so that one can think of

there being favourable �patches� of different sizes, the

situation seems importantly different from those of earlier

studies, for here the variation at different scales is

superimposed. Instead of big and small habitat patches,

here we have microhabitat variation superimposed on large-

scale habitat variation.

The larger the spatial correlation length, the larger the

temporal correlation length must be before the population

switches from polymorphic to monomorphic (Fig. 1). It

seems likely that when the temporal correlation length is

small, far-dispersing morphs are successful because they

avoid getting stuck in a habitat �patch� that is becoming

unfavourable. However, short-dispersing morphs also per-

sist in the system because they are able to accumulate in

favourable (if ephemeral) patches. Tracking spatial variation

in environmental conditions in this way becomes more

difficult as the spatial correlation length decreases – it is

hard to retain offspring in a tiny habitat patch – and so

polymorphisms become less likely as n decreases.

Dormancy increases the value of the branching point

distance just as it increases the value of the ESS distance.

Finding the actual dispersal distances and their relative

frequencies is beyond the scope of this study. Nonetheless,

it may be possible to get a hint of what happens by

considering all-or-nothing dispersal, in which a fraction p of

seeds disperse globally and the rest do not disperse. Using

the same analysis on this simplified form of dispersal, we see

that dormancy reduces the optimal fraction of dispersing

seeds if temporal correlations are small enough (s below

c. 0.9 for n ¼ 0), in agreement with the traditional

dormancy–dispersal tradeoff (Fig. 5). For larger s, dor-

mancy increases the optimal fraction of dispersers. (How-

ever, dormancy seems to have little effect on the dispersal

fraction unless spatial correlations are very small.) Figure 5

suggests that in an environment with sufficiently small but

nonzero temporal correlations, dormancy may decrease the

fraction of far-dispersing seeds in a polymorphic strategy.

D I S C U S S I O N

In summary, dispersal has two effects on populations and

these may prove costly or beneficial. First, dispersal

distributes the population more evenly in space. This is a

benefit in a rapidly changing environment, where without

dispersal, populations would be concentrated in unfavour-
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Figure 4 Invader long-run growth rate for mean resident dispersal

distance above the branching point, below the branching point,

and near the branching point. Here, D ¼ 0, n ¼ 0, s ¼ 1, which

means that the equilibrium point a* ¼ 0.4031, indicated by the

arrows, is a branching point. In (a) ar < a* (ar ¼ 0.3399). Invasion

is possible for ai > ar and so the resident dispersal distance moves

towards a*. In (b) ar > a* (ar ¼ 0.5888). Invasion is possible for

ai < ar and the resident dispersal distance moves towards a*. In (c)

ar is just below a* (ar ¼ 0.3945). Invasion is possible both for

ai > ar and for ai less than c. 0.25. Two subpopulations arise with

different dispersal distances.
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able areas, and a cost in a slowly changing environment,

where the population would be concentrated in favourable

areas, were it not for dispersal. Second, dispersal reduces the

delay between environmental change and the population’s

local response, which is always beneficial. The optimal

dispersal distance is determined by balancing the costs and

benefits. Dormancy changes the optimal dispersal distance

by altering this balance, adding a net benefit so that for

environments with positive temporal correlations, the ESS

dispersal distance increases (Fig. 1). Far from reducing the

need for dispersal, dormancy partially undoes the effect of

dispersal, so that when dormancy is present, dispersal must

be higher to compensate.

There need not be a single optimal dispersal distance. As

the temporal correlation length is reduced, ESSs give way to

branching points, and the population becomes polymorphic.

The larger the spatial correlation length, the larger the

temporal correlation length at which the population

switches from being monomorphic to polymorphic

(Fig. 1). Dispersal polymorphisms are known to exist for a

number of species, especially those in the composite family.

For example, in the composite family annual Heterotheca

latifolia (now called Heterotheca subaxillaris), disc flowers

produce a wind-dispersed pappus that enables long-distance

dispersal, while ray flowers do not (Venable & Levin 1985).

An examination of all-or-nothing dispersal, in which a

fraction p of seeds disperse globally and the rest do not

disperse, suggests that for sufficiently small temporal

correlation lengths, dormancy may reduce the optimal

fraction of long-range dispersers in a polymorphism, in line

with the traditional dormancy–dispersal tradeoff (Fig. 5).

There is some evidence of this happening in composite

flowers with polymorphic achenes. For example, peripheral

achenes of Crepis sancta have greater dormancy and less

dispersal ability compared with central achenes (Imbert

1999). However, the peripheral achenes of Bidens frondosa

have both less dormancy and less dispersal ability, in conflict

with the traditional dormancy–dispersal tradeoff (Brandel

2004).

Empirical evidence on how dormancy affects dispersal is

ambiguous. In agreement with the current findings, Gravuer

et al. (2003) found that within populations of the asteraceous

perennial Liatris scariosa, germination is somewhat negatively

correlated with expected dispersal distance (r ¼ )0.376).

However, Rees (1993) found that species with less seed

dormancy were significantly more likely to have seeds with

�burs, awns, spiny calyxes, wings, plumes, adhesive mucilage�,
or seeds dispersed via ingestion. How might we reconcile

these findings with each other and with the current study?

First, in natural systems, the evolution of dispersal is

entangled with that of other traits. For example, seeds with

large mass usually disperse shorter distances (Jongejans &

Schippers 1999), and seed mass has its own relationship

with dormancy. Large seeds may allow plants to establish

themselves in less favourable environments, reducing the

need for dormancy (Pake & Venable 1996), although Rees

(1996) found this to be true only for seeds with efficient

mechanisms of dispersal. Gravuer et al. suggest that their

results appear to be driven by a positive correlation between

seed mass and germination success.

Second, the current study has only concerned itself with

whether dormancy and dispersal can substitute for each

other as risk reduction mechanisms and therefore has only

considered the optimal dispersal distance for a given level of

dormancy. If both traits were allowed to co-evolve, it is

possible that a different relationship between dormancy and

dispersal might emerge. Modelling the co-evolution of

dormancy, dispersal, and seed size, Venable & Brown (1988)

found that in an environment that is correlated in time but

not in space, increased dormancy is associated with reduced

dispersal. However, spatial correlations may matter. Of the

two risk reduction mechanisms, only dispersal responds to

spatial correlations. A longer spatial correlation length will

result in selection for higher dispersal, which may then

reduce selection for dormancy.

It is also important to remember that species do not

evolve in isolation. Selective pressures depend on which

other species are present in the community, and an inferior

competitor may be able to invade a system if it has a

dispersal distance which is well suited to its physical and

competitive environment. For example, in a physical
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Figure 5 Optimal mean dispersal fraction (p) vs. the temporal

correlation length (s) for different dormancies (D ) and different

spatial correlation lengths (n). Here we assume all-or-nothing

dispersal, in which a fraction p of the seeds disperse globally and

the rest do not disperse. In the absence of spatial correlations

(n ¼ 0), increasing dormancy increases the optimal dispersal

fraction for s less than c. 0.9 and reduces the optimal dispersal

fraction for larger temporal correlations. Dormancy has little effect

on the optimal dispersal fraction in the presence of even modest

spatial correlations.
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environment which is changing relatively rapidly, an inferior

competitor may be able to persist by taking advantage of

newly favourable habitat not yet found by the superior

competitor (the �competition–colonization tradeoff�; Tilman

1994). In a slowly changing environment, an inferior

competitor may be able to persist if it can take advantage

of gaps left when the superior competitor grows in a

clustered fashion (Bolker & Pacala 1999; Murrell & Law

2003) or if, through short-range dispersal, it is better than

the superior competitor at retaining its offspring in

favourable locations (Snyder & Chesson 2003).

Finally, we should consider the character of natural

environmental variation. The current study suggests that the

traditional dormancy–dispersal tradeoff may hold if the

temporal correlation length is small enough and if we

consider the proportion of long-range dispersers in a

polymorphism instead of mean dispersal distance. A meta-

analysis by Vasseur & Yodzis (2004) suggests that many

physical characteristics of terrestrial environments, such as

precipitation, degree days, and winter severity index, are

positively correlated in time but with small temporal

correlation lengths. (Their variational spectra are close to

�white noise�.) It is not clear how the resulting environmental

responses would be correlated – the current study concerns

itself with correlations in an environmental response (here

fecundity), not physical characteristics of the environment –

but these results give an added incentive to understanding

what happens for small temporal correlation lengths.

In summary, I have found that in an environment with a

positive temporal autocorrelation, increasing dormancy

increases the optimal mean dispersal distance or, if there is

no unique optimum, increases the branching point. If the

reverse is true in natural populations, then we cannot invoke

the traditional explanation that dormancy and dispersal are

equivalent forms of risk reduction and that the presence of

one reduces the need for the other. The next steps seem clear.

Empirically, we would like more data on whether dormancy

is indeed associated with shorter dispersal distances. Theor-

etically, we need to understand what happens when

dormancy and dispersal levels co-evolve, a study I have

already begun. We also need to uncover the nature of the

dispersal polymorphism predicted for small temporal corre-

lation lengths: what dispersal distances are ultimately selected

for and is it true that dormancy may increase or decrease the

proportion of long-range dispersers, depending on the

correlation length? Refining our ideas in this area will lead

to a deeper understanding of one of the central issues of

ecology: how organisms cope with unpredictability.
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