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Having a large surface area, high mechanical strength,

excellent electrical and thermal properties, graphene is

attractive for a wide range of potential applications, including

energy conversion and storage. To realize commercial reality of

graphene-based energy devices, it is highly desirable to

produce high-quality graphene at a low cost and large scale. In

this review, we will give an overview on large scale production

of edge-selectively functionalized graphene nanoplatelets by

mechanochemical ball-milling and their uses for energy

conversion and storage.
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Introduction
Owing to the continuous increasing global energy con-

sumption, it has become more important than ever to

develop efficient conversion and storage systems, such as

solar cells, fuel cells, supercapacitors and lithium ion

batteries. In this regard, innovative methods need to

be developed for large-scale, low-cost production of

materials for high-performance energy devices [1]. Be-

cause of its peculiar structure and unique properties,

graphene, an atomic thick two-dimensional sp2 hybrid-

ized carbon network, has attracted considerable interest

for various applications, including energy conversion and

storage [2–6]. Functionalization of graphene can impart

processability and further enhance its properties for effi-

cient energy conversion and storage [7�,8].
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Along with the rapid development of carbon nanoscience

and nanotechnology, several innovative methods have

been reported recently for production of graphene, in-

cluding mechanical exfoliation [9], epitaxial growth on

SiC [10], chemical vapor deposition (CVD) [11], chemical

exfoliation of graphite [12], sonication/intercalation [13],

and ball milling [14]. Having involved complicated fabri-

cation equipment and process, however, the catalytic

growth of graphene by CVD is expensive for a large scale

production. Chemical exfoliation of graphite, involving

acid oxidation of graphite, often leads to a significant

damage of the graphene basal plane. Although subse-

quent reduction of the graphene oxide can partially

recover the damaged basal plane structure, graphene

materials produced by the solution method usually have

lower conductivities and more defects than those of

graphene generated by the ball milling method. To

overcome these limitations, we have recently developed

an innovative ball milling technology for low-cost scalable

production of edge-functionalized graphene. In this arti-

cle, we present an overview on the production of edge-

functionalized graphene materials by ball milling and

their applications in energy conversion and storage

devices.

Functionalized graphene nanoplatelets by ball
milling
Ball milling is a simple but efficient approach for produc-

ing edge-functionalized graphene nanoplatelets. In a

typical experiment, graphite powders are mixed with

chemicals containing heteroatoms (e.g. dry ice [14], sulfur

trioxide [15], melamine [16,17], polystyrene [18]) in a

sealed jar, followed by high speed ball milling. The strong

shear forces generated between high-speed rotating balls

caused the mechanochemical cracking of the graphitic C–

C bonds, leading to spontaneous incorporation of func-

tional groups and/or heteroatoms at the broken edges of

graphitic frameworks as well as the subsequent exfolia-

tion of graphene nanoplatelets. By dry ball milling graph-

ite powder in the presence of appropriate chemical(s)

(gas, liquid and/or solid phases), various heteroatoms,

such as nitrogen or halogen, can be introduced at the

edge of graphene nanoplatelets [19,20�]. Furthermore,

wet ball milling has also been used to synthesize function-

alized graphene [18]. In this case, the balls were mixed

with a solution/dispersion of graphite and heteroatom-

containing chemicals. Typically, graphene materials

produced by ball milling possess a smaller grain size
www.sciencedirect.com
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(a) Pristine graphite, dry ice (solid phase CO2); and edge-carboxylated graphite (ECG) prepared by ball milling for 48 h; (b) a schematic illustration

of the physical cracking and subsequent edge-carboxylation of graphite through ball milling, and the protonation by subsequent exposure to air

moisture [14]. Reprinted from Ref. [14] with permission. Copyright 2012 National Academy of Sciences. (c) Schematic illustration of the

preparation of polystyrene (PS) functionalized graphene nanoplatelets; (d) Curves of resistance versus filler content for composites with graphene,
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(<1 mm) than those synthesized by other methods like

chemical exfoliation of graphite.

In general, both basal plane and edges of graphene can be

functionalized by the chemical moieties [21]. The meth-

ods for functionalization of graphene can be classified into

several different types, such as covalent C–C coupling,

noncovalent p–p interaction, substitutional heteroatom

doping of graphene, and hybridization with nanoparticles

or other materials [22]. Chemical moieties can selectively

functionalize the edges of graphene through the forma-

tion of covalent bonding. For example, edge-carboxylated

graphite (ECG) can be produced by solid state ball

milling graphite powder in the presence of dry ice (solid

phase of carbon dioxide, CO2) (Figure 1a and b) [14].

Owing to the large repulsive forces between the edge-

carboxylate groups, the resultant ECG can be efficiently

exfoliated into a few-layer nanosheets in polar solvents

(e.g. water), leading to its enhanced dispersibility in

various solvents.

The edge carboxylate functional groups in the ECG can

be readily confirmed by Fourier transform infrared (FT-

IR) spectra with a strong C O stretching peak at

1718 cm�1, in conjunction with a unique sharp peak form

C–O stretching at 1250 cm�1 exclusively arising from

O C–OH. Whereas, GO exhibits a broad C–O stretching

band due to the coexistence of C–OH (hydroxyl), C–O–C

(epoxy) and O C–OH (carboxyl) groups on its basal plane

and edge. The obtained ECG also exhibits a large surface

area of 389.4 m2/g. Upon thermal decarboxylation, ECG

film shows an electrical conductivity as high as 1214 S/cm.

In addition to carboxylic acid, various functional groups,

such as amine (–NH2) and sulfonic acid (–SO3H), can also

be efficiently introduced at the edges of graphene nano-

platelets under similar ball-milling conditions.

Although the covalent functionalization of graphitic basal

plane can be regarded as a powerful tool to produce

functionalized graphene nanoplatelets, it can significantly

destroy the p–p conjugated structure. On the contrary,

the non-covalent functionalization of graphene based on

van der Waals forces or p–p stacking of aromatic mole-

cules can produce physically functionalized graphene, in

which the unique graphitic natures can be largely pre-

served. Interestingly, the polystyrene (PS) functionalized

graphene nanoplatelets have been successfully prepared

by simply ball milling graphite in the presence of a PS

solution (Figure 1c and d) [18]. In addition, the PS chains
(Figure 1 Legend Continued) carbon black (CB) and PS-functionalized gra

2011 Royal Society of Chemistry. (e) A schematic illustration of physical cra

balls agitated at 500 rpm for 48 h in the presence of nitrogen and subseque

Reprinted from Ref. [19] with permission. Copyright 2013, Nature Publishing

driven doping of antimony (Sb) to the edge of graphene nanoplatelets. SEM

Panel, <1 mm grain size) ball milling in the presence of solid state antimony

Nature Publishing Group.
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efficiently stacked onto the basal plane of graphene

nanoplatelets through strong p–p interactions. The re-

pulsive forces between functionalized PS chains can

prevent the restacking of graphene nanosheets. The

resultant PS-grafted graphene/PS nanocomposites show

extraordinary electrical properties with a rather low per-

colation threshold of about 2.7 wt%, due to enhanced

compatibility and dispersibility of functionalized gra-

phene into the PS matrix.

Chemical doping of graphene with heteroatoms (e.g.

nitrogen, boron) is one of the most feasible approaches

to modulate its electronic properties. The doped gra-

phene can show either n-type or p-type behavior with

greatly altered electronic characteristics [21]. In this con-

text, nitrogen-doped graphene nanoplatelets have

attracted considerable attention due to their outstanding

performance in various energy and electronic devices,

including fuel cells, batteries, and field-effect transistors

[23,24]. Traditionally, nitrogen-doping of graphene often

requires complicated processes and/or chemical reagents

containing additional undesirable components in their

structures. However, nitrogen (N2), the most abundant

constituent in air, can be considered as an ideal material

for nitrogen-doping. Recently, the successful direct ni-

trogen fixation at the edges of graphene nanoplatelets by

dry ball milling graphite in N2 atmosphere has been

reported, though N2 is normally considered to be an inert

diatomic gas due to its strong triple bond (Figure 1e) [19].

N2 can readily react with the active carbon species

generated by the mechanochemical cracking of graphitic

C–C bonds during the ball milling process. The direct

edge nitrogen fixation of graphene nanoplatelets using N2

is driven by aromatization, which is a thermodynamically

favorable process. The calculated binding energies of

nitrogen onto the zigzag and armchair-shaped broken

edges for �57.65 and �45.20 kcal/N2 mol, respectively,

clearly indicate a spontaneous reaction to from nitrogen-

containing heterocycles at the broken edges of graphene

nanoplatelets. The structure of nitrogen-doped graphene

nanoplatelets by ball milling has been confirmed either

by FT-IR, which shows strong aromatic C–N stretching

peak at 1400 cm�1, or by high-resolution XPS spectra for

C 1s and N 1s that shows the typical aromatic C–N in

pyrazole (pyrrolic N) and pyridazine rings (pyridinic N) as

dominant nitrogen configurations. The obtained nitro-

gen-doped graphene nanoplatelets demonstrate the

superior electrocatalytic properties for energy conversion

in fuel cells and dye-sensitized solar cells (DSSCs).
phene [18]. Pristine Reprinted from Ref. [18] with permission. Copyright

cking of graphite flake in a ball-mill crusher containing stainless steel

nt exposure to air moisture to produce N-graphene nanoplatelets [19]

 Group. (f) Schematic representation of mechanochemical ball milling

 images of (g) before (Left Panel, <150 mm grain size) and after (Right

 [25�]. Reprinted from Ref. [25�] with permission. Copyright 2015,
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Heteroatom doping of graphitic structures has been wide-

ly investigated for the development of functionalized

graphene nanoplatelets. However, the heteroatom

dopants have been limited to non-metallic elements, such

as nitrogen and boron. These materials do not satisfy a

broad range of commercial demands for practical applica-

tions in terms of performance, cost and stability. Interest-

ingly, the mechanochemical ball milling of graphite in the

presence of solid antimony (Sb), which is one of melal-

loids, in a ball-mill crusher can efficiently produce edge-

Sb doped graphene nanoplatelets (Figure 1f and g) [25�].
The mechanochemically unzipped graphitic C–C bonds

and activated Sb ore during ball milling process can

induce the formation of C–Sb bonds at the broken edges

of graphene nanoplatelets. The doping levels of Sb in

graphene structures can be reached up to 13.68 wt.%. The

structures of Sb-doped graphene nanoplatelets (SbGnP)

have been confirmed by various analytical techniques,

including atomic-resolution transmission electron micros-

copy (AR-TEM), X-ray photoelectron spectroscopy

(XPS), scanning electron microscopy (SEM), thermogra-

vimetric analysis (TGA), energy dispersive spectroscopy

(EDS), Raman spectroscopy, and X-ray diffraction. Fur-

thermore, the resultant SbGnPs exhibit superior electro-

catalytic performance toward cathodic oxygen reduction

reaction (ORR) with an enhanced tolerance against CO

poisoning and methanol crossover, and profound long-

term stability.

Functionalized graphene nanoplatelets by ball
milling for energy conversion
Functionalized graphene for dye-sensitized solar cells

(DSSCs)

DSSCs have been widely developed due to the low cost

fabrication and high power conversion efficiency com-

pared to the silicon-based solar cells [26]. A typical DSSC
Figure 2

ECGnP

electrolyte

dye
TiO2

2

(a) The structure of DSSCs using ECGnPs as a counter electrode and (b) c

ECGnPs under one-sun illumination (AM1.5) [29��]. Reprinted from Ref. [29�

www.sciencedirect.com 
consists of a transparent conductive oxide, dye-adsorbed

TiO2, electrolyte, and a counter electrode (CE). The

counter electrode plays a crucial role in determining

the device performance. An efficient counter electrode

often requires electrode materials to have a high electro-

catalytic activity for the redox couples and good electrical

conductivity for charge transport [27]. Currently, expen-

sive noble metals (e.g. Pt) have been widely used as the

counter electrode in DSSCs. However, the noble metals

are high cost and with a limited reserve in earth, and

hence functionalized carbon-based nanomaterials have

been intensively studied as low-cost, but efficient, alter-

natives [27,28].

Recently, the edged-carboxylated graphene nanoplate-

lets (ECGnPs) generated by ball milling process have

been used as oxygen-rich metal-free  counter electrodes

[29��]. Compared to the platinum counter electrodes,

the ECGnPs based DSSC exhibited outstanding

improvements in the electrochemical stability and

charge-transfer properties for the Co(bpy)3
2+/3+ redox

couple due to the high charge polarization from the

differences in the electronegativity between carbon

(x = 2.55) and the oxygen (x = 3.50). Furthermore, the

photovoltaic performance of ECGnPs based DSSC was

enhanced with a fill factor of 74.4%, short-circuit current

density of 14.07 mA/cm2, and efficiency of 9.31%, which

were much higher than those of Pt, PEDOT:PSS, and

reduced graphene oxide (RGO) based DSSCs

(Figure 2). Similarly, N-doped graphene nanoplatelets

can also be utilized as counter electrode in DSSCs with

the extraordinary electrocatalytic properties as electro-

catalysts for the Co(bpy)3
2+/3+ redox reaction [30].

These results illustrated promising applications of the

ball milled graphene nanoplatelets in highly efficient

DSSCs.
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urrent–voltage characteristics of the DSSCs with the Pt, rGO and
�] with permission. Copyright 2014, Royal Society of Chemistry.
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Functionalized graphene for fuel cells
Fuel cell is one of the greenest energy devices that can

directly convert chemical energy into electricity with a

high efficiency but negligible emission, and thus it has

attracted a great deal of interest [7]. Much efforts have

been devoted to the development of oxygen reduction

reaction (ORR) catalyst, which is the key component for

the fuel cell performance [31]. Although platinum (Pt)-

based catalysts have long been regarded as the most

practical catalyst for fuel cells, their high cost, insufficient

durability, and scarcity have prompted new search for

non-precious, highly active, and stable ORR electrocata-

lysts for fuel cells [8,32]. In this context, carbon nano-

materials have been used as low-cost, metal-free ORR

catalysts with extraordinary performance [31]. Particular-

ly, the ball milling method has allowed large-scale

production of functionalized graphene sheets at low

cost as efficient metal-free ORR catalysts for fuel cell

applications.

As mentioned above, the introduced heteroatoms in the

graphene sheets can tailor the electronic structure for

designed catalytic activities due to the difference in

electronegativity between the heteroatom dopants and

carbon atoms in the covalently doped graphene frame-

work. Recent work on ball milling of graphite has

reported to introduce S [15], Cl, Br, or I [20�] as dopants
Figure 3
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for the edge-functionalized graphene nanoplatelets. Ow-

ing to the polarization of the adjacent carbon atoms by the

heteroatoms in the graphite framework, the adsorption of

O2 and the charge transfer have been improved, and

hence enhancing the overall ORR activity. Therefore,

all the resultant functionalized graphene materials thus

produced showed remarkable ORR activities, comparable

or better than commercial the Pt catalyst. Among all

electrodes, the iodine doped nanoplatelets exhibited

the highest capacitances of 127.6 and 139.5 F/g in both

N2 and O2 saturated electrolytes with a high cycle stabili-

ty (Figure 3).

Functionalized graphene nanoplatelets by ball
milling for energy storage
The energy storage devices, such as batteries and super-

capacitors, are as important as the energy conversion

devices. Therefore, numerous research efforts have also

been devoted to improve the energy storage capability,

power delivery capability, and cycling stability of batter-

ies [33]. Recently, functionalized graphene materials

from ball milling have been utilized for high-performance

batteries and supercapacitors due to their high conduc-

tivity and the abundant active edge sites at their edges

[34]. For instance, the edge-selectively hydrogenated (H)

and halogenated (Cl, Br, or I) graphene nanoplatelets by

ball milling have been used as anode materials for lithium
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P; (d) IGnP; (e) Pt/C on glassy carbon electrode in N2 or O2 saturated

ep voltammograms (LSV) [20�]. Reprinted from Ref. [20�] with
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Figure 4
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(a) Initial discharge–charge curves at 0.1 C; (b) cycling performance of H-graphene nanoplatelets and X-graphene nanoplatelets (X = Cl, Br or I) at

0.5 C in the voltage range of 0.02–3.0 V [35��]. Reprinted from Ref. [35��] with permission. Copyright 2014, John Wiley & Sons, Inc.
ion batteries (LIBs) [35��]. The edge-iodinated graphene

nanoplatelets based LIBs were found to deliver an initial

charge capacity of 562.8 mAh/g at 0.5 C in a voltage range

of 0.02–3.0 V (Figure 4a). Furthermore, the obtained

LIBs exhibited a good cycling stability (charge capacity

retention of 81.4% after 500 cycles), along with a good

long-term life (high reversible capacity of 464.1 mAh/g

after 1 month storage) (Figure 4b). Similarly, edge-fluori-

nated graphene nanoplatelets from ball milling have also

been used as anode materials for LIBs, which exhibited a

charge capacity of 650.3 mAh/g at 0.5 C with charge

retention of 76.6% after 500 cycles [36]. These results

demonstrate that the edge-functionalized graphene nano-

platelets produced by the ball milling process are prom-

ising candidates as anode materials for high performance

LIBs.

In the past few years, sulfur-functionalized graphene has

attracted considerable attention as the cathode material for

lithium sulfur batteries (LSBs) [37,38]. High-performance

LSBs have been constructed from edge-sulfur functional-

ized graphene nanoplatelets from ball milling. The edge-

sulfur doped graphene nanoplatelets were found to

deliver a high initial reversible capacity of 1265.3 mAh/g

at 0.1 C, a high reversible capacity of 966.1 mAh/g at 2 C,

and a low capacity decay rate of 0.099% per cycle over

500 cycles [37].

Concluding remarks
Graphene with its unique structure and properties have

been widely used as electrode materials in energy con-

version and storage devices. Functionalization of gra-

phene materials can tailor their electrical and chemical

properties, and hence broadening their potential applica-

tions. As one of the most promising methods for edge-

functionalization, mechanochemical ball milling has been

demonstrated to produce high-quality edge-selectively

functionalized graphene nanoplatelets in large scale and
www.sciencedirect.com 
at a low-cost and eco-friendly manner, opening new vistas

for functionalization of graphene for energy conversion

and storage, such as solar cells, fuel cells, supercapacitors,

and batteries. Although much progress has been

achieved, there is still considerable room for further

optimizing the ball milling process to tailor-made the

structures (e.g. size, shape, layer number of GnPs) and

properties (e.g. electrocatalytic, electronic, chemical) for

various specific applications, including energy conversion

and storage.
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