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Abstract
The recent progress and future development of cathode materials for lithium ion batteries have
been critically reviewed in this article. We have given some critical opinions and rational ideas
regarding the development of cathode materials to dramatically reduce the cost and increase
the efficiency of future lithium ion batteries, which will revolutionize the way for transporta-
tion and affect many aspects of our lives.
& 2013 Elsevier Ltd. All rights reserved.
The world energy consumption, along with CO2 emission,
has been increasing exponentially during the past 50 years
or so. As we become more aware of greenhouse gas
emissions (GHG, such as CO2 and CH4) and their detrimental
effects on our planet, it has become more important than
ever to develop clean and renewable energy systems, such
as solar cells, fuel cells, batteries, and wind power gen-
erators. Being powered largely by burning fossil fuels,
transportation vehicles, including automobiles, ships, air-
planes, and spacecrafts, are among the primarily sources for
the GHG [1]. The inevitably increasing fuel shortage, along
with the public awareness of ‘greenhouse’ effects, has
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made it highly desirable to develop electric vehicles (EVs,
hybrid electric vehicles (HEVs) and/or plug-in hybrid elec-
tric vehicles (PHEVs)), instead of fossil fuel vehicles, with a
low GHG emission. However, commercial applications of EVs
will not be realized if advanced energy storage systems with
an efficient energy saving and emission reduction cannot be
successfully developed [2].

With no moving parts or noise and virtually without any
pollution, batteries can convert chemical energy directly
into electricity. They require little upkeep for potential
large-scale applications. Among the entire battery family,
several battery types, including lead acid (LA) batteries,
nickel metal hydride (NiMH) batteries, and lithium ion
batteries (LIBs), have great potential for EV applications.
Although the current vehicle market is dominated by LA and
NiMH batteries, the LIBs have received intensive research
and development focus because of their high energy density,
long cycle life, and superior environmental friendliness [3].
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Figure 2 Electrode materials and corresponding electroche-
mical performances in the current LIB technologies (adapted
from Reference [16]).
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So far, LIBs have been widely used in various portable and
smart devices (e.g., cell phones, MP3 devices, cameras, and
laptops). For EV applications, however, the performance of
LIBs, particularly their energy density, safety, and cost, still
need to be significantly improved. Therefore, further devel-
opment of the LIB technology is urgently needed.

Figure 1 shows the basic working principles for a LIB. As
can be seen, a lithium ion battery is composed of three
essential components, namely the Li+ intercalation anode,
cathode, and the electrolyte/separator. Li+ ions move from
the cathode to the anode through the electrolyte/separator
during charging and back when discharging, and simulta-
neously, the electrons flow out of the external circuit to
provide the electrical power (Figure 1). Although the
efficiency of energy conversion for LIBs depends on a variety
of factors, their overall performance strongly relys on the
structure and property of the materials used. The key to
success in the development of advanced LIBs to meet the
emerging EV market demands is the electrode materials,
especially the cathode. Indeed, the recently-released
Argonne National Laboratory Battery Performance and Cost
Model (BatPac) [4] shows that the cost of electrode materials
accounts for ∼44% (∼30% for the Li1.05(Ni4/9Mn4/9Co1/9)0.95O2

cathode and ∼14% for the graphite anode) in a typical battery
design involving cathode and anode electrodes, current
collector, electrolyte, binders, cell/battery modules, and
battery jacket. The cathode costs nearly twice as much as
the anode. This could be attributed to the fact that the
working voltage, energy density, and rate capability of a LIB
are mainly determined by the limited theoretical capacity
and thermodynamics of the cathode material in the present
LIB technology. As discussed in more details below, therefore,
it is critical to develop promising cathode materials for the
current LIB technology.

Figure 2 shows a suggested road map for the research and
development of LIB electrode materials in terms of the
achievable voltage and capacity. Most of the current and
future promising cathode materials shown in Figure 2 can be
classified into four groups: LiMn1.5Ni0.5O4, lithium-excess
Li[Li, Mn, Ni, Co]O2, lithium metal polyoxyanion Li3V2PO4,
LiMPO4 and LiMSiO4 (M=Mn, Fe, Co, and combinations of
thereof), and (O2, S, Li2S). As can be seen, there are rather
limited number of cathode materials of significant promise.
Below, we list major pros and cons for each of the material
groups.
Figure 1 Schematic representation of a typical lithium ion
battery.
(1)
 In the past two decades, the layered oxide LiCoO2 cathode
has been widely used in portable electronics [3]. The high
cost, toxicity, chemical instability in the deep charged
state, safety concern, and limited capacity (only ∼135 Ah/
kg) associated with LiCoO2, however, have prevented its
large-scale applications in transportation and stationary
storage. Having a similar capacity of ∼140 Ah/kg as that of
LiCoO2, but a relatively high working voltage of ∼4.7 V
(∼4.1 V for LiCoO2), LiMn1.5Ni0.5O4 is becoming an attrac-
tive candidate for high-energy applications. Furthermore,
the cycle life and rate capability of doped LiMn1.5Ni0.5O4

(spinel structure) could be enhanced significantly by
cationic substitutions (Co, Cr, Fe, Ga, or Zn) [5] and
surface modification (AlPO4, ZnO, Al2O3 and Bi2O3) [6]. In
order to obtain a uniform surface modification and/or
strong cationic coating, however, a complicated and high-
cost post-chemical process is necessary [7]. To make the
matter even worse, the currently used standard electro-
lytes (LiFP6 in EC/DEC/DMC) are not appropriate for
LiMn1.5Ni0.5O4 cathode, which requires the high working
voltage (∼4.7 V).
(2)
 Lithium-excess layered oxides, Li[Li, Mn, Ni, Co]O2, such
as (Li2MnO3)x(LiMO2 (M=Ni, Co, Mn))1−x, offer a ∼4.0 V
working voltage with much higher capacity values of
∼250 Ah/kg than those of LiCoO2 and LiMn1.5Ni0.5O2 [8].
However, there is often a huge irreversible capacity loss
associated with the oxygen and lithium loss from the
host structure of the lithium-excess layered oxides
(Li[Li, Mn, Ni, Co]O2) at the end of the first charging
process. Although the irreversible capacity loss can be
significantly reduced by coating with insulating materi-
als (e.g., Al2O3, AlPO4, MgO, RuO2) [9], the high surface
area associated with the nanostructured lithium-excess
layered oxides (Li[Li, Mn, Ni, Co]O2) could have a high
surface reactivity to induce side reactions between the
electrodes and the electrolyte. This could lead to
destabilization of the active materials and an increase
in impeding passivation. Therefore, the electrolyte
safety, together with the relatively high cost of the
electrode materials, is the major concern for lithium-
excess layered oxides to be used as the cathode in LIBs.
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(3)
 Among the LiMPO4 (M=Fe, Mn, Ni, Co, or combinations
of thereof) compounds (specific capacity ∼170 Ah/kg),
LiFePO4 has been recently developed for commercial
applications because of its low cost, low toxicity, high
safety, and excellent cycling performance. Unlike
LiFePO4, the much higher voltages seen in Figure 2
for LiMPO4 (M=Mn, Ni and Co) (∼170 Ah/kg) and
Li3V2PO4 (∼197 Ah/kg) ensure a higher theoretical
energy density. However, it is a big challenge to secure
a high rate capability, cycling stability, and highly
compatible electrolyte for LiMPO4 (M=Mn, Ni and Co)
or Li3V2PO4 due to their low electronic/ionic conduc-
tivity and high working voltage (44.6 V) [10,11]. The
success of LiFePO4 has also spurred growing interest in
Li2MSiO4 (M=Mn, Fe, Co, and Ni). Because of the
possibility of having two lithium ions to be reversibly
extracted from the host structure, the Li2MSiO4 cath-
ode could offer a high theoretical capacity of ∼330 Ah/
kg. However, its rate capability and cycling perfor-
mance are still far from satisfying the requirements for
commercialization, though some positive results for
Li2MSiO4 (M=Mn, Fe, Co, and Ni) have been recently
reported [12].
(4)
 Compared with the cathode materials described above,
Li–O2, Li–S/C, and Li2S–Si can offer a much higher energy
density (Figure 2) [13-15], which is a distinguished
advantage that could make them the most promising
cathode material. For the Li–O2 battery, however, the
reversibility and compatibility are still big problems, as
well as the catalysts for the O2 cathode. For the Li–S/C
and Li2S–Si battery systems, the cycling life and polariza-
tion of the nanostructured sulfur also need to be further
improved.
To overcome the above-mentioned limitations asso-
ciated with cathode materials and to facilitate the com-
mercialization of LIBs for the EV market, some further
research efforts to be taken include: (1) development of
proper electrolytes with a wide electrochemical window,
high anodic stability, low volatility, low flammability, and
good environmental friendliness (e.g., the optimized
organic ethylene carbonate/diethyl carbonate electrolyte
(EC: DEC) and ionic liquids (ILs)) especially for high voltage
cathode materials (44.5 V) [16-18]; (2) development of
ideal binders (e.g., carboxymethyl cellulose (CMC) and
alginate [19,20]) to make an intimate adherence between
the current collector and electrode materials in LIBs for
improved electrochemical performance and enhanced sta-
bility during electrochemical cycling; (3) establishment of
a combined computational and experimental approach for
material screening to identify cathode materials with high
capacity, high energy density, and low cost [21]; and
(4) construction of various prototype LIBs with different
promising cathode materials (Figure 2) assisted by tradeoff
analyses on the gravimetric energy density, volumetric
energy density, cost and environmental friendliness for
different applications [22,23].

In conclusion, the limited dynamics and theoretical
capacity of the current cathode materials discussed above
have been shown to be the bottleneck for the development
of low-cost LIBs with excellent cycling stability, high rate
capability, large gravimetric and volumetric energy densi-
ties, and improved safety characteristics. This article
provides some critical opinions and rational ideas regarding
the development of cathode materials with optimized
structures and properties to take up a spot at the top-
right corner of the road map shown in Figure 2. Continued
research and development efforts in this exciting field will
surely revolutionize the way for transportation that can
affect many aspects of our lives.
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