Neural Dynamics in the Antennal Lobe: Sensory Coding and Memory Traces in an Insect’s Brain

Roberto Fernández Galán
Olfaction as a model system

- The striking similarities in the structure of the olfactory system in species as varied as insects and mammals suggest that universal computational strategies may be used to encode, process and store chemosensory information.

- The study of these strategies provides insight into fundamental mechanisms of neural computation that may also inspire the development of artificial sensor technologies.
Structure of the olfactory system

- Output neurons
- Glomeruli
- Receptor neurons

R1 R2 R3
Olfactory system in the bee

from Giovanni Galizia’s webpage
Neural Dynamics and Pattern Recognition
Odor representation in the AL

1-octanol
1-hexanol
1-nonanol
isoamylacetate

S.Sachse et al. (1999), G.C.Galizia et al. (1999)
Odor-specific attractors
Neural kinematics in the antennal lobe
Classifying hyperplanes and perceptron design

- The odor-specific attractors can be separated from each other with properly oriented hyperplanes in the antennal-lobe space.

- The hyperplane that separates a given odor A from the rest obeys an equation of the form

$$\mathbf{w}_A \cdot \mathbf{x} = b$$
Classifying hyperplanes and perceptron design

- The hyperplanes can be calculated by maximizing the distance between a given odor-attractor A and the rest of attractors.

- The hyperplane equation is also the classification criterion of a simple neural network: The perceptron

\[
\begin{align*}
\vec{w}_A \cdot \vec{x} & \geq b \iff \vec{x} \in A \\
\vec{w}_A \cdot \vec{x} & < b \iff \vec{x} \notin A
\end{align*}
\]
Perceptron architecture

Classification performance

Comparison with real bees’ behavior

- Our analysis revealed that the neural dynamics in the AL reach odor-specific attractors in ca. 800 ms for any odor at any concentration. In general, odor-recognition occurs in less than 300 ms, i.e. before the dynamics reach the steady state.

- Recent work by Ditzen et al. (2003) in *Chemical Senses* showed in behavioral experiments that the median reaction time of honeybees to any odor at any concentration is 290 ms.
Comparison with real bees’ behavior

- Further analysis shows how this model may account for the “generalization phenomenon” reported by Bhagavan & Smith (1997) in *Physiology and Behavior*: odors learned at low concentrations can be recognized at higher concentrations but not vice versa.

- This model also may explain how single components can be resolved from odor mixtures.
Neural Dynamics and Hebbian Learning
Hebb’s idea (1949)

Neurons that fire together should wire together
A simple mathematical formulation of Hebbian learning: the covariance rule

The change of correlated activity Δc_{ij} between neuron i and neuron j is determined by the spatial activation pattern u_i induced by the stimulus

$$\Delta c_{ij} = u_i u_j$$

Expression called covariance rule.
Hebbian learning & Neural dynamics

From the analysis of the *spontaneous activity* of each glomerulus x_i it is possible to estimate Δc_{ij}:

$$\Delta c_{ij} = \langle x_i x_j \rangle_{t}^{\text{after}} - \langle x_i x_j \rangle_{t}^{\text{before}}$$

We can then check whether Hebbian plasticity takes place in the Antennal Lobe and...

A step further: Stimulus retrieval

...having estimated Δc_{ij} we may try to uncover the last stimulus in a straightforward manner: The matrix Δc_{ij} can be expanded as a function of its eigenvectors v_i and the expansion is dominated by the term with the eigenvalue of largest magnitude.

$$\Delta c_{ij} = \sum_{k} \lambda_k v_i^k \cdot v_j^k \approx \lambda_1 v_i^1 \cdot v_j^1$$

Stimulus retrieval

Comparing the expression

\[\Delta c_{ij} \approx \lambda_1 v_i^1 \cdot v_j^1 \]

with the covariance rule

\[\Delta c_{ij} = u_i \cdot u_j \]

one can now write

\[u_i \approx \sqrt[1]{\lambda_1} \cdot v_i^1 \]

The dominant eigenvector of \(\Delta c_{ij} \) resembles the spatial activity pattern induced by the last stimulus.
Evidence of Hebbian learning

correlations change predicted by Hebb

odor-induced activity pattern
Evidence of Hebbian learning

correlations change predicted by Hebb

correlations change observed

doctor-induced activity pattern

dominant eigenvector of \(\Delta C \)

\[r = 0.74 \quad p = 0.0004 \quad \text{highly significant} \]
Dynamics of the Sensory Memory

![Box plot](image)

- Stimulus inference (Kendall's correlation) vs. minutes with respect to stimulation
- Data points for 0/9, 0/9, 6/9, and 3/9 conditions
Summary

- The neural dynamics in the bee’s olfactory system was analyzed and interpreted in terms of computational models of information coding and memory formation.

- The neural dynamics in antennal lobe possess odor-specific attractors.

- The insect’s olfactory system performs as a fundamental artificial neural network, the perceptron, to recognize odors.

- The analyses of the spontaneous neural activity revealed that a memory trace of the last smelt odor reverberates for several minutes after stimulation.

- This memory trace can be retrieved through a correlation analysis of the spontaneous activity, which demonstrates the Hebbian nature of this form of memory.