SOM
Block 3 – Class of 2021
Cleveland health Sciences Library
http://case.edu/chsl/library/index.html
From CHSL's homepage (http://case.edu/chsl/library/index.html)

- PubMed
- or

- All the university holdings are attached to this URL.
- Be sure you are authenticated at CWRU.
PubMed

Look for Clinical Queries

In the Search Box, enter osteogenesis imperfecta. Click SEARCH.
Clinical Queries – look for MEDICAL GENETICS

Click on SEE ALL.
PubMed Results – Using filters

From the filters, click on Show Additional Filters, choose Journal Categories.
Notice the citation with PMID:28323993

Choose Core Clinical Journals.
Find Related Data

From the drop down on the right, choose OMIM and then choose OMIM (calculated) and click on Find items.
Osteogenesis Imperfecta from OMIM
Electronic Books from CHSL (in a new tab)

Choose LWW Health Library.
Look for Collagen Structure

Choose the first entry.
Collagen is the most abundant protein in the human body. A typical collagen molecule is a long, rigid structure in which three polypeptides (referred to as α-chains) are wound around one another in a rope-like triple helix (Fig. 4.1). Although these molecules are found throughout the body, their types and organization are dictated by the structural role collagen plays in particular organs. In some tissues, collagen may be dispersed as a gel that gives support to the structure, as in the ECM of the vitreous humor of the eye. In other tissues, collagen may be bundled in tight, parallel fibers that provide great strength, as in tendons. In the cornea of the eye, collagen is stacked so as to transmit light with a minimum of scattering. Collagen of bone occurs as fibers arranged in an angle to each other so as to resist mechanical shear from any direction.

Types

The collagen superfamily of proteins includes >25 collagen types as well as additional proteins that have collagen-like domains. The three polypeptide α-chains are held together by interchain hydrogen bonds. Variations in the amino acid sequence of the α-chains result in structural components that are about the same size (~1,000 amino acids long) but with slightly different properties. These α-chains are combined to form the various types of collagen found in the tissues. For example, the most common collagen type I, contains two chains called α1 and one chain called α2(1), whereas type II collagen contains three α1 chains (α1(1)), The collagens can be organized into three groups, based on their location and function in the body (Fig. 4.2).
Go back to the PubMed tab....

From the drop down box, choose BioSystems and look for Glucagon.

On the right, choose Kegg.
Glucagon in BioSystems
Glucagon Signaling Pathway
Cleveland Health Sciences Library
(http://case.edu/chsl/library/index.html)

• hclref@case.edu
• 216-368-3218