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Abstract

A population experiences environmental variation both directly, through effects on life history parameters such as fecundity, and
indirectly, through effects on the population distributions of competitors and thus on the distribution of competition. Which spatial and
temporal scales of environmental variation most influence the coexistence of two species thus depends in part on the degree to which the
resident population responds to different scales of variation. In this paper, I calculate an approximation for a spatiotemporal population
distribution as the result of a filter function convolved with the environmental variation. I find that there is no straightforward
connection between spatial or temporal scales inherent to an organism’s life history, such as mean lifetime or dispersal distance, and the
population’s sensitivity to variation at different scales. Rather, life history traits interact sensitively with the way environmental variation
affects the organism. I comment on the implications for variation-mediated coexistence.
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1. Introduction

Which spatial and temporal scales of environmental
variation most influence coexistence between two species
with given life history strategies? More precisely, consider
coexistence using the standard mutual invasibility criterion,
which states that species coexist if each species can
“invade” (increase from a regionally low density) in the
presence of its competitors (the “‘residents’’), which have
reached a stationary distribution. Given an invader and a
resident with particular life history strategies, which scales
of environmental variation most encourage or discourage
the persistence of the invader? Both temporal (Armstrong
and McGehee, 1976; Abrams, 1984; Chesson and Warner,
1981; Chesson, 1994) and spatial (Pacala and Rough-
garden, 1982; Comins and Noble, 1985; Chesson, 2000;
Amarasekare, 2003; Abrams and Wilson, 2004) variation
in environmental conditions can increase the growth rate of
a low density species, thereby promoting coexistence, but
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not all scales of variation are equally effective. A study of a
California grassland showed that grasses and forbs can
coexist when rainy years are followed by dry years (Levine
and Rees, 2004), but in other cases, such rapid variation
will be experienced as a kind of blur, effectively averaged
over. For example, Collins et al. found that species richness
in a tallgrass prairie was inversely proportional to the
frequency of burning (Collins et al., 1995). Spatial
variation on a scale larger than the invader’s mean
dispersal distance can increase the invader’s regional
growth rate (Snyder and Chesson, 2003), but intermedi-
ate-scale spatial variation may make a larger contribution
under the right circumstances (Snyder and Chesson, 2004).
Furthermore, existing studies on the effects of scale largely
consider spatial or temporal variation separately, yet the
effects of spatial and temporal variation may interact
(Stratton and Bennington, 1998; Buckling et al., 2000). It is
possible to calculate how much variation at a given spatial
and temporal scale would contribute to an invader’s long
run growth rate, but we do not yet have an intuitive
understanding of how the life history strategies of two
competing species determine which scales most influence
persistence at low density.
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A critical step in understanding the effects of temporal
and spatial scale on coexistence is understanding how the
density of the resident species responds to environmental
variation at different spatial and temporal scales. Variation
in resident density causes variation in competition, which
can harm or help an invader. If environmental variation
causes the resident population to accumulate in areas with
environmental conditions that are favorable to the invader,
then the invader will experience increased competition, to
its disadvantage. If environmental variation prevents the
resident from accumulating or causes it to accumulate in
areas unfavorable to the invader, then the invader will
experience decreased competition, to its benefit. Further-
more, simple variation in competition, regardless of its
spatiotemporal distribution, may help an invader if a
decrease in competition boosts its growth more than a
comparable increase in competition depresses its growth,
or may harm an invader if the reverse is true (“‘nonlinear
competitive variance”, Snyder and Chesson, 2004). Envir-
onmental variation affects invader growth more strongly at
some scales than at others in part because resident density
is more sensitive to variation at some scales than at others,
and variation in resident density has important conse-
quences for the invader.

Put another way, the invader’s experience of the
environment is partially mediated through the resident
population distribution, which acts as a kind of filter for
environmental variation. The resident population responds
very weakly to environmental variation at certain scales.
Invader competition therefore varies very little at these
scales—they have been damped. The resident population
responds strongly to environmental variation at other
scales. Invader competition therefore varies strongly at
these scales—they have been amplified. The invader
experiences the environment both directly and indirectly:
directly, through its own environmental response, and
indirectly, through the resident population’s response to
the environment and the effect of the resulting population
distribution on competition.

Taking the metaphor of a filter literally, this paper shows
how to approximate the resident population’s spatiotem-
poral distribution as the convolution of environmental
variation and a filter function. Just as the electronic filters
in a stereo can be adjusted to amplify the bass notes
relative to the treble, this mathematical filter amplifies
variation at some scales and damps it at others. This filter
function can be transformed into a response function
which measures the ability of the resident to track
environmental variation (i.e. become aggregated in favor-
able areas) at different spatial and temporal scales. The
invader’s growth rate depends on more than competition,
but knowing how the resident is distributed is useful in
creating heuristic predictions about whether an invader will
grow or decline.

Comparing different response functions, I find that a
population’s sensitivity to variation at different scales
depends strongly on the way environmental variation

affects the organism. For example, the scales at which a
population can track variation in germination are very
different than the scales at which a population can track
variation in adult fecundity. In addition, the spatial and
temporal scales inherent in an organism’s life history can
interact in unexpected ways with the manner in which
environmental variation affects the organism. Naively, one
might expect that the type of environmental variation
would set the basic form of the response function, with that
form modified in predictable ways by changes in life history
parameters. For example, one would expect that increases
in the spatial scale of dispersal or competition would cause
the population to become less sensitive to variation at small
spatial scales and that increases in life span would cause the
population to become less sensitive to variation at small
temporal scales. However, depending on the type of
environmental variation, changes in life history parameters
can cause striking qualitative changes in a population’s
response function. For example, when germination varies,
a change in seed survival can cause the response function to
switch from depending almost entirely on the temporal
scale of the variation to depending almost entirely on the
spatial scale of the variation.

Because the resident’s response function plays an
important role in determining which environmental scales
most influence coexistence, these results have implications
for studies that explore the connection between the scale of
environmental variation, such as the spatial extent or
temporal frequency of disturbance, and coexistence. We
should expect, for example, that the effects of disturbance
frequency and extent should depend on the timing of
disturbance within the life cycle, since the life history
parameters affected by disturbance (e.g., adult survival,
seedling establishment) will depend in part on disturbance
timing.

The rest of the paper proceeds as follows. Section 2
presents an annual plant model used to demonstrate the
ideas in this paper. Section 3 discusses how the resident
population density can be written in terms of a filter
function convolved with the environmental variation and
how the filter function can be transformed into a response
function specifying the resident population’s sensitivity to
variation at different scales. The full mathematical
calculations are presented in the appendix. Section 4
relates the resident response function to invader growth
rate and discusses some of the heuristic insights that can be
gained by understanding how well the resident population
density tracks environmental variation. Section 5 contrasts
response functions that arise from variation in two
different stages of the plant life cycle. The paper concludes
with a discussion of response functions and their implica-
tions for variation-mediated coexistence in Section 6.

2. Example: an annual plant model

It will be easiest to develop these ideas within the context
of a specific model. Consider the following model of an
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annual plant with a seedbank. The number of seeds at
location x in year ¢ is n,(x, f). The subscript r serves as a
reminder that we are considering the resident species. Seeds
germinate with probability g, and upon establishing
themselves as adult plants produce a maximum number
of seeds F, (“fecundity’’). However, seed production is
reduced by competition, C,, which is determined by a
weighted average of the local seedling population, with
weight function U,, (“‘competition kernel”) defined so that
more distant seedlings have less of a competitive effect. The
seeds then disperse, traveling a distance z from their parent
with probability k,(z). Seeds that fail to germinate survive
with probability s, until the following year, when they
again have a chance to germinate. The density of seeds at
location x in year ¢ + 1 is then given by

I’lr(X, 1+ 1) = /OO kr(x - y)/llr(y’ t)nr(ya t) dy

[e¢]

+ /12,-()(, t)n,.(x, t)v (1)

where 41,(x, f), the per capita contribution of germinating
seeds to next year’s seed bank, is given by

F.g,
C(x,1)°

Ax(x, 1), the per capita contribution of non-germinating
seeds to next year’s seed bank, is given by

}“Zr(xa t) = SI‘(I - gr)> (3)
and competition C,(x, ) is given by

Air(x, 1) = 2)

Co(xat) = / Upnx — y)g,mi (v 1) dy. @)

oo

Integrals of this form are called convolutions and are
denoted by the operator x. For example, Eq. (4) could be
rewritten as C,(x,t) = U, * (g,n,)(x, t). For simplicity, I
have written this model using one-dimensional space;
however, I expect the qualitative results to remain true
for two-dimensional space.

Environmental variation is felt through its effect on life
history parameters such as fecundity or germination
fraction. As a reminder of this, I refer to the varying life
history parameter as the environmental response or simply
“the environment” for short. For example, the appendix
contains a derivation of the response function when
environmental variation affects fecundity, so that fecundity
is a function of space and time. I refer to fecundity as the
environment and, as a further reminder, replace F, with
E,(x,t). Note that the environmental response has the
subscript r. An invader may respond to the environment
differently and will have its own environmental response,
E;. Section 5 compares response functions for variable
fecundity and variable germination.

3. Filters and Fourier transforms

In this paper, I write the resident population density
n.(x,t) in terms of a kernel convolved with the environ-

mental variation, and this kernel acts as a filter: environ-
mental variation at some spatial and temporal scales is
amplified while variation at other scales is damped. The
filtering role of the kernel becomes clearer (and the
mathematics becomes casier) when we use Fourier trans-
forms to express population density and environmental
variation as sums of sinusoids varying at different spatial
and temporal frequencies. The Fourier transform f(w) of a
function of time f(7) is the coefficient of the term that varies
at temporal frequency w. The Fourier transform f(w) thus
expresses how much variation there is in f(¢) at a given
temporal frequency or, equivalently, at a given temporal
period or scale, since the period of a sinusoid is 2x divided
by its frequency. For example, if f(w) starts out large for
small @ and then decreases as w becomes larger, then f(¢)
varies a lot at low frequencies, corresponding to long time
scales, and varies a little at high frequencies, corresponding
to short time scales. In this paper, I take Fourier
transforms with respect to both space and time, so that
the transform is a function of spatial and temporal
frequency.

Fourier transforms are especially useful in the present
case because the Fourier transform of the convolution of
two functions is the product of their Fourier transforms:
f x g(w) = f(w)g(w). The convolution that determines the
population distribution thus becomes an equation of the
form

Fourier transform
. (g, @)
of population

Response Fourier transform
= (¢, ®) (¢, ),

function of environment

where ¢ is a spatial frequency and w is a temporal
frequency and where the “response function” is the Fourier
transform of the kernel. Variation in population density at
a given spatial and temporal frequency is thus equal to the
variation in the environment at those frequencies times a
factor given by the response function. The role of the
response function as filter is now more apparent. Frequen-
cies for which the magnitude of the response function is
greater than one represent scales of environmental varia-
tion which are amplified in the resident population’s
response. Frequencies for which the magnitude of the
response function is less than one represent scales of
environmental variation which are damped in the resident
population’s response. Peaks and troughs in the magnitude
of the response function represent spatial and temporal
scales of environmental variation to which the resident
population is especially sensitive. Areas where the magni-
tude of the response function is near zero represent scales
to which the population is largely insensitive.

Response functions have been used in ecology to
approximate a population’s response to static spatial
variation (Roughgarden, 1974; Gurney and Nisbet, 1976;
Snyder and Chesson, 2004; Anderson et al., 2005) or to
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temporal variation such as seasonal changes (Nisbet and
Gurney, 1982). The appendix shows how to use a response
function to approximate a population’s response to
spatiotemporal variation by assuming that the environ-
mental variation is small relative to the mean and
linearizing the resident dynamics. (This first order approx-
imation for the resident population density can be used to
give a second order approximation to the resident and
invader long run growth rates.) The relative population
density, defined as v.(x, ?) = n.(x, t)/{n,)(¢), has a Fourier
transform given by

vr = R(% CO) ei(b(q’w) Er(qa (’O)’ (5)

where R(q, w) ¢'?@®) is the response function and z.(¢, ®) is
the Fourier transform of the environmental variation
normalized by its spatial average and adjusted to have
spatial mean zero: &.(x, f) = E.(x,1)/(E,)(f) — 1. If there is
no globally synchronized component to the environmental
variation, so that (E,), does not depend on time, then to
the order of approximation used in this paper, the spatial
average of n, is also time-independent and n,(x,?) =
(n) . ,ve(x,t). Under these circumstances, 7.(q,®) =
(n,).v+(q, ), so that Eq. (5) also describes the variation
in n(x,7). If (E,), does depend on time, n(q,®) is
described by Eq. (5) plus terms that specify the variation
in (m),, which are governed by their own response
function. This response function is derived in the appendix;
however, for simplicity, this paper will focus on the
response function for v,(x,¢), effectively assuming that
(E,), 1s constant.

Fig. 1 compares the approximate relative density,
determined by Eq. (5), to the real relative density,
determined by a numerical solution of the resident
dynamics (Eq. (1)). The approximation is generally quite
good. It is worst for a species with long-range intraspecific
competition, short-range dispersal, and long-lived seeds
experiencing variation at a large spatial scale. Under these
conditions, competition can become intense for plants in
the middle of the environmentally favorable areas, and this
creates a secondary dip in population density in the middle
of these areas which is not predicted by the approximation.
However, the population density does not vary much
overall under these circumstances, so that the effects of this
infidelity are limited. Of course, the approximation should
also become worse as the environmental variation becomes
large relative to the mean, since this perturbative approach
assumes small variation.

The response function, R(g, ®)e'#@®) is written in terms
of an amplitude R(g, w) and a phase angle ¢(g, w). It is the
amplitude which specifies a population’s sensitivity to
different scales of variation. A large amplitude means that
the resident population varies strongly in response to
environmental variation at spatial frequency ¢ and
temporal frequency w. A small amplitude means that the
resident population varies weakly in response to environ-
mental variation at those frequencies. The phase angle
¢(q, w) specifies the delay in the population’s response to a
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Fig. 1. Approximated and actual relative population density (v,) as a
function of location (x). Germination varies sinusoidally with spatial
period 32, temporal period 8, amplitude 0.2, and spatiotemporal average
0.5. The population disperses according to a Laplacian kernel k,(x) =
(o /2) exp(—ot|x[) with mean dispersal distance 1/o,, and competes with
itself according to a Laplacian kernel U, (x) = (f,./2) exp(—p,.|x|) with
characteristic competition distance 1/f,.. The approximation performs
least well when the spatial period is large, seeds are long-lived, dispersal is
short-range, and competition is long-range. This situation is depicted by
the solid and dashed lines, for which s, = 0.9,a, = 1, f§,, = 0.1. The solid
line represents the true values, as found by numerically iterating Eq. (1),
while the dashed line represents the approximation. The dotted and dash-
dot lines show the true and approximate values, respectively, for short-
range competition (f,. = 1), with all other values remaining the same.

change in the environment: if ¢,(x, ) = sin(gx) sin(wt?), then
v(x, 1) = R(gq, w) sin(gx) sin(wt + ¢(g,w)). (There is no spa-
tial phase angle because dispersal and competition depend
only on separation distance and do not have a preferred
direction.) When the environment is changing very slowly
(w near zero), then ¢ is close to zero and there is little
delay: v,(x, 1) ~ R(q,w)e(x,t). When locations alternate
between good and bad years (w = 7, the fastest possible
variation), then ¢ = —n, and the population is precisely
out of phase with the environment: v,(x,?) = —R(g, ®)
&(x, £). In this paper, I focus on the amplitude R(¢g, w) and
for simplicity refer to it as the response function. However,
the reader should keep in mind that as the environmental
variation becomes rapid (o — 7), the response function R
acquires an overall minus sign. Fig. 2 shows an example of
a sinusoidal signal that is modified by a complex response
function.

4. How response functions determine growth rate

The connection between R and competition is generally
straightforward. When |R(g, w)| is large, the resident tracks
variation at spatial frequency ¢ and temporal frequency w,
becoming concentrated in favorable areas if R is positive
and becoming concentrated in unfavorable areas if R is
negative. Ordinarily, competition is high whenever the
resident density is high, so that large |R| signifies strong
competition in either favorable or unfavorable areas,
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Fig. 2. The effect of a complex response function on a sinusoidal signal. Consider a sinusoidal signal sin(wy?) which is convolved with the kernel
exp(—1),t=0;0,7<0. In the context of this paper, we can think of sin(wg?) as representing a temporally varying environment and the convolution of
sin(wot) as the resulting population dynamics. The Fourier transform of this kernel is 1/(1 4 iw), which can be written as R(w)exp(i¢p(w)), where
R(w)=1//1+@? and ¢(w)=tan"!(—w). For “environmental variation” of the form sin(wo?), the resulting “population dynamics” is
R(wo) sin(wot + ¢(wp)). Part (a) shows the amplitude and phase of the response function as a function of frequency w. The decline of R(w) with w
indicates that the population will vary less as the frequency of the environmental variation becomes higher. The decline of the phase ¢(w) from zero to
more negative values indicates that the delay between the environmental variation and the population’s response will grow longer as the frequency of the
environmental variation becomes higher. This is demonstrated in parts (b) and (c), which show environmental variation (solid lines) and the resulting
population dynamics (dashed lines) for low frequency variation (wy = 27/16) in part (b) and high frequency variation (wo = 2n/4) in part (c).

depending on the sign of R. This relationship may not hold
when population density is measured in a life history stage
that is different from the stage where competition occurs.
For example, in the model presented in Section 2,
population density #n,(x, f) refers to the density of resident
seeds at location x at time ¢, but competition arises from
seedlings whose density is given by the seed density times
the germination fraction g,. If environmental variation
affects germination, so that germination fraction is a
function of space and time, then R is negative at slow time
scales when seed survival is high (Fig. 4), meaning that
seeds tend to accumulate in areas with low germination.
Seed density is low where germination is high and vice

versa, with the result that seedling density and the resulting
competition vary only a little even though |R| is large.
The connection between R and the invader’s long run
growth rate, 7;, is less clear. At a minimum, 7; depends on
(Cov(n;, ny),), (Are the residents and invaders concentrated
in the same areas?), (Cov(n;,E;),); (Is the invader
concentrated in an environment favorable to it?),
Var(n,),, (How much does the resident density vary?)
(More variation increases 7; if invader growth is a concave-
up function of competition.), and (Cov(n,, E;),), (Are the
residents concentrated in areas favorable to the invaders?).
Calculating 7; is, therefore, somewhat involved. However,
there are three situations which tend to lead to higher long
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run growth rates for the invader. In the first situation, the
resident and invader each track environmental conditions
well and prefer different habitats, so that they are spatially
segregated. (The quantities Var(n,),, and (Cov(n;, E)),),
are positive, increasing 7;, and (Cov(m;,n,),), and
(Cov(n,, E;),), are negative, also increasing 7;.) In the
second situation, the resident is concentrated in unfavor-
able areas (‘“‘anti-tracking”) and the invader is more
uniformly distributed. (Variance and covariances similar
to the previous case.) It seems likely that species adapted to
their environment will have evolved to avoid anti-tracking,
but more recently introduced species may anti-track. In the
third situation, which does not produce growth rates as
high as the first two, the resident is unable to track
environmental variation but the invader can. (The quantity
(Cov(n;, E)),.), 1s positive, increasing 7;, and all of the other
variances and covariances are small.) This tends to happen
when environmental variation is relatively slow and the
invader has shorter range dispersal than the resident, so
that, averaged over time, the invader is better able to
concentrate its population in favorable areas. This is a
spatiotemporal version Chesson’s growth-density covar-
iance mechanism (Chesson, 2000; Snyder and Chesson,
2003).

The most important spatial and temporal scales tend,
therefore, to be those that allow one or both species to
track environmental conditions. This paper has only
discussed the resident’s spatiotemporal distribution, but it
is possible to calculate the invader’s distribution in a
similar fashion. (See, for example, the appendix of Snyder,
2006.) If the scales at which the resident becomes
concentrated depend on life history strategy or the nature
of the environmental variation, then the scales of variation
which most affect coexistence are also likely to depend on
these factors.

5. Comparison of various response functions

Figs. 3-6 show response functions (R) for sinusoidally
varying fecundity or germination as a function of the
spatial and temporal period of the environmental varia-
tion. Natural variation will not be sinusoidal, of course,
but with the use of Fourier transforms, more complex
patterns of variation can be broken into sums of sinusoids
at different spatial and temporal frequencies (Section 3).
Analyzing sinusoidal variation allows us to consider the
effects of each component scale separately.

The differences among the response functions are
striking. A population may be approximately equally
sensitive to variation at all spatial scales, but not to all
temporal scales (e.g. Fig. 4a, c). Likewise, it is possible for a
population to be approximately equally sensitive to
variation at all temporal scales but not to all spatial scales
(e.g. Figs. 5a, ¢, 6a). It is also possible for a population to
be differentially sensitive to both scales, so that the effects
of spatial and temporal variation interact (e.g. Figs. 3d,
4b).

The response function is often positive but may be
negative, as is the case for variable germination with high
seed survival (Fig. 4). A large negative value for the
response function means that the population is concen-
trated in unfavorable areas. Variation in germination can
produce a negative response function because a favorable
environment is one in which the germination fraction is
high. If seeds are long-lived, this leaves seeds concentrated
in areas where the germination fraction is low.

One apparently robust pattern occurs when dispersal is
short range and competition is long range. As discussed in
Snyder and Chesson (2004), the response function has a
resonance peak, indicating that the resident population is
especially sensitive to environmental variation at a small
range of intermediate spatial scales. The peak occurs
because short-range dispersal allows the population to
accumulate in favorable areas and long-range competition
reduces the competitive pressure in crowded favorable
areas while increasing the pressure on individuals in
adjacent unfavorable areas (Roughgarden, 1974; Snyder
and Chesson, 2004). It seems likely that this resonance is a
general phenomenon.

Nonetheless, it seems clear that the population’s
response to variation at different spatial and temporal
scales depends sensitively on how environmental variation
affects the organism. Environmental variation that affects
germination has a very different effect than environmental
variation that affects fecundity. In addition, changes in life
history parameters can produce unexpected results. For
example, while an increase in the mean dispersal distance
does make the population less sensitive to variation at
small spatial scales, the same is not true of an increase in
the spatial scale of competition, and the two spatial scales
can interact to produce a resonance. Likewise, changes in
seed survival produce only small, quantitative changes in
sensitivity when fecundity varies, but produce radical
changes when germination varies. (Compare Figs. 4 and
6.) The effects of life history parameters depend on how
environmental variation affects the individuals and are
likely to vary from situation to situation.

6. Discussion

When environmental conditions vary, the ability of a
low-density species to persist in the presence of a
competitor depends in large part on the competitor’s
spatiotemporal distribution. This paper shows how we can
think of a population’s distribution as the result of a
mathematical filter applied to the environmental variation.
The filter can be converted into a response function which
shows the sensitivity of the population to variation at
different spatial and temporal scales. Scales at which the
response function is large represent spatial and temporal
frequencies of variation to which the population is
sensitive—the population will track environmental varia-
tion at these scales, possibly with some time delay. Scales at
which the response function is small represent spatial and
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Fig. 3. Response functions for long-lived seeds (s, = 0.9) and variable fecundity as a function of the spatial (L) and temporal (7) scale of the
environmental variation. In these and the following figures, the environmental variation is sinusoidal in space and time with spatial period L (spatial
frequency ¢ =2n/L) and temporal period T (temporal frequency w =2n/T): E(x,t) = (E),,+ Bsin(2nx/L)sin(2nt/T). The population disperses
according to a Laplacian kernel k,(x) = o, /2 exp(—o,|x|) with mean dispersal distance 1/a, and competes with itself according to a Laplacian kernel
U, (x) = B,./2 exp(—p,.|x|) with characteristic competition distance 1/f,.. (a) 1/a, =1,1/p,., = 1. (b) 1/o, =1, 1/, =10. (¢) 1/a, =10,1/p,. = 1. (d)

1/2, = 10,1/B,, = 10.

temporal frequencies to which the population is insensi-
tive—the population is unable to track variation at these
scales. Using an annual plant model, this paper demon-
strates how to calculate the response function and presents
response functions that arise from variation in two
different stages in the plant’s life cycle.

Response functions help to explain how environmental
variation affects invasion dynamics and species coexistence
because response functions show where the resident
population is clustered (in favorable or unfavorable areas)
and to what degree, and this determines the competitive
landscape experienced by the invaders. While the invader’s
growth rate is not solely determined by competition,
understanding how the residents are distributed can enable
a heuristic understanding of patterns of invasibility and
coexistence. For example, in their model of a California
grassland, Levine and Rees (2004) described competition
between a forb with long-lived seeds that accumulate in the
seed bank and a competitively superior grass with short-
lived seeds. In the first wet year after a dry year, the forb

population responds immediately, with many forb seeds in
the seed bank germinating. In contrast, the response of the
grass population lags. Having few seeds in the seed bank,
the grass first must produce seeds, which then have the
opportunity to germinate in the following year. Levine and
Rees showed that if wet years are followed by dry years,
then the grass anti-tracks the environment, becoming most
populous in the dry years which follow wet years. This
allows the competitively inferior forb to persist. In
contrast, if wet years are followed by more wet years, the
grass is able to track this slower variation, and the forb is
excluded. If we were to calculate the response function of
the grass, it would be negative for rapid variation and
positive for slow variation.

In the above example, the inferior competitor is able to
persist when dry years follow wet years because the
superior competitor anti-tracks the environment under
those conditions. The species in the role of invader also has
an increased chance of persistence if it can track environ-
mental conditions while, instead of anti-tracking the
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environment, the resident is unable to track environmental
conditions much at all. In the context of the example
above, this would mean that the grass had a constant
population in wet and dry years while the forb was
populous only in wet years. Alternatively, if the two species
prefer different environmental conditions, the invader is
likely to do well if both species are able to track the
environment. The success of a species in tracking condi-
tions it finds favorable depends on the spatial and temporal
scales of the environmental variation, and this dependence
is encoded in its response function.

The invader’s response function can be found in the
same manner as the resident’s; a calculation of the
invader’s response function can be found in the appendix
of Snyder (2006). Determining the success of an invader is
then a matter of using the expressions for v,(x, 1), vi(x, 1),
and (n,),(¢) to find a second-order expression for the long
term growth rate, defined as the geometric mean of the
regional growth rate, ;. (See the appendix for a discussion
of 1;.) An example of these calculations can be found in the
appendix of Schoolmaster and Snyder (2007), and a fuller
treatment will be presented in a future paper.

One of the important insights response functions provide
is that a population’s sensitivity to variation at different
scales depends strongly on the way environmental varia-
tion affects the organism. Comparing Figs. 3 and 4, for

example, we see that the response function may increase
monotonically with spatial and temporal scale when
fecundity varies but, for the same life history parameter
values, depend only on temporal scale when germination
varies.

Another important insight is that the way life history
parameters affect a population’s sensitivity to variation
depends on how the environmental variation affects the
organism. When I began this study, I expected that as the
spatial and temporal scales inherent in an organism’s life
history grew, its sensitivity to small scale spatial and
temporal variation would decrease. For example, as
dispersal distance grew, I expected the population distribu-
tion to become more spatially uniform, averaging over the
small scale spatial variation, and as the mean seed lifetime
grew, | expected the population to become less sensitive to
rapid temporal variation. These were, furthermore, the
only effects I expected increases in dispersal or lifetime to
produce. However, changes in life history parameters can
interact with environmental variation in far more profound
ways, depending on how environmental variation affects
the organism. For example, when fecundity varies,
increasing seed survival produces the expected decrease in
sensitivity to rapid temporal variation. (Compare Figs. 3
and 5.) Yet when germination varies, a change in seed
survival can cause the response function to switch from
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depending almost entirely on the temporal scale of the
variation to depending almost entirely on the spatial scale
of the variation. (Compare Figs. 4 and 6.)

These differences in the response functions can lead to
different patterns in the strength of coexistence mechan-
isms. Figs. 7a and b show +/F,—(Fi—>, the square root of the
product of the long-run growth rates of each species as
invader, as a function of the scales of variation in both
germination and fecundity. Both species have a positive
long-run growth rate as invader for all values shown, so
that a large product means both species have large long-run
growth rates as invaders. Neither species has a competitive
advantage in the absence of environmental variability, and
SO +/Fi—1Ti=p gives a measure both of their mutual
invasibility and of the degree to which variation at that
scale contributes to coexistence. For these life history
parameter values, mutual invasibility peaks for large-scale,
slow variation in both germination and fecundity, although
the peak is higher for variable fecundity. Rapid variation in
germination also produces a peak in mutual invasibility,
unlike rapid variation in fecundity. The reason that rapid
variation in germination promotes coexistence and rapid
variation in fecundity does not is because while the
response function R is of similar magnitude for both forms
of variation, it is negative for variable germination (Fig. 4c)

and positive for variable fecundity (Fig. 3c). Since the
phase delay ¢ is near = for rapid variation, this means that
the resident tracks variation in germination and anti-tracks
variation in fecundity. The two species in this example
prefer different habitats, so that resident tracking produces
a negative covariance between invader competition and the
environment (the competition experienced by the invader is
higher in more favorable areas) and resident anti-tracking
produces a positive covariance (the invader experiences low
competition in areas it finds more favorable). Covariance
between competition and the environment is an ingredient
of the spatial storage effect (Chesson, 2000), which is what
promotes coexistence in this example.

The results presented here have implications for the
effects of disturbances on coexistence. Empirical tests of
the effect of disturbance extent and frequency have had
mixed results. Armstrong found that small size distur-
bances permit coexistence more readily than large ones
(Armstrong, 1988), while Moloney and Levin (1996) found
that size played only a minor role in their study. Moloney
and Levin found that the frequency of disturbance played a
key role in the population dynamics while McCabe and
Gotelli (2000) found little effect of frequency (although
they note that it might have been necessary to explore
lower frequencies to see an effect). These conflicting results
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are consistent with the current work, which suggests that coexistence. The effects of disturbance size and frequency
we should not expect a particular range of spatial or should depend both on life history characteristics and on
temporal scales to be most effective in promoting the way that environmental variation affects the organisms.
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The methods presented here are also relevant to the
effect of disturbance timing, as early and late disturbances
may cause variation in different life history parameters.
For example, herbivory early in the growing season could
cause effective variation in germination while herbivory
late in the growing season could cause variation in
fecundity. If variation in different life history parameters
produces different response functions, we may be able to
explain the results of disturbance timing by the effect of
disturbance timing on the resident population distribution.

The work presented in this paper gives important insights
into what determines which scales of environmental variation
most influence species coexistence, but it does not tell the
entire story. For example, the present work has made it clear
that one cannot make simple statements such as “increasing
the duration of one or more life stages causes the population
to become less sensitive to variation at short temporal
scales,” as one might intuitively suppose. Rather, one must
account for the way that the type of environmental variation
(does it affect fecundity? germination?) interacts with life
history parameters. It is not clear, however, just how the
form of the environmental variation determines the effect of
life history parameters on a population’s sensitivity to
variation. An intuitive understanding of how these factors
work together would be very helpful.

Furthermore, to fully understand which scales most
influence the coexistence of two species, we must take into
account not only the distribution of the resident but also
the distribution of the invader. Considering the resident’s
distribution alone has already yielded useful insights,
helping us to understand how invasibility in variable
environments interacts with resident species turnover, for
example (Schoolmaster and Snyder, 2007). Nonetheless, a
fuller understanding is desirable. The coexistence of many
species is thought to be mediated by disturbance or other
forms of environmental variation. Understanding how the
scales of that variation affect coexistence is important in
understanding how these species coexist and how anthro-
pogenic changes to disturbance regimes may affect them.
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Appendix A. Derivation of the resident response function

Let us derive the response function for variable fecun-
dity. Assume that environmental variation, and therefore
variation in population density and local growth rate, is of
small amplitude so that we can write E,(x,t), n.(x,t), and
A(x,f) in terms of their spatiotemporal averages plus
perturbations of O(c).' Assume also that the deviations of

"By g(x) = O(6), I mean that % can be made less than or equal to

some positive constant K for ¢ small enough—i.e., if ¢ is appropriately
small, g(x) will be less than or equal to Ko.

spatial averages from spatiotemporal averages are O(o).
We first write E,(x,?), n.(x, ), and Ag(x,¢) in terms of
perturbations away from their spatial averages:

Ei(x,1) = (E)()(1 + &(x, 1)), (A1)
ne(x, 1) = () (O] + ur(x, 1)), (A.2)
)vkr(x’ t) = (}“kr>x(t)(1 + (kr(x’ [))’ k= 1’ 29 (A3)

where (), denotes an average over space and the
perturbations ¢, u,, and (. are O(g) and all have spatial
and temporal averages equal to zero. We then write the
spatial averages in terms of perturbations away from the
spatiotemporal averages:

(Er) (1) = (Er) (1 4+ Q:(2)), (A.4)
() () = () (1 + 1,(0), (A.5)
(i) (1) = (ier) (1 + (D)), k= 1,2, (A.6)

where (), , denotes an average over time and space and ©,,
1., and hy, are O(c) and have temporal averages equal to
zero. To O(o), then,

E(x,1) = (Ep) o (1 + &, 1) + Q(0), (A7)
(X, 1) = (nr) (1 + (X, 1) +1,(2)), (A.8)
2%, 1) = (ier) o (1 + G (X, ) + (1)), bk =1,2. (A9)

Note that 4,(x,1) = A.(x, 1) + Ao(x,7) and so {.(x,t) =
(x5, 1) + Gop(x, 1) and h(2) = By (1) + hp (). We will first
derive an expression for v,.(x,?) (= n.(x,1)/{n)(¢f)) and
then find an expression for (n,),(f), and these will give us
u,(t) and n,(¢), respectively.

We begin by finding an expression for v,(x, f). As noted
in Chesson (2000), (n,),(t+ 1) = 2,(n,;)(¢), where 1.(t) =
(Ar) (&) + Cov(4y,vy)(1). We can convert Eq. (1), the
equation for the dynamics of n.(x, f), into an equation for
vi(x, ) by dividing both sides by (n,),(z + 1) and replacing
(n;) (t+ 1) by 1,(£){(n,)(¢) on the righthand side:

v+ 1) =k, * (f—%) (x, 1) + (%—%) 0. (A.10)
Ay »
Using Eq. (A.8), the relative population density v,(x, ?)

()t e+, (0) o) o
B TR EN G R Taylor expanding to

first order, 1/(1+#n,)=1—1n,+ O(¢*), and so to O(c),
v (5 0) = 1+ (e 1)+ 0,(0) = 0,(0) = 1+ u(x,0). Using
Eq. (A.9) to substitute for A;, and A, we can rewrite
Eq. (A.10) as

can be written as

L+ ue it 1) = %(1 Tkt 4 L) ) + (D)

()“27),\',1‘
2:(2)
+ hy(£)) + O(c?). (A.11)

We might then replace z,,(t) by (4) () + Cov(As, v,)(2).
However, because {, and u, are O(o), the covariance is

+ (14 0 0) +u(x, 1)
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0(c?), and so to O(o), we can replace zr(t) with
() (1) = (Ar)x (1 4 h(2)). This gives us
L4 (o4 1) = f;') Sy 1))
+ hlr(l) — hy(1))
st (4 e 1 G
(4r )t

+ oy (1) — he(2)) + O(c?). (A.12)

Notmg that ”r s (()}f))" =1 and (i) /11:(0) + (Z2r)xp)

hoe(t) = x,h (t) we are left with
41 = S 0
+ % >“( r 4 G, 1) + O(c?). (A.13)

To proceed further, we must specify how the growth rate
depends on resident density. Turning to Egs. (2)—(4) from
the model definition and using Egs. (A.7) and (A.8) to
express E,(x, t) and n,(x, f) in terms of small perturbations,
we find that to O(o),

Air(x, 1) = <(f’>> L1+ e(x, 1) + 2,.(1)
rix,t

— (Un 5 u)(x, 1) = (1) + O(c?), (A.14)

do(x, 1) = s5,(1 — g,), (A.15)
and so
Clr(xa t) = 8,,()6, t) - (Urr * u,)(x, t): (A16)
Gor(x, 1) = 0. (A.17)
Thus,
u(x, 1+ 1) = ¥ )> * (U + & — Uy 2 u,)(X, 1)

<j~ r x,t 2

o u(x, 1) + O(c?). (A.18)

At this point it is useful to take the spatial Fourier
transform, where the spatial transform and its inverse are
given by

Fla.0= / Fx, e dx,

| B ™ :
e (A19)
the temporal transform by
f(x, ) = / f(x, e dt,
L [ ;
fx,0) = o / f(x,w) e dw (A.20)

and the spatiotemporal transform by the application of
both a temporal and a spatial transform

flg,0) = / / f(x, 1) e”@+eD dx dy,

S0 =

/ / f(g, ) @) dgdo. (A.21)

1
n)* J-
The Fourier transform of a convolution is the product of
the Fourier transforms of the convolved functions

((f % 9)(q9) =[(9)i(@)), and so, dropping the “+0(c?)”
reminder, the spatial Fourier transform of Eq. (A.18) is

Aoy
O,(q)) + 20t

) (i) s -

gyt 4+ 1) = [m )1 - 2,0
A g, ). (A.22)
</Lr>x,r

The transformed population in year ¢, u,(q, t), depends on
the previous year’s population which depends in turn on
populations still further back in time. Assuming that #,(q, )
reaches a stationary distribution independent of its initial
condition, u#,(q,t = 0), we can write

m(q,z)—ZBf (@B, ()& (q.1=1), (A.23)

where

Buy(g) = 05 E (o1 — Tp(g)) + 2 (A.24)
(A, )x,t (’Lr)x,r

B(q) = vt k). (A.25)

j'r>x,t

Eq. (A.23) can be expressed as a discrete convolution in
time

g, 1) =Y M(q,1 — j)ér(q.))- (A.26)
j=0

where

- B (¢)B, 0,

M(q,n)={0”’ @B.(9) ZZo (A.27)

Discrete Fourier transforms® turn discrete convolutions
into products just as continuous Fourier transforms do
with continuous convolutions, and so, taking the temporal
Fourier transform, we reach the pleasingly simple form

(g, ) = M(q,0)&(q, ), (A.28)

My convention for the discrete Fourier transform and its inverse is f (x,
- N/2—-1 7,
w) = thz_woZ N/2 N/zf(x e, f(x,1) = hmy_,oo]V Z N/Zf(x )
eluj w; = 2n

N
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where

M(q,0) = Z M(q,s)e” '™ = ZBf;l(CI)Bsr(q) oo
s=1

_ ergq)(e—iw - Bu,»(q)) ) (A29)
1+ B, (q) — 2B, (q) cos®

Switching to polar notation, we can rewrite A7[(q, w) as
R(g, w) %) where

R(q, ) = [Re(M(q, ))* + Im(M(q, »))*]'/?
_ B..(q) , (A.30)
1+ BL(@ = 2B, (@) cos o
1 (Im(M(q, »))
,0) =tan" ! | — ="
P = (RdM@mm>
o —sinw
= tan (cos ©— B, (q)) (A.31)

and where we extend the range of tan~! to [0,2m) by
declaring ¢ to be in the first quadrant (0< ¢ <n/2) if both
the numerator and the denominator of tan~!’s argument
are positive, the second quadrant (n/2<¢<m) if the
numerator is positive and the denominator negative, the
third quadrant (z<¢<3n/2) if both numerator and
denominator are negative, and the fourth quadrant
(B3n/2<¢<2m) if the numerator is negative and the
denominator positive.

For completeness sake, let us find the values of

an d r = We take the spatiotemporal averages of the O(a)
approx1mat10ns for 21,(x,?) (Eq. (A.14)) and Au(x,?)
(Eq. (A.15)) and find
<E1’>x,t
(nl‘)x,z ’

(AZV)x,t = Sr(l - gr)

The average value of A, depends on the average resident
population density, (n,),,. We can use Egs. (A.7) and (A.8)
to Taylor expand Eq. (1), the equation for the population
dynamics. Taking a spatiotemporal average, all of the O(o)
terms vanish, so that to O(o),

(Air)y = (A.32)

(A.33)

s = (2 451 = ) ) 0 (A34)
(nr>x,t
yielding

(B
s = T (A35)
Thus,
(M) =1=5(1-g,), (A.36)
(A2r)yy = s(1 — g,) (A.37)
and
(j'r>x,t = </lll‘>x,r + (l2l‘>x,t =L (A38)

We can find an expression for (n,).(¢#) with an approach
similar to that for v,(x,7). As noted earlier, (n),
(1+1) = [(2)(©) + Cov(Ay, v,) (D)) (m,) (2). The covariance
is O(¢?), and so to O(¢),
() (1 + 1) = (n,) o, (1 + 1,1 + 1))

= (Ar)(D)(nr) (1)

= <nr)x,t(}“r>x,l(1 + he(1) + n,(2)).
The resident population is assumed to have a stationary

distribution, and so to O(o), the spatiotemporally averaged
finite growth rate, (4,),,, must be 1, leaving

n(t+1) = hl2) + n,(0).
Taking a spatial average of Eq. (A.14), we find that /,(¢) =

(A.39)

(A.40)

Tt (@ = 1) = G2, = 1) 10 0(0), and s0
E,)
n(+1) = (1 ) ) ()+ st 0,0 (A41)
<nr)x,t >X,t
Defining
B =1 B (A.42)
(nr>r,t
E,),
Bo— (Er) 3 (A.43)
(nr)rt
we can write
—1
10 =3 B Ba00) (At

/=0

Paralleling the earlier derivation of u,(q, w), we write the
above as a convolution in time and take the temporal
Fourier transform to arrive at

(o) = H(w) ), (A.45)
where
B
H(w) = 2 (A.46)
\/1 —i—B% — 2B, cosw
i —siho
= ). A4
z(w) = tan (cosa) — Bn) (A.47)
Thus, in the most general case,
nlq, ) = (), (1r(q, ) + ()
= (1) (R(q, ®) ¥ "%,(q, )
+ H(w) 1 Q,(w)). (A.48)

However, in the absence of globally synchronized varia-
tion, (i.e., (E,), = (E\),,), () is zero, so that

(g, ) = (1) . (R(g, ) V5, (q, ). (A.49)
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