Presentation Abstract

Program#/Poster#: 159.23/L19

Presentation Title: Serotonergic synaptic transmission modulates network dynamics in the mouse neocortex: Implications for epilepsy

Location: Hall F-J

Presentation time: Sunday, Oct 14, 2012, 10:00 AM - 11:00 AM

Authors: *P. A. PUZEREY, R. FERNÁNDEZ GALÁN;
Neurosciences, Case Western Reserve Univ., Cleveland, OH

Abstract: The dense innervation of the neocortical sheath by ascending brainstem projections provides neuromodulatory inputs that influence cortical activity. In particular, the monoamine serotonin (5-HT) exerts an array of excitatory and inhibitory effects on cortical pyramidal cells (PCs). Here, we explore the role of the 5-HT system in modulating synaptic transmission and network dynamics by performing whole-cell patch clamp recordings from cortical layer 2/3 PCs in thalamocortical brain slices from C57BL/6 wild-type (WT) and Pet-1 knockout mice (KO). 5-HT levels are severely reduced in the brain of KO mice, as is the expression of the 5-HT reuptake transporter, SERT. Thus, 5-HT signaling could be diminished or augmented in these mice, depending on whether the deficit in 5-HT synthesis outcompetes the deficit in 5-HT reuptake. To test this, we measured spontaneous excitatory postsynaptic currents (sEPSCs) and observed a significant increase in both amplitude and frequency in KO slices, which was dramatically reduced after adding the 5-HT3 receptor (5-HT3R) antagonist, granisetron, suggesting an increase in synaptic excitatory transmission mediated by 5-HT. Additionally, treatment of WT slices with the selective serotonin reuptake inhibitor (SSRI), fluoxetine (FLX; 3 µM), resulted in a significant increase of sEPSC amplitude and frequency comparable to KO levels. To address whether the observed increase in synaptic activity would correspond to a change in network dynamics, we induced network activity in the form of paroxysmal depolarizing shifts (PDS) by partially blocking GABA(A) receptor-mediated inhibition with bath-applied gabazine (5 µM). WT slices preferably exhibited network activity
in the form of individual PDS, whereas in the KO slices the PDS are grouped into periodic (10-15 Hz) fast runs of network activity. When treated with FLX, WT slices display the same dynamics as the KOs. Remarkably, the occurrence of fast runs is reduced by the 5-HT2 receptor (5-HT2R) antagonist, ketanserin, in KO and FLX-treated WT mice. These findings suggest that 1.) increased excitatory synaptic transmission in KO mice results from increased serotonergic signaling through 5-HT3Rs, and 2.) altered network dynamics in KO and FLX-treated mice are attributable to increased signaling through 5-HT2Rs. Our results demonstrate that synaptic 5-HT signaling in Pet-1 KO mouse is increased, suggesting that the reuptake deficit outcompetes the decreased synthesis and release of 5HT. Furthermore, the increased network excitability due to serotonin reuptake inhibition in WT provides a mechanistic link to the emergence of epileptic episodes in patients medicated with SSRIs.

Disclosures:
P.A. Puzerey: None.
R. Fernández Galán: None.

Keyword(s):
NEOCORTEX
SEROTONIN
NETWORK

2012 Copyright by the Society for Neuroscience all rights reserved. Permission to republish any abstract or part of any abstract in any form must be obtained in writing by SfN office prior to publication.