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a b s t r a c t

Although perturbations from a stable equilibriummust ultimately vanish, they can grow initially, and the
maximum initial growth rate is called reactivity. Reactivity thus identifies systems that may undergo
transient population surges or drops in response to perturbations; however, we lack biological and
mathematical intuition about whatmakes a system reactive. This paper presents upper and lower bounds
on reactivity for an arbitrary linearized model, explores their strictness, and discusses their biological
implications. I find that less stable systems (i.e. systems with long transients) have a smaller possible
range of reactivities for which no perturbations grow. Systems with more species have a higher capacity
to be reactive, assuming species interactions do notweaken too rapidly as the number of species increases.
Finally, I find that in discrete time, reactivity is determined largely by mean interaction strength and
neither discrete nor continuous time reactivity are sensitive to food web topology.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

Traditionally, ecologists have focused on the long-term dynam-
ics of ecological systems, such as the existence of equilibria and
their stability. However, there is growing recognition that long-
term dynamics may not be a good guide to short-term behavior.
Even if an equilibrium or stage distribution is stable, a perturba-
tion from that state may grow before subsiding, producing tran-
sient surges or drops in population levels. Furthermore, short-term
behavior is important. A population surge may represent a pest
outbreak, and a drop may put a population at risk of stochastic
extinction. Additionally, since most experiments and monitoring
programs observe only short-term dynamics, it is difficult to con-
nect theorywith experiment if theoretical predictions address only
long-term behavior.
Reactivity, defined as the maximum initial rate at which a

small perturbation can grow, is a common way to measure the
tendency for perturbations to be amplified (Neubert and Caswell,
1997; Caswell andNeubert, 2005). Systemswith positive reactivity
are said to be reactive—some perturbations will grow. Reactivity
gives a worst-case estimate: not all perturbations will grow so
rapidly or even at all. Reactivity has been observed in models
of food webs (Neubert and Caswell, 1997; Chen and Cohen,
2001; Rozdilsky et al., 2004), host-parasitoid systems (Caswell and
Neubert, 2005), advective systems (Anderson et al., 2008), and
invasibility (Marvier et al., 2004), while others have developed
means for estimating reactivity from time series data (Ives et al.,
2003; Neubert et al., 2009).
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Can we develop our intuition about why some systems are
reactive and about characteristics that might make a system prone
to being reactive? Neubert et al. (2004) take us partway there by
showing that a food web model must be reactive if there is at least
one species with density-independent growth. Likewise, Neubert
et al. (2002) have shown that systems with spatial patterns
generated by Turing instabilities must be reactive. Are there other
characteristics that signal reactivity?
After an introduction to reactivity, I present upper and

lower bounds on reactivity and use these to understand what
mathematical and biological characteristics promote reactivity. I
then explore how strict these bounds are, using stochastic food
web models. I have made the analysis as general as possible.
We often lack a detailed understanding of a system’s dynamics;
this paper presents what can be inferred even in the absence of
detailed knowledge. I consider linear systems with any number
of species or life-history stages in discrete and continuous time.
Linearized models have been widely used by both theorists and
empiricists to describe dynamics near an equilibrium (Gurney
and Nisbet, 1998; Caswell, 2001). (They are called ‘‘Jacobians’’ in
the theoretical literature, ‘‘interaction matrices’’ or ‘‘community
matrices’’ in some of the food web literature (e.g. May, 1973;
Yodzis, 1988).)
Mathematically, I find that systems that are weakly stable and

have strong interactions have a greater capacity to be reactive.
These characteristics arise from the upper and lower bounds:
reactivity is bounded from below by a perturbation’s long-run
growth rate, large Jacobian elements increase reactivity’s upper
bound, and in discrete time, large Jacobian elements also increase
the lower bound. In simulations of a common food web model
(the Lotka–Volterra cascade model) matrix structure has little
effect on reactivity, and in discrete time, reactivity appears largely
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determined bymean Jacobian element size. Finally, using an upper
bound related to the condition number of the eigenvectors, one can
show that a Jacobian must be non-normal to be reactive, i.e. that
its eigenvectors must be non-orthogonal. This requirement has
been reported elsewhere (e.g. Trefethen et al., 1993; Caswell and
Neubert, 2005; Schmid, 2007), but I include it here as it helps
complete the intuitive picture of why some systems are reactive.
Biologically, this means that the range of possible reactivities

which do not allow perturbations to grow is narrower for systems
with longer transients. If we can assume that a system must
be finely tuned for its reactivity to lie within a narrow range
(and this would need to be proved on a case by case basis), then
we can say that systems with longer transients are more likely
to be reactive. More species-rich systems are able to reach higher
reactivities, assuming that species interactions do not weaken too
precipitously as the number of species increases. Furthermore, if
the dynamics near equilibrium are governed by a Jacobian with
only one large element and reproduction is pulsed (a discrete-
time model), then we can attribute the system’s reactivity to
whatever biological process is represented by the large element.
Finally, empirical data, while limited, does back up the findings
from the simulated food webs: reactivity is largely determined by
a food web’s average interaction strength. Indeed, the empirical
data shows this relationship for both discrete- and continuous-
time reactivity.

2. An introduction to reactivity

Let us first consider discrete time, so that

n(t + 1) = Jn(t). (1)

Here n typically represents a vector of perturbations from an
equilibrium and J correspondingly represents a Jacobian. The
largest factor by which the starting perturbation, n0, may initially
be amplified is

max
n0 6=0

‖n(t = 1)‖
‖n0‖

= max
n0 6=0

‖Jn0‖

‖n0‖
, (2)

where the maximum is over all starting vectors n0 and in the
absence of any further notation, ‖ · ‖ represents the 2-norm:√
n21 + n

2
2 + · · ·. Expression (2) is, by definition, ‖J‖, the 2-norm

of matrix J, which is in turn equal to the square root of the
largest eigenvalue of the conjugate transpose of J times J:

√
λ1(JĎJ)

(e.g.Meyer, 2000). Reactivity is ordinarily defined as themaximum
growth rate of n0, not its maximum finite growth rate, and so

reactivity = ln
(
max
n0 6=0

‖n(t = 1)‖
‖n0‖

)
= ln ‖J‖ (3)

(Caswell and Neubert, 2005).
Now consider continuous time, so that

dn
dt
= Jn(t), (4)

where again, J typically represents the Jacobian of some model
linearized about equilibrium. Reactivity is defined as themaximum
initial growth rate of the perturbation:

max
n0 6=0

1
‖n0‖

d‖n(t)‖
dt

∣∣∣∣
t=0
. (5)

It can be shown (e.g. in Neubert and Caswell, 1997) that

reactivity = λ1(H(J)), (6)

where H(J) = (J + JĎ)/2 is the Hermitian part of J and JĎ is the
conjugate transpose of J.
Note that if n represents actual population sizes instead
of a perturbation from equilibrium, then reactivity represents
the largest possible instantaneous growth rate. While this
is potentially interesting, the usual motivation for studying
reactivity is to predict transient surges or drops in response
to a perturbation—surges or drops that cannot be predicted by
traditional stability analysis. Therefore, I will focus my discussion
on cases where n represents a perturbation.

3. Lower bounds: reactivity and stability

3.1. Mathematics

Discrete time: The 2-norm of J is greater than or equal to the
spectral radius of J:

‖J‖ ≥ ρ(J), (7)

where spectral radius ρ(J) is the largest magnitude of the eigen-
values of J: maxi |λi| = maxi

√
Re λ2i + Im λ

2
i and where ‖J‖ =

ρ(J) if and only if J is normal, meaning that JĎJ = JJĎ. (A derivation
can be found in the Appendix.)
In the long run, after the transient dynamics have passed,

‖n‖(t + 1) ≈ ρ(J)‖n‖(t) (see, for example, Caswell, 2001, Sec.
4.5.2), so the logarithm of the spectral radius represents the
long-run growth rate of a perturbation away from equilibrium.
Inequality (7) therefore means that the closer the perturbation’s
long-run growth rate is to 0 (i.e., the closer ρ(J) is to 1), the
narrower the range of possible reactivities which would not result
in some perturbations growing initially. If we can assume that the
Jacobianwould have to be carefully adjusted for its norm to fall in a
narrowwindow (a proposition which seems reasonable but which
would need to be proven on a case by case basis), then we can say
that less stable systems aremore likely to have some perturbations
which grow initially.

Continuous time: The same conclusion is true in continuous
time. It can be shown that the smallest eigenvalue of H(J) is less
than or equal to the real parts of all of the eigenvalues of J, which
are less than or equal to the largest eigenvalue of H(J) (Hogben,
2007, ch. 14). In particular, then,

λ1(H(J)) ≥ Re λ1(J), (8)

with equality only when J is normal.
In the long run, after the transient dynamics have passed, ‖n‖

grows or shrinks as exp(Reλ1(J)t), and so once again, reactivity
is greater than or equal to the long-run growth rate of the
perturbation.

3.2. Biological implications

Mathematically, we have found that reactivity is at least as
large as the long-run growth rate of a perturbation away from
equilibrium. What implications does this have?
If the equilibrium is stable, then by definition, the long-run

growth rate of a perturbation is negative (i.e. ρ(J) must be <1
in discrete time and Reλ1 must be <0 in continuous time), and
therefore, the lower bound on reactivity is also negative. This
means that we can never use inequalities (7) or (8) to prove
that dynamics near a given stable equilibrium will be reactive.
However, the longer the system takes to return to equilibrium
(i.e. the closer ρ(J) is to 1 in discrete time or the closer Reλ1 is to 0
in continuous time), the less room there is for the dynamics not to
be reactive: the floor keeps rising.
We can say even more if J is normal. Recall that if J is normal,

then the reactivity is equal to the long-run growth rate. Thus, a
normal system can never be reactive around a stable equilibrium.
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4. Upper and lower bounds: reactivity and the size of matrix
elements

4.1. Mathematics

Discrete time: The Frobenius norm (‖J‖F ) provides both upper
and lower bounds for the 2-norm: for an n× nmatrix J,

1
√
n
‖J‖F ≤ ‖J‖ ≤ ‖J‖F , (9)

where the Frobenius norm is the square root of thematrix element
sum of squares:

‖J‖F =
√
Tr(JĎJ) =

√√√√ n∑
i,j=1

|Jij|2. (10)

(A derivation can be found in the Appendix.) Recall that in discrete
time, a system is reactive if ln ‖J‖ is positive, so we are interested
in the conditions under which ‖J‖ > 1. As the magnitude of any
matrix element increases, the Frobenius norm increases, and thus
so do the bounds enclosing reactivity. These bounds are not tight if
the number of species or stages, n, is large, but if there are only
two species or stages, ‖J‖ must lie within 70% to 100% of ‖J‖F .
This means that although reactivity need not increase with small
increases in the Frobenius norm, large increases in ‖J‖F will force
an increase in reactivity.
Even a single large matrix element can ensure large reactivity.

In the same way that one proves inequality (9), one can show that

‖J‖max ≤ ‖J‖ ≤ n‖J‖max, (11)

where ‖J‖max is simply the largest matrix element magnitude.
Note that when there is only a single large matrix element, ‖J‖F

is not much larger than ‖J‖max, and so the combination

‖J‖max ≤ ‖J‖ ≤ ‖J‖F (12)

can provide very tight bounds on reactivity.
It is important to realize that large matrix elements can

increase reactivity without changing stability. It is true that larger
matrix elements allow for larger dominant eigenvalues and so can
produce higher reactivity by making the system less stable: for
all eigenvalues λ of n × n matrix J, |λ| ≤ nmaxi,j |aij| (Hirsch
and Bendixson, 1902). However, it is also true that for a given
level of stability, increasingmatrix element size can induce greater
reactivity. For example,

J =
(
15.048 −14.098
14.548 −13.598

)
and B =

(
0.728 0.221
0.229 0.721

)
(13)

both have eigenvalues 0.95 and 0.5, but ‖J‖ = 28.666 (extremely
reactive) and ‖B‖ = 0.950 (non-reactive).

Continuous time: The Frobenius and max norms also provide
an upper bound to reactivity in continuous-time systems, though
not a lower bound. The solution to dndt = Jn is n(t) = exp(Jt)n0,
and so

λ1(H(J)) = max
‖n0‖6=0

1
‖n0‖

d‖n‖
dt

∣∣∣∣
t=0

= max
‖n0‖6=0

lim
t→0

1
‖n0‖

‖eJtn0‖ − ‖n0‖

t
. (14)

By definition, the maximum value of 1
‖n‖‖Bn‖ is ‖B‖, so that we

obtain

λ1(H(J)) = lim
t→0

1
t

(
‖eJt‖ − ‖I‖

)
. (15)
Taylor expanding the matrix exponential, we find λ1(H(J)) ≈
limt→0 1t (‖I+ Jt‖ − ‖I‖), and because the 2-norm is subadditive,

λ1(H(J)) ≤ lim
t→0

1
t
(‖I‖ + ‖Jt‖ − ‖I‖) = lim

t→0

1
t
‖Jt‖

= ‖J‖ ≤ ‖J‖F and n‖J‖max. (16)

I have been unable to find a lower bound for continuous time
reactivity that is tighter than Reλ1(J). Furthermore, examples
show that λ1(H(J)) can be orders of magnitude lower than ‖J‖F .
I suspect that increasing the size of matrix elements need not
increase reactivity in continuous time except via the effects this
may have on stability. While I cannot prove this, it makes intuitive
sense. Large Jacobian elements produce large changes in species or
stage growth rates. In continuous time, these large instantaneous
growth rates can be rapidly adjusted so that they don’t result in
large changes in population: the system can remain unreactive.
However, in discrete time, a large growth rate must produce large
changes in population and so the system must be reactive.

4.2. Biological implications

We have seen that increasing the sum of the squares of matrix
elements increases both an upper and lower bound on discrete-
time reactivity but only an upper bound on continuous-time
reactivity. Furthermore, if there is only one large matrix element,
then in discrete time, reactivity is roughly equal to the natural log
of this element. What does this mean biologically?
Jacobian elements represent the strength of the effect that one

population has on the per capita growth rate of another popula-
tion when both are near equilibrium. The effect of population 1 on
population 2 can be large because the per capita effect of popula-
tion 1 on population 2 is large (e.g. strong competitive effects, high
predation rate) or because population 1 is large at equilibrium, so
that a small per capita effect produces a large total effect. How-
ever, these effects are typically confounded: e.g. stronger density-
dependence will change the equilibrium sizes of the populations,
and a larger equilibriumpopulation sizewill change the strength of
density dependence. It is therefore difficult to say anything general
about what will produce large Jacobian elements.
However, increasing the number of species or life history stages

will increase the number of matrix elements, generally increasing
the sum of their squares. This increases the upper bound on
reactivity: more species-rich food webs have the capacity to be
more reactive. Of course, exceptions are possible. Suppose the
average magnitude of the Jacobian elements decreases with the
number of species, n. If the average magnitude decreases faster
than 1/

√
n, then the average sum of squares decreases as we

increase the number of species, reducing the capacity of the system
to be reactive.
What else can we glean from the mathematics? If we do know

the values of the Jacobian elements and there is only one large
element and reproduction is pulsed, then the bounds presented in
the previous subsection continue to provide insight, even though
we can calculate reactivity directly. As discussed in the previous
subsection, if there is only one large matrix element, then the
upper and lower bounds in Eq. (12) are very close together, so that
reactivity is approximately equal to the log of the large element.
This means that the system’s reactivity is caused by whatever
biological process is represented by this element.

5. The role of non-normality (and one more upper bound)

A linear system cannot be reactive unless it is non-normal (Tre-
fethen et al., 1993; Caswell and Neubert, 2005; Schmid, 2007). Un-
derstanding why this is the case provides insight, even though
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normality cannot be determined by inspection and there is no easy
biological interpretation of normality.
First, let us verify mathematically that non-normality is

necessary. We can rewrite J as E3E−1, where 3 is a diagonal
matrix containing the eigenvalues of J and the columns of E are the
respective eigenvectors. Because the 2-norm is submultiplicative,

‖J‖ ≤ ‖E‖‖3‖‖E−1‖. (17)

The norm of 3 is the absolute value of its largest eigenvalue,
|λ1(J)| = ρ(J), and‖E‖‖E−1‖ is the conditionnumber ofE, denoted
by κ(E), so

‖J‖ ≤ κ(E)ρ(J). (18)

We recall from the previous section that λ1(H(J)) ≤ ‖J‖, so for
both discrete and continuous time, reactivity is less than or equal
to κ(E)ρ(J).
Given appropriately normalized eigenvectors, the condition

number κ(E) is 1 when the eigenvectors are orthogonal – i.e. if J is
normal – and becomes large as the eigenvectors of J become more
nearly parallel – i.e. as J becomes less normal. To understand this,
note that if J has parallel eigenvectors, then det E = 0 and ‖E−1‖
is infinite. If J has nearly parallel eigenvectors, then det E is small
and ‖E−1‖ is very large.
How, on an intuitive level, can non-normality cause a system

to be reactive? Consider Fig. 1, inspired by the excellent treatment
in Schmid (2007). For both the normal matrix and the non-normal
matrix, we suppose that n(t) = λt1w1 − λ

t
2w2 and that λ2 < λ1

< 1. When w1 and w2 are orthogonal, n(t) shrinks as λt1w1 and
λt2w2 shrink, but when w2 is partially aligned with w1, then the
fact that λt2w2 shrinks faster than λ

t
1w1 means that n(t) initially

becomes longer, even though it must ultimately approach zero.

6. How strict are the bounds?

6.1. Mathematics

How strict are these bounds in practice? In particular, what
might we expect for the sorts of random matrices used to model
food webs?
The ideal situation might be to simulate community assembly,

as in Law andMorton (1996); however, such an approach becomes
computationally intensive quickly. Instead, I have used variants of
the oft-studied Lotka–Volterra cascade model (Cohen et al., 1990),
in which

dni
dt
= ni

(
ri +

∑
j

aijnj

)
, i = 1, . . . , n. (19)

The sign of aij determines whether an increase in species j has a
negative or a positive effect on species iwhile ri represents species
i’s intrinsic growth rate. This model has Jacobian elements

Jij = aijn∗i , (20)

where n∗i is the equilibrium population of species i. Note that the
Jacobian is independent of the ri, which can be chosen however
we wish. By choosing the equilibrium populations from a uniform
distribution from 0 to 10, we can ensure that all species have
positive equilibrium populations. There is no way to guarantee
stability. For the figures in this section, I rejected any matrix that
did not represent a stable system.
I have considered two patterns of species interaction (hierar-

chical and random interaction) and two patterns of connectivity
(random and compartmentalized). Connectivity type determines
whether species will affect each other. With random connectivity,
aij is nonzero with probability c and zero otherwise. In the com-
partmentalized version, the n species are divided into equal sized
compartments. Species interact with all other species in their com-
partment, but there are no interactions between compartments.
The Jacobian thus consists of nonzero submatrices along the diag-
onal.
Interaction type determines how species will affect each other,

if they do affect each other. With hierarchical interactions, low-
ranked species have a positive effect on high-ranked species and
high-ranked species have a negative effect on low-ranked species:
nonzero interaction elements aij are uniformly distributed be-
tween −g and 0 if i ≤ j and between 0 and g if i > j. With ran-
dom interactions, nonzero elements aij are uniformly distributed
between−g and g , regardless of species labels.
I find that the upper bound provided by the Frobenius norm

(Eqs. (9) and (16)) is almost always stricter than the upper bounds
provided by the degree of non-normality (Eq. (18)) or the max-
imum element size (Eq. (11)). For continuous-time systems, the
only lower bound is given by stability (Eq. (8)), a rather weak
bound. However, for discrete-time systems, the Frobenius norm or
the maximum element size give stronger lower bounds. Thus, for
continuous time systems, the tightest bounds are given by Reλ1(J)
≤ reactivity ≤ ‖J‖F (Eqs. (8) and (16)), while for discrete time
systems, max

(
ln
(
‖J‖F√
n

)
, ln(max(|Jij|))

)
≤ reactivity ≤ ln(‖J‖F )

(Eqs. (9) and (11)). (Of these, ln(max(|Jij|)) tends to be the tighter
lower bound for largematriceswith a few strong interactions— i.e.
typical empirical food webs.) Let us now focus on how strict these
bounds are.
Results for the random interaction models are shown in Fig. 2.

The hierarchical interaction models show very similar results,
which can be found in the electronic supplement. Regardless of
connectivity or interaction patterns, discrete time reactivity hovers
in the top half of its allowed range. Continuous time reactivity, on
the other hand, is always in the bottomhalf of its range. Theremust
be exceptions to these patterns, for we know that normal matrices
cannot be reactive. However, there aremanymoreways to be non-
normal than normal, especially as the number of species increases,
and it’s difficult to imagine any biological reason that a Jacobian
should be normal.
Both upper and lower bounds for discrete time reactivity

increase with Jacobian element size, so the fact that reactivity
roughly tracks the movement of these bounds as element size
increases suggests that reactivitymay increasewithmean element
size in discrete time. Plotting reactivity against mean element size
indeed shows a strong positive relationship (Fig. 3). We note again
the absence of a relationship between reactivity and connectivity
or compartmentalization, save for the fact that more connected
food webs have a higher mean element size.
The lower bound on continuous time reactivity is not related

to Jacobian element size, so the fact that reactivity hovers in the
lower half of its possible range as element size changes does not
necessarily mean that element size determines continuous-time
reactivity. Fig. 3 confirms that there is no discernable relationship
between mean element size and continuous time reactivity.

6.2. Biological implications

To what degree do real food webs follow these patterns?
Parameterizing food webs is difficult, but the data that we have
is consistent with the simulations: reactivity is near the top of
its possible range for discrete time and near the bottom of its
possible range for continuous time (Fig. 4). We also see a strong
relationship between interaction strength (mean element size) and
reactivity for both discrete and continuous-time reactivity (Fig. 5).
It is not clear why the continuous time reactivity is so tightly
connected to mean element size for the empirical data but not for
the simulations.
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t = 0 t = 1 t = 2

(a) Normal. (b) Non-normal.

Fig. 1. Transient dynamics in normal and non-normal systems. The dashed vector is equal to the dominant eigenvector, w1 , minus the subdominant eigenvector, w2 . For
every time step, each eigenvector is multiplied by its eigenvalue, where λ2 < λ1 < 1. In the normal system, the eigenvectors are orthogonal and the dashed vector shrinks
monotonically. In the non-normal system, the eigenvectors are not orthogonal, and the dashed vector grows initially.
(a) Discrete time. (b) Continuous time.

Fig. 2. Reactivity as a proportion of the distance from the lower bound (l.b.) to the upper bound (u.b.) for the random interactions foodwebmodels: (reactivity−l.b.)/(u.b.−
l.b.). For discrete time systems, l.b. = max

(
ln
(
‖J‖F√
n

)
, ln(max(|Jij|))

)
and u.b. = ln(‖J‖F ) (Eqs. (9) and (11)). For continuous time systems, l.b. = Reλ1(J) and u.b. = ‖J‖F

(Eqs. (8) and (16)). Maximum interaction strength g = 2. I use only 4 species, as finding stable systems with more than 4 species become computationally prohibitive when
the food web is 100% connected.
(a) Discrete time. (b) Continuous time.

Fig. 3. Reactivity vs. mean Jacobian element size for the random interactions food web models, maximum interaction strength g = 2.
These results suggest that reactivity is strongly influenced by
interaction strength and but not by food web topology. This is in
stark contrast to other food web properties such as stability (May,
1972; Lawler, 1980), robustness to extinctions (Dunne et al.,
2002; Allesina and Bodini, 2004), and the quality of ecosystem
services (Montoya et al., 2003), all of which depend strongly on
food web topology.

7. Discussion

Mathematical summary: In summary, we have found that
less stable systems have a narrower range of negative reactivities.
(Mathematically, reactivity is bounded from below by a pertur-
bation’s long-run growth rate.) If it is true that the system must
be carefully tuned for its reactivity to lie within a narrow range
(a propositionwhichmust be proven case by case), then less stable
systems are more likely to be reactive. Continuous-time systems
with large Jacobian elements have a greater capacity to be reac-
tive. (Upper bounds on reactivity increase.) Discrete-time systems
with large Jacobian elements are more likely to be reactive, in the
sense that increasing element size causes upper and lower bounds
on reactivity to increase, and having sufficiently large Jacobian ele-
ments can force a system to be reactive. For discrete time, reactivity
increases with mean element size and remains in the upper half of
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(a) Discrete time. (b) Continuous time.

Fig. 4. Reactivity as a proportion of the distance from lower bound to upper bound for empirically parameterized food webs: (reactivity − l.b.)/(u.b. − l.b.). Bounds are
as in Fig. 2. Data sources: i1 and i2: (Ives et al., 1999); sch: (Schmitz, 1997); v: (Vandermeer, 1969); ss1 and ss2: (Seifert and Seifert, 1976); cp, lc, li, hc, hn, k1, k2: (de Ruiter
et al., 1998). These are continuous-time systems; the discrete-time reactivity is provided for comparison with the stochastic models.
(a) Discrete time. (b) Continuous time.

Fig. 5. Reactivity vs mean Jacobian element size. Data sources: i1 and i2: (Ives et al., 1999); sch: (Schmitz, 1997); v: (Vandermeer, 1969); ss1 and ss2: (Seifert and Seifert,
1976); cp, lc, li, hc, hn, k1, k2: (de Ruiter et al., 1998). These are continuous-time systems; the discrete-time reactivity is provided for comparison with the stochastic models.
its possible range. For continuous time, reactivity has no clear re-
lationship with mean element size but remains within the lower
half of its range. In neither case does reactivity appear to be in-
fluenced by matrix structure, save that more connected networks
(represented by matrices with fewer nonzero elements) typically
have a larger mean element size. If there is only one large Jacobian
element, the upper and lower bounds in Eq. (12) are very close, so
that reactivity is approximately equal to the log of the large Jaco-
bian element. Finally, Jacobiansmust be non-normal to be reactive.
These statements begin to paint an intuitive picture of

reactivity. Perturbations are more likely to grow initially if the
forces that bring populations back to equilibrium are weak. It is
as though the system were tethered to equilibrium by a weak
rubber band, and flicking the system away from equilibriumwould
cause it to go on a large excursion before the rubber band could
pull it back in. Perturbations grow initially because small changes
in one species or stage produce large changes in the growth of
another species or stage. (I.e., there are large Jacobian elements.)
If reproduction is continuous, these instantaneously large growth
rates might be rapidly adjusted, so that the system may yet be
unreactive. If reproduction comes in yearly pulses, however, a large
growth rate must produce a large change in population, and so
the system must be reactive. Finally, eigenvectors must be non-
orthogonal for a system to be reactive — Fig. 1 explains this more
succinctly than can be done in words.

Biological summary: These mathematical statements have
several biological consequences. Systems with long transients
have a narrower range of possible negative reactivities, so that
unless reactivity is increasingly squeezed toward its lower bound,
systems are more likely to be reactive as they become less
stable. More species-rich systems can reach larger reactivities.
If reproduction is pulsed, adding species can force an increase
in reactivity.1 If reproduction is pulsed and there is only one
large Jacobian element, we can attribute the system’s reactivity
to whatever biological process is represented by that element.
Finally, it appears that in discrete time, reactivity is determined
largely by mean interaction strength and not by food web
topology. Simulations suggest that in continuous time, reactivity
is determined by neither mean interaction strength nor food web
topology, although the limited empirical data available shows a
strong positive relationship with interaction strength for discrete-
and continuous-time reactivity.
This work may be particularly useful in understanding the

expected behavior of stochastic food webs. From the time of
May’s initial papers on random food webs (May, 1972, 1973) to
more sophisticated current models, stochastic food webs have
been used to understand how generic structural properties of food
webs influence their dynamics. For example, two recent studies

1 These predictions about species richness are true if species interactions do not
weaken too rapidly as the number of species is increased — specifically, if the
average Jacobian element magnitude does not decrease faster than 1/

√
n, where

n is the number of species.
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of stochastic competitive food webs (negative interactions only)
have shown that the expected reactivity (Chen and Cohen, 2001)
and the expected probability of reactivity (Chen and Cohen, 2001;
Rozdilsky et al., 2004) increase with the number of species in the
food web. Increasing the number of species increases the food
web’s capacity for reactivity, so this behavior is expected.
Finally, readers are reminded that this paper presents bounds,

not estimates. It is a complement to, not a substitute for, other
recent papers on reactivity. If the Jacobian is known, one should
simply calculate reactivity, as in Neubert and Caswell (1997) and
Caswell and Neubert (2005). Likewise, to understand the effects
of small parameter changes on reactivity, it is best to use the
sensitivity calculations presented in Caswell (2007) and Verdy and
Caswell (2008). What this paper provides is intuition and a way
to think about how reactivity may behave when the Jacobian’s
numerical values cannot be known (as in stochastic models).

Acknowledgments

I thank Stefano Allesina, Jeremy Fox, Parviez Hosseini, and
Ariane Verdy for helpful comments. Thanks to Peter de Ruiter for
sharing his soil food web data.

Appendix A. Derivations

Derivation of Eqs. (7), (18): Rewrite J as E3E−1, where 3 is a
diagonal matrix containing the eigenvalues of J and the columns of
E are the respective eigenvectors. Because matrix norms are sub-
multiplicative, ‖J‖ ≤ ‖E‖‖3‖‖E−1‖. The norm of a diagonal ma-
trix is the largest magnitude of its eigenvalues, so ‖3‖ = ρ(J).
If J is normal, then it can be diagonalized by a unitary matrix, so
that ‖E‖ = ‖E−1‖ = 1. If J is not normal, then ‖E‖‖E−1‖ is
greater than 1. (To see this, note that ‖E‖‖E−1‖ can be written as
σmax(E)/σmin(E), where σmax(E) and σmin(E) are themaximumand
minimum singular values of E.)

Derivation of Eq. (9): This derivation follows the outline given
in Meyer (2000, ch. 5). Let SnF be the set of all n× nmatrices B such
that ‖B‖F = 1 and let µ = minB∈SnF ‖B‖ > 0. We can write

‖J‖ = ‖J‖F
‖J‖
‖J‖F
= ‖J‖F

∣∣∣∣∣∣∣∣ J
‖J‖F

∣∣∣∣∣∣∣∣ . (21)

However, J/‖J‖F ∈ SnF , so ‖J‖ ≥ ‖J‖F µ. What is µ? If J ∈ S
n
F , then

‖J‖F = Tr(JĎJ) =
∑n
j=1 λj(J

ĎJ) = 1. Thus, µ is the smallest value
of ‖J‖ =

√
λ1(JĎJ) such that

∑n
j=1 λj(J

ĎJ) = 1. Because λj ≤ λ1,
λ1 is smallest if all eigenvalues equal 1/n, so that µ = 1/

√
n and

‖J‖ ≥ ‖J‖F/
√
n.

By a similar argument,

‖J‖ = ‖J‖F

∣∣∣∣∣∣∣∣ J
‖J‖F

∣∣∣∣∣∣∣∣ ≤ ‖J‖F maxB∈SnF
‖B‖. (22)

The eigenvalues of BĎB (i.e. the singular values of B) must be non-
negative, so that if the trace of BĎB is held at 1, then λ1(BĎB) is
largest when λ1 = 1 and λj6=1 = 0. Thus maxB∈SnF ‖B‖ = 1 and
‖J‖ ≤ ‖J‖F .

Appendix B. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at doi:10.1016/j.tpb.2010.03.004.
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