Introduction
The recurrent connectivity of the neocortex endows it with the remarkable ability to generate and maintain ongoing activity even in the absence of sensory drive. This activity percolates through both the excitatory and inhibitory circuits, manifesting as excitatory or inhibitory postsynaptic currents (EPSCs/IPSCs) and influences the voltage trajectory of the neuronal membrane. Previous work on ongoing cortical activity has mostly focused on the generation of rhythmic UP/DOWN states, which are characterized by a substantial depolarization of the membrane driven by a high synaptic conductance [1,2]. However, little attention has been given to the presence of low-conductance ongoing synaptic activity. Here we explore the spatiotemporal structure of these postsynaptic currents using whole cell recordings in the voltage-clamp configuration in mouse cortical slices.

Results
1. Layer 2/3 pyramidal cells and somatostatin-positive interneurons receive barrages of spontaneous excitatory and inhibitory synaptic inputs in vitro

![Autocorrelogram for IPSCs (blue) and EPSCs (red) from PCs.](image1)

Figure 1: Excitatory and inhibitory postsynaptic currents in layer 2/3 PCs (A) and INs (B). A. PCs were visually identified by morphological criteria and sampled at random from the layer 2/3 neuronal population. EPSCs (red) were recorded at the reversal potential for IPSCs (EIPSC = -82 mV), while IPSCs (blue) were recorded at the reversal potential for EPSCs (EEPSC = +17 mV). B. INs expressing EGFP driven by the GAD67 promoter were identified using fluorescence microscopy and sampled at random from layer 2/3. As in A, EPSCs were recorded at EEPSC. IPSCs were recorded at the reversal potential for EPSCs in INs (EIPSC = -60 mV). All postsynaptic currents were low-pass filtered on-line using a Bessel filter at 1 kHz and band-pass filtered off-line between 0.1 and 100 Hz prior to analysis.

2. EPSCs and IPSCs in pyramidal cells and somatostatin-positive interneurons exhibit a slow (0.5-5 Hz) non-stationary oscillatory component

![Autocorrelogram of simultaneously recorded EPSCs and IPSCs.](image2)

Figure 2: Autocorrelogram analysis of EPSCs and IPSCs from layer 2/3 PCs and INs. A. Cross-correlograms of simultaneously recorded EPSCs (red) and IPSCs (blue) from PCs. C,D. Cross-correlogram for EPSCs and IPSCs from INs. Recorded signals were low-pass filtered before passing for auto-correlation analysis. Autocorrelograms were generated for 3-second intervals across the duration of the whole signal (60 seconds) and the preferred frequency of ca. 5 Hz. Also note that although the preferred frequency across combinations of excitatory and inhibitory inputs are different, the amplitude is preserved across pairs.

3. Cross-correlograms of pyramidal cell inputs are comparable in amplitude but not in frequency

![Cross-correlograms of PC inputs.](image3)

Figure 3: Cross-correlograms of PC inputs. PC pairs were visually identified in a focal plane of 200 μm in layer 2/3 and selected randomly for patch-clamp recordings. A. Cross-correlogram of simultaneously recorded EPSCs. Note the cross-correlation between the pair has a preferred frequency of ca. 5 Hz. B. Cross-correlogram of simultaneously recorded IPSCs. The preferred frequency between inhibitory inputs across pairs is around 2 Hz. C. Cross-correlogram of simultaneously recorded EPSCs and IPSCs. Excitatory and inhibitory inputs across PC pairs shared an oscillographic component in the frequency of ca. 3 Hz. Also note that although the preferred frequency across combinations of excitatory and inhibitory inputs are different, the amplitude is preserved across pairs.

4. Amplitude of EPSCs but not IPSCs in layer 2/3 pyramidal cells is TTX-insensitive

![Relative lag (s) of EPSCs and IPSCs under control and TTX conditions.](image4)

Figure 4: Effects of tetrodotoxin (TTX) on the amplitude of EPSCs in PCs. 1 μM TTX was added to the artificial cerebrospinal fluid (ACSF) and continuously perfused throughout the duration of the recording. Recordings were carried out at least 15 minutes after addition of TTX into the perfusate. A. Plot of mean amplitude of EPSCs under control and TTX conditions (n = 13). B. Plot of mean amplitude of EPSCs under control and TTX conditions (n = 13).

Acknowledgments
This work was supported by Ruth L. Kirschstein National Research Award NS067431 (PP), The Mount Sinai Health Care Foundation (5815) and The Alzheimer’s Association (A491301). We thank Dr. Christopher Wilson for providing us with transgenic mice and Yenan Zhu for maintaining the mouse colony.

Poster available at: http://neurosciences.case.edu/labs/galán/publications.html