Textile electrodes woven by carbon nanotube–graphene hybrid fibers for flexible electrochemical capacitors†

Huhu Cheng, a Zelin Dong, a Chuangang Hu, a Yang Zhao, a Yue Hu, a Liangti Qu, a Nan Chen a and Liming Dai a,b

Functional graphene-based fibers are promising as new types of flexible building blocks for the construction of wearable architectures and devices. Unique one-dimensional (1D) carbon nanotubes (CNTs) and 2D graphene (CNT/G) hybrid fibers with a large surface area and high electrical conductivity have been achieved by pre-intercalating graphene fibers with Fe3O4 nanoparticles for subsequent CVD growth of CNTs. The CNT/G hybrid fibers can be further woven into textile electrodes for the construction of flexible supercapacitors with a high tolerance to the repeated bending cycles. Various other applications, such as catalysis, separation, and adsorption, can be envisioned for the CNT/G hybrid fibers.

1 Introduction

Graphene with a two dimensional (2D) carbon nanostructure has fascinating properties, including giant electron mobility, large surface area, high mechanical, thermal and chemical stability. As a consequence, many attempts have been made to integrate the unique properties of the individual graphene sheets into useful 1D fibers, 2D films and 3D graphene ensembles for practical applications. Some breakthroughs have recently been made for the fabrication of 1D macroscopic graphene fibers (GFs) via wet-spinning by several groups, and through hydrothermal strategy by us. The resultant GFs are light-weight, highly flexible, and electro-conductive. Due to the strong π–π stacking interaction between individual graphene sheets, however, the unique 2D feature such as the initial large surface area of graphene sheets would be drastically lost during the manufacturing process, which largely limits their applications in certain devices that specifically require large surface areas (e.g., supercapacitors).

As a member of the carbon family, 1D carbon nanotubes (CNTs) also possess unique properties. Recent studies demonstrate that hybrid materials of the 2D graphene sheets and 1D CNTs can exhibit synergistic effects to show greatly improved electrical, thermal conductivity and mechanical flexibility compared with each of the single constituent components. So far, some of such 2D and 3D hybrid structures have been fabricated as transparent conductors and electrode materials for supercapacitors. However, the fabrication of 1D macroscopic CNT/graphene (CNT/G) hybrid fibers has been much less discussed, though they are promising as new types of flexible building blocks for the construction of wearable architectures and devices. By solution spinning of graphene and CNTs with poly(vinyl alcohol) (PVA), Min et al. have recently produced hybrid fibers with much increased toughness. However, the high surface area and conductivity intrinsically associated with graphene and CNTs have been significantly reduced by the presence of the intercalated polymers.

Electrochemical capacitors (ECs) have attracted much attention because of their high power density, long cycle life, and high charge-storage efficiency. Of particular interest is the development of lightweight, flexible supercapacitors that have high capacitance performances even under mechanical deformation. We have recently demonstrated extremely high capacitances for 3D graphene structures with highly exposed graphene planar surfaces, and highly compression-tolerant supercapacitors for graphene-based foam electrodes. In this study, we have developed a flexible EC with textile electrodes made from CNT/G hybrid fibers of large surface area and high flexibility. The CNT/G hybrid fibers were fabricated by directly growing CNTs along graphene fibers with embedded Fe3O4 nanoparticles as catalysts for chemical vapor deposition (CVD) of the nanotubes.

2 Experimental

2.1 Preparation of CNT/G fibers

A graphene oxide (GO) suspension was prepared by a modified Hummers method as reported in our previous papers. The Fe3O4-containing graphene (G/Fe3O4) fiber was obtained by thermally treating the mixture of 8 mg ml−1 GO and Fe3O4...
nanoparticles (20 nm, Aladdin Chemistry Co. Ltd) in a closed glass pipeline48 (Fig. 1). The weight ratio of GO suspension/Fe$_3$O$_4$ is 4 : 1. Then, we transfer the G/Fe$_3$O$_4$ fiber into a CVD chamber for the CNT growth. The fabrication of the CNT/G fiber was carried out at 750 °C under a flow of C$_2$H$_2$/H$_2$/Argon (5 sccm/150 sccm/800 sccm) for 15 min.

2.2 Preparation of a flexible supercapacitor

The textile electrodes were fabricated by pre-weaving the G/Fe$_3$O$_4$ fibers, followed by the CVD process as mentioned above. Thin polyethylene terephthalate (PET) films coated with an Au layer were used as supporting substrates and current collectors. The separator is a filter paper soaked with 1 M Na$_2$SO$_4$ aqueous electrolyte.

2.3 Characterization

The morphology of the samples was examined by scanning electron microscopy (SEM, JSM-7001F) and transmission electron microscopy (TEM, JEM-2010) electron microscopies. The X-ray energy disperse spectra (EDS) of the samples were taken on a JSM-7001F SEM unit. The Raman spectra were measured under ambient conditions using a Renishaw microRaman spectroscopy system with a 514.5 nm argon-ion laser. The X-ray diffraction (XRD) patterns were obtained by using a Netherlands 1710 diffractometer with a Cu Kα irradiation source (λ = 1.54 Å). The electrical conductivity of the CNT/G fiber was measured by using a four-probe resistance tester (Model ST2258A, Suzhou, China). A mechanical property tester was conducted with a 4-probe electrical conductivity test (SHIMADZU). The strain rate for one centimeter gauge length is 0.2 mm min$^{-1}$ with a preload of 0.5 N. Cyclic voltammetry (CV) and galvanostatic charge-discharge curves were recorded using a CHI 660D electrochemical workstation.

3 Results and discussion

Fig. 1 schematically shows the process for fabricating CNT/G fibers. Briefly, the aqueous GO suspension (8 mg ml$^{-1}$) was well mixed with Fe$_3$O$_4$ nanoparticles under ultrasonication, followed by a hydrothermal process within glass pipelines according to our previous report.49 Graphene/Fe$_3$O$_4$ (G/Fe$_3$O$_4$) fibers were collected after being released from the pipelines, which were then treated through the CVD process for direct growth of CNTs along graphene fibers.

Just like the pristine graphene fibers,38 the as-prepared G/Fe$_3$O$_4$ fiber (Fig. 2a, left) has a uniform diameter of ~34 μm (Fig. 2b) and is composed of densely packed graphene sheets (Fig. 2b and c). A high-magnification cross-sectional SEM image of the G/Fe$_3$O$_4$ fiber reveals the intercalation of Fe$_3$O$_4$ nanoparticles within graphene sheets (Fig. 2d). O and Fe elemental mappings (Fig. 2f and g) are consistent with the C mapping (Fig. 2e) determined by EDS, indicating the uniform distribution of Fe$_3$O$_4$ along the graphene fiber.

The CNT/G fiber was prepared by the CVD process carried out at 750 °C under a flow of C$_2$H$_2$/H$_2$/Argon (5 sccm/150 sccm/800 sccm) for 15 min, which almost maintained the initial length of the G/Fe$_3$O$_4$ fiber (Fig. 2a, right), while its diameter increased significantly. Fig. 2h exhibits a CNT/G fiber with a diameter of 100 μm, about three times that of the G/Fe$_3$O$_4$ fiber.

3.1 Characterization

The CNT/G fiber was composed of highly entangled CNTs (Fig. 2i) and is close to the theoretical specific surface area of the G/Fe$_3$O$_4$ fiber (Fig. 2j) with a four-probe electrical conductivity of about 12 S cm$^{-1}$ at room temperature, which is also slightly higher than that of graphene fiber (ca. 10 S cm$^{-1}$), probably attributable to the highly entangled CNTs within fibers and efficient electric transport between graphene sheets and CNTs.10,20,22

Despite the difficulty in observing the graphene sheets by SEM, Fig. 2b–k due to the dense growth of CNTs, the hybrid structure of CNTs with graphene sheets was confirmed by TEM imaging (Fig. 3a and b). The inset in Fig. 3b shows the typical electron diffraction pattern of a highly crystalline graphene sheet. The multiwalled graphitic layers are clearly observed in the high-resolution TEM image of the grown CNT in Fig. 3c. Since the Fe$_3$O$_4$ nanoparticles were pre-anchored on the graphene sheets during the synthesis of the G/Fe$_3$O$_4$ fiber, it seems that the CNTs grow out from the nucleation catalysts distributing along the graphene planar sheets (Fig. 3d). The enlarged view of the nucleation site is presented in the inset of Fig. 3d, which displays the metal core surrounded by graphitic layers. The catalyst is not removed after the growth of CNTs, which has a low content of less than 2 wt% within G/CNT fibers (Fig. S1 in

20 S. Yin, D. Yuan, F. Li, H. Guo, Y. Li, L. Cao, H. Jia, R. Wang, ACS Appl. Mater. Interfaces, 2016, 8, 21378.

ESI†). The catalyst was enwrapped in the carbon shells (Fig. 3d, inset), which may have contributed to the capacitance.

Fig. 4c shows the Raman spectrum of a CNT/G fiber in comparison with a pure graphene fiber (Fig. 4a) and a G/Fe₃O₄ fiber (Fig. 4b). As can be seen, all of them exhibit the typical D and G bands. Both the graphene fiber (Fig. 4a) and the G/Fe₃O₄ fiber (Fig. 4b) derived from hydrothermally reduced graphene oxides show a relatively high D band with an intensity ratio (I_D/I_G) of ca. 0.9, which is much larger than the corresponding value of 0.39 for the CNT/G fiber (Fig. 4c). The relatively strong G band seen in Fig. 4c indicates a highly graphitic crystalline structure for the CNT/G fiber.

Fig. 5 represents the XRD patterns of a graphene fiber, G/Fe₃O₄ fiber, and CNT/G fiber, respectively. As can be seen, the graphene fiber has a diffraction peak at 2θ = 25° assigned to the (002) plane of stacked graphene sheets.⁶ Apart from the typical peak at 2θ = 25°, the G/Fe₃O₄ fiber exhibits a series of distinct diffraction peaks positioned at ca. 30.4°, 35.7°, 43.5°, 53.7°, 57.3° and 63° corresponding to the (220), (311), (400), (422), (511) and (440) planes of the intercalated Fe₃O₄ nanoparticles.
In contrast, most of the diffraction peaks associated with Fe$_3$O$_4$ largely disappeared and the graphene peak at ca. 25° was drastically suppressed for the sample of CNT/G fiber (Fig. 5c). The peak at 26.1° corresponds to the (002) interplanar spacing between the CNT walls. The other CNT characteristic peaks at 2θ = ca. 42.7° and 54° correspond to the (100) and (004) reflection, respectively. On the other hand, the crystalline phase of Fe residue is represented by a strong (110) reflection at ca. 43.7° with an additional peak at 51.1°. The remaining peaks at ca. 44.8° and 48° are presumably related to the iron carbide associated with the resultant CNTs. These results indicate that the initially intercalated Fe$_3$O$_4$ nanoparticles within the graphene fibers have been reduced into Fe nanoparticles by the H$_2$ flow during the CVD process for the CNT growth (Fig. 3).

Having performed the structural characterization, we further investigated the cyclic voltammetry (CV) response of a single CNT/G fiber as the working electrode. A Pt wire and Ag/AgCl (3 M KCl) were used as the counter and reference electrodes, respectively. The electrolyte was 1 M Na$_2$SO$_4$ aqueous solution. As shown in Fig. 6a, the CNT/G fiber electrode exhibited rectangular CV curves, showing ideal capacitive behavior within the measured scan rates from 10 to 500 mV s$^{-1}$ probably due to the fast ion transportation resulting from the high conductivity and high specific surface area of the CNT/G fiber.

Efficient ion adsorption/desorption on the CNT/G fiber was also evidenced by the linear relationship of the discharge current densities with the scan rates over 10–500 mV s$^{-1}$ (Fig. 6b). In contrast, the pure graphene fiber exhibited the compressed current–voltage cycles with increased scan rates (Fig. S2†), indicating the ineffective ion transport through the neat graphene fiber. The galvanostatic charge–discharge curves at a current density of 10–200 µA cm$^{-2}$ of the CNT/G fiber are shown in Fig. 6c. The fiber surface area (A) can be estimated from $A = 2\pi rL$, where r is the fiber radius and L is the fiber length. Based on the fiber surface area, the specific capacitance (C_s) calculated by using the slope of the discharge curves with different current densities is between 1.2 and 1.3 mF cm$^{-2}$, indicating the stable capacitance performance. These results show that the CNT and graphene hybrid microfibers with a large specific surface area greatly facilitate the rapid transport of electrolyte ions within the electrode material to show the improved electrochemical properties.

To explore the application of CNT/G fibers in flexible and wearable electronic devices, we fabricated the textile electrodes woven from CNT/G fibers. Due to the rough surface of the...
The capacitance was calculated by using the slope of the discharge curves to be about 0.74 mF cm\(^{-2}\) at a current density of 10 \(\mu\)A cm\(^{-2}\), which is similar to that tested in a voltage range of 0–0.6 V. Accordingly, the weight-specific capacitances were determined to be about 200.4 F g\(^{-1}\) by use of the equations reported previously,\(^{45–48}\) which is even higher than those of some typical graphene-based and CNT-based supercapacitors (Table S1).\(^{45–48}\)

The textile supercapacitors have similar CV curves in both the bending and flat states (Fig. 9c). A long-term bending cycle test on this textile supercapacitor showed an initial decrease in the capacitance, which then leveled off at a stable value of ca. 0.4 mF cm\(^{-2}\) after 1000 cycles (Fig. 9d). With the increase of the discharge curves to be about 0.98 mF cm\(^{-2}\) at a current density of 20 \(\mu\)A cm\(^{-2}\), which is similar to that tested in a voltage range of 0–0.6 V. Accordingly, the weight-specific capacitances were determined to be about 200.4 F g\(^{-1}\) by use of the equations reported previously,\(^{45–48}\) which is even higher than those of some typical graphene-based and CNT-based supercapacitors (Table S1).\(^{45–48}\)

The textile supercapacitors have similar CV curves in both the bending and flat states (Fig. 9c). A long-term bending cycle test on this textile supercapacitor showed an initial decrease in the capacitance, which then leveled off at a stable value of ca. 0.4 mF cm\(^{-2}\) after 1000 cycles (Fig. 9d). With the increase of the
discharge curves to be about 0.98 mF cm\(^{-2}\) at a current density of 20 \(\mu\)A cm\(^{-2}\), which is similar to that tested in a voltage range of 0–0.6 V. Accordingly, the weight-specific capacitances were determined to be about 200.4 F g\(^{-1}\) by use of the equations reported previously,\(^{45–48}\) which is even higher than those of some typical graphene-based and CNT-based supercapacitors (Table S1).\(^{45–48}\)

The textile supercapacitors have similar CV curves in both the bending and flat states (Fig. 9c). A long-term bending cycle test on this textile supercapacitor showed an initial decrease in the capacitance, which then leveled off at a stable value of ca. 0.4 mF cm\(^{-2}\) after 1000 cycles (Fig. 9d). With the increase of the
discharge curves to be about 0.98 mF cm\(^{-2}\) at a current density of 20 \(\mu\)A cm\(^{-2}\), which is similar to that tested in a voltage range of 0–0.6 V. Accordingly, the weight-specific capacitances were determined to be about 200.4 F g\(^{-1}\) by use of the equations reported previously,\(^{45–48}\) which is even higher than those of some typical graphene-based and CNT-based supercapacitors (Table S1).\(^{45–48}\)

The textile supercapacitors have similar CV curves in both the bending and flat states (Fig. 9c). A long-term bending cycle test on this textile supercapacitor showed an initial decrease in the capacitance, which then leveled off at a stable value of ca. 0.4 mF cm\(^{-2}\) after 1000 cycles (Fig. 9d). With the increase of the
discharge curves to be about 0.98 mF cm\(^{-2}\) at a current density of 20 \(\mu\)A cm\(^{-2}\), which is similar to that tested in a voltage range of 0–0.6 V. Accordingly, the weight-specific capacitances were determined to be about 200.4 F g\(^{-1}\) by use of the equations reported previously,\(^{45–48}\) which is even higher than those of some typical graphene-based and CNT-based supercapacitors (Table S1).\(^{45–48}\)

The textile supercapacitors have similar CV curves in both the bending and flat states (Fig. 9c). A long-term bending cycle test on this textile supercapacitor showed an initial decrease in the capacitance, which then leveled off at a stable value of ca. 0.4 mF cm\(^{-2}\) after 1000 cycles (Fig. 9d). With the increase of the
repeated flat-to-bending cycles, the rectangular CV curves shrink gradually and finally stabilize after about 200 bending cycles (Fig. S4†), which is consistent with the capacitance variation in Fig. 9d. The initial capacitance drop could also be explained by the fact that the CNT/G fiber has the increased resistance during the early stage bending process, most probably due to the deformation of the CNT/G fiber (Fig. S5†). The increased resistance could reduce the capacitive performance to some extent.

4 Conclusions

In summary, we have fabricated the new CNT/G hybrid fibers with a high surface area and electrical conductivity by pre-intercalating Fe$_3$O$_4$ nanoparticles into graphene fibers for subsequent CVD growth of CNTs. A flexible textile of CNT/G fibers was also prepared and used as electrodes for the construction of flexible supercapacitors. Apart from the textile supercapacitors demonstrated in this study, the CNT/G hybrid fibers could find many more applications in different fields, including catalysis, separation, and adsorption.

Acknowledgements

This work was supported by the National Basic Research Program of China (2011CB103000), NSFC (21004006, 21174019 and 51161120361), Fok Ying Tong Education Foundation (131043), the 111 Project B07012, NCET-10-0047, SRF for ROCS, SEM (20100732002), research foundation for the doctoral program of higher education of China (20101101120036), NSFC-NSF (1106160) and AFSOR (FA9550-12-1-0037).

Notes and references

1 A. K. Geim and K. S. Novoselov, Nat. Mater., 2007, 6, 183.

