SILICON EPICS AND BINARY BARDS:
DETERMINING THE PROPER SCOPE OF
COPYRIGHT PROTECTION FOR
COMPUTER PROGRAMS

Anthony L. Clapes*
Patrick Lynch**
Mark R. Steinberg**

CONTENTS
PREFAGE .« e vveveteeeaaaannmeeanenan e 1495
I. INTRODUCTION .. uteunannne e ansees 1497
II. THE NATURE OF THE DEBATEoovvvennns 1502
A. The Opposing Viewpointso.oomvenn-- 1502
B. The Stakes: The Business That Derives From the
Art of Programmingcooooooeaiies 1505
1. The Role of Software in the Computer
INAUSITY oo 1505
9. The Dynamics of the Programming
BUSINESS .« v vveneeeeaneeaee o anens 1506
3. Competition Through Innovation 1507
4. Copyright as a Precondition to
Competition Through Innovaton 1509
III. RESOLVING THE CONTROVERSY.......coooominnnnn 1510
A. How Programmers Express Themselves 1510
1. Works of Authorship vs. Results........ 1510
9. The Context in Which Programs Are
e TE 1= ¢ DR 1512
a. What Computers “*Understand” 1512
i. Processingcoiaiinn 1513

©1987 Anthony L. Clapes, Patrick Lynch, and Mark R. Steinberg
* Senior Corporate Counsel, International Business Machines Corporation,

Armonk, N.Y.
** Partner, O’Melveny and Myers, Los Angeles, CA

1493

1494 UCLA LAW REVIEW [Vol. 34:1493
. Storage 1516
iii. Input and Output..... e 1517
iv. Control 1517
v. Communication 1518
b. The Language(s) of Computers.......... 1519
c. The Categories of Programming Works ... 1524
B. Elements of Programming Style 1524
1. Structure of a Program 1524
a. Modularity 1524
b. Blocks of Code 1525
c. Data Structures e 1527
2. FlowofaProgram 1529
3. LogicofaProgram..................... 1531
4. Design of a Program e 1533
5. Naming Conventions 1534
6. Comments 1534
7. Programming Style 1535
C. Potential for Alternative Expression 1536
1. Expert Opinion e 1536
2. Judicial Authority....................... 1538
3. Commentators 1541
4. The Process of Writing a Program. 1543
5. Policy Considerations................... 1544
D. Infringement of Computer Programs Should Be

Analyzed According to the Rules Applicable to

Literary Works Generally...................... 1546

1. The Whelan Case 1546

2. Parsing the Arguments Against Applying
Traditional Rules....................... 1548
a. The Section 102(b) Argument 1548

~ The Idea/Expression Dichotomy. 1550
i1. Copyright Protection for
Computer Software Under the

1976 Act ... 1553

b. The CONTU Arguments 1554
c. The Patent Argument 1558
d. The Compatibility Argument 1560
i. Formats and Protocols 1561

1. The Many Faces of Compatibility 1564
iii. Copying Versus Compatibility... 1565
The Consequences of Applying
Traditional Rules................ 1567

1987] SILICON EPICS AND BINARY BARDS 1495

E. The Appropriate Test of Substantial Similanity for

Computer Programs 1568
1. The Ordinary Observer Test 1571
2. Detailed Technical Exegesis—The

“Intrinsic Test” 1573

IV. CONCLUSIONS AND A MODEST PROPOSAL
REGARDING PrOOF IN SOFTWARE COPYRIGHT

CASES ittt e 1575

A. The Economics of Second Wave Litigation 1577

B. Analyzing Second Wave Evidence 1578

C. Conclusionccc. i .. 1583

APPENDIX .\ tvtntte i 1585
PREFACE

One of the most significant contributions that a master
in a field of law can make is to apply his or her expertise in
guiding the law as smoothly as possible through the often
rough waters of social change. For nog\:mrﬁ law, the
roughest waters in recent years have been those in which sea
changes in behavior have been caused by the availability of
new technology. Reprography, audio and videotaping, and
computer software have each presented severe challenges to
the copyright law by ?C:E::m|5mcnm In some cases ¢n-
couraging—novel kinds of activity inconsistent with the ex-
clusive rights of the copyright owner.

Mel Nimmer on many occasions applied his singular ¢x-
pertise to help steer the development of American copyright
law through such troubled waters. By serving as Vice Chair-
man of the National Commission on New Technological
Uses of Copyrighted Works (“CONTU"), a body appointed
by President Ford to consider what changes, if any, should
be made in the Copyright Act in consequence of the broad
availability of these new technologies, he played an impor-
tant role in shaping the 1980 amendments to the Act. By
updating his powerful treatise not just with summaries and
syntheses of cases dealing with the new technological uses,
but with his own perspectives on how (and which) copyright
principles ought to be applied to those uses, he spread un-
derstanding to the broadest possible audience. By thrusting
the hard questions posed by the new technologies before his
students, along with tradivonal copyright teachings, he
equipped a cadre of young lawyers to deal with novel 1ssues

1496 UCLA LAW REVIEW [Vol. 34:1493

without doing violence to a legal scheme that has served our
society so well for so long.

Shortly before he died, Professor Nimmer had an op-
portunity to deal first-hand with what was then and is sull
one of the most challenging questions resulting from the ap-
plication of copyright law to the new technologies: What is
the proper scope of copyright protection for computer pro-
grams? The question arose a few years ago, once it became
clear that computer programs were protected by copyright.
At that point the focus of both scholarly and commercial de-
bate shifted to the question whether the exclusive rights of
the author of a computer program are limited to the
mechanical duplication of the literal text of the program
only, or whether they extend to close paraphrases, transla-
tions and other non-literal forms of copying. In 1984, Pro-
fessor Nimmer was engaged by one of the parties to a
dispute over the scope of copyright protection for computer
programs. In the course of that engagement, he prepared a
declaration under seal concerning the deliberations on that
subject that underlay the CONTU Final Report. The Nim-
mer declaration is an important addition to the body of
scholarly opinion on computer programs and copyright; im-
portant because of its content and also important because it
clarifies certain doubts which he had expressed in his con-
curring opinion to the CONTU Final Report. With the
agreement of the parties to that dispute, the authors have
been able to make the substantive text of that declaration
public. It appears as an Appendix to this Article. This Arti-
cle attempts to build on the wisdom which Mel Nimmer pro-
vided in that document.

1987] SILICON EPICS AND BINARY BARDS 1497

I. INTRODUCTION

If we forget the scientific culture, then the rest of western intellectu-
als have never tried, wanted, or been able to understand the indus-
trial vevolution, much less accept it. Intellectuals, m particular
literary intellectuals, are natural Luddites

. The programmer, like the poet, works only shightly removed
\35 pure thought-stuff. He builds his castles in the air, from air,
creating by exertion of the imagination. Few media of creation are
s0 flexible, so easy to polish and rework, so readily capable of real-
izing grand conceptual structures.

Programming then is fun because it gratifies creative longings
bult deep EE:: us and delights sensibilities we have in common
with all men 2

D my Treatise 1 have analyzed in some depth the standards
Jfor determining when a copynghted work has been infringed
through the duplication of its fundamental plot, structure and ar-
rangement (the pattern test). In my opinion, CONTU fully ex-
pected that these traditional .b:::\&& be applied to computer
programs.3
For two centuries the >Snlmm: law of copynight has
been evolving into a broad scheme of protection for literary
works; protection that, consistent with its constitutional ba-
sis, guarantees to the author the exclusive right to copy,
adapt, and distribute his or her work of authorship.* The

1. C.P. Snow, Tue Two CULTURES AND THE SCIENTIFIC REVOLUTION 23
(1959).

2. F. Brooxks, Tne Myricar. Man-Montu 7-8 {(1975).

3. M. Nimmer, Declaraton Regarding the Natonal Commission on New
Technological Uses of Copyrighted Works (Contu) Final Report pt. 25 (Nov. 15,
1984), (see infra Appendix) [hereinafter Nimmer Declaration].

4. In enumerating the powers vested in the federal government, the Consu-
tution provides that “{tthe Congress shall have power . . . To promote the Pro-
gress of Science and useful Arts, by secuning for himited Times to Authors and
Inventors the exclusive Right to their respective Writings and Discoveries.” U.S.
Const. art. 1, § 8, 1. 8.

This clause of the Constutution was adopted by the framers without debate.
James Madison stated in Federalist Paper No. 43 that “"the uulity of this power will
scarcely be questioned.” 1 M. NiMMER, Nimmer on Copyvricr § 1.O1[A] (1936).
See also Goldstein v. California, 412 U.S. 546, 555-56 (1973). The following briet
history of copyright legistanon and the associated expansion of copyright protec-
tion through 1972 is found in Chiet Justice Burger’s opinion in Goldstein

The first congressional copyright statute, passed in 1790, governed
only maps, charts, and books. Act of May 31, 1790, c¢h. 15, 1 Stat.
124, In 1802, the Act was amended in order to grant protecuon to
any person Uwho shall invent and design, engrave, etch or work .

any historical or other print or prints ... " Act of Apr. 29, 1802, ch.
36, 2 Stat. 171, Protection was extended to musical compositions

1498 UCLA LAW REVIEW [Vol. 34:1493

notion of protection against copying, from its early manifes-
tations in English law as a mechanism to prevent transcrip-
tion by persons other than the copyright owner,5 has
“matured into a proscription against the unauthorized taking
either of the literal text of a copyrighted work or of the es-

when the copyright laws were revised in 1831. Act of Feb. 3, 1831,
ch. 16, 4 Stat. 436. In 1865, at the time when Mathew Brady’s pic-
tures of the Civil War were attaining fame, photographs and photo-
graphic negatives were expressly added to the list of protected
works. Act of Mar. 3, 1865, ch. 126, 13 Stat. 540. Again in 1870, the
list was augmented to cover paintings, drawings, chromos, statwu-
ettes, statuary, and models or designs of fine art. Act of July 8, 1870,
ch. 230, 16 Stat. 198.
In 1909, Congress agreed to a major consolidation and amend-
ment of all federal copyright statutes. A list of 11 categories of pro-
tected works was provided The House Report on the proposed
bill specifically noted that amendment was required because *‘the re-
production of various things which are the subject of copyright has
enormously increased,” and that the President has specifically rec-
ommended revision, among other reasons, because the prior laws
*“‘omit[ted] provision for many articles which, under modern repro-
ductive processes, are entitled to protection.” H. R. Rep. No. 2222,
60th Cong., 2d Sess. 1 (quoting Samuel J. Elder and President Theo-
dore Roosevelt). Since 1909, two additional amendments have been
added. In 1912, the list of categories in § 5 was expanded specifically
to include motion pictures. . . . Finally, in 1971, § 5 was amended to0
include “sound recordings.” Congress was spurred to action by the
growth of record piracy, which was, in turn, due partly to technologi-
cal advances. See Hearings on S. 646 and H.R. 6927 Before Subcomm.
No. 3 of the House Comm. on the Judiciary, 92d Cong., Ist Sess. 4-5, 11
n.5 (1971).
Subsequently, the 1909 Act was supplanted by u general revision known as the
Copyright Act of 1976, which became effective on January 1, 1978. Among other
improvements, Congress eliminated the distinction between common law and
statutory copyright, provided authors with a termination provision not tied to the
renewal term of copyright, and explicitly recognized the application of copyright
to “technological advances not dreamed of in 1909.”" 1 M. NIMMER, supra, at v-vi.
Specifically, Congress recognized that computer programs were indluded among
the “original works of authorship™ protected by the Act. See H. R. Rep. No. 1476,
94th Cong., 2d Sess. 51, reprinted in 1976 U.S. Copk ConG. & Apmin. NEws 5659,
5664; S. REp. No. 473, 94th Cong., Ist Sess. 50-51 (1975). This recognition was
reaffirmed when Congress amended the Act in 1980. Act of Dec. 12, 1980, Pub.
L. No. 96-517, § 10(a), 94 Stat. 3028 (1980) (codified at 17 U.S.C. §§ 101, 117
(1982)).
5. See,eq., 8 Anne ch. 19, 1710 cited in A. Larman, Howerr's CoryricuT Law
2 (1962). The Statute of Anne was the first statute specifically to recognize the
rights of authors and was “the foundation of all subsequent legislation on the
subject of copyright both here and abroad.” A. Latman, supra, at 3 (citing H.
RaNsoM, THE FirsT CopYRIGHT STATUTE (1956)); see also Donaldsons v. Becket, 4
Burrows 2303, 98 Eng. Rep. 257 (K.B. 1774).

1987] SILICON EPICS AND BINARY BARDS 1499

e

~ sence of its expression.t That it is wrong to publish without

kS

~alicense a closely paraphrased or substantially similar ver-
sion of a copyrighted literary work is a verity woven tightly
into the fabric of our society;? by international convention
and comparable legislation that verity has worked its way
into the social fabric of responsible nations around the
globe ®
And yet, as we celebrate the bicentennial anniversary ol
the U.S. Constitution and its charter to Congress to “pro-
mote Science and the useful Arts,” that tradition 1s being
challenged as it applies to an important new class of literary
work—computer programs. Because computer programs as
a form of expression are not well-understood by the makers
of law and policy, they are presently at risk of being rele-
gated (o the backwaters of copyright, (o an inferior status at
law in which the authors of this class of literary work would
be accorded less than full protection against the taking of
their original works of authorship. Only the steady hand of
the federal judiciary on the uller has thus far saved the copy-
rights in these new kinds of writing from foundering on the
shoals of ignorance and suspicion.!®

6. See Atari Inc. v. North American, 672 F.2d 607 (7th Cir.), cert. dented, 103
S. Ct. 176 (1982); Sid & Marty Krofft Television v. McDonald’s Corp., 562 F.2d
1157 (9th Cir. 1977); Donald v. Zack Meyer's T.V. Sales and Service, 426 F.2d
1027 (5th Cir.), cert. denied, 400 U.S. 992 (1970); Nikanov v. Sunon & Schuster,
Inc.. 246 ¥.2d 501 (2d Cir. 1957); Nichols v. Universal Pictures Corp., 45 F.2d 19
od Cir. 1930); Nutt v. National Inst. Inc, 31 F.2d 236 (2d Ca. 1920

7. Atan, 672 ¥.2d at 618; Universal Pictures Co. v. Harold Lloyd Corp., 162
F.2d 354, 360 (9th Cir. 1947); Nichols, 45 F.2d at 121; 3 M. NiMMmER, supra note 4,
at § 13.03[A][1].

8. 4 M. NivMek, supra note 4, at § 1709 A $ist ol «
United States has copyright relations as a vesult of treaty or
appears id. at App. 20. ‘ ,

9. Excmplary of the assault on the notion of full copyright protection for
software are the following policy-oriented commentaries: OFFICE OF TECHNOLOGY
AssesSMENT, U.S. ConGress, Intellectual Property Rights in an Age of Electromics and
Information, 78-85 (1986) (hereinafter OTA Stupy];, Goldsicin, Infringement of Copr-
right in Computer Programs, 47 U. Prrr. L. Rev. 1119 (1986) [hercinatter Infringement
of Copyright}; Kost, Whelan v. Jaslow: Back to the Rough Ground, 5 Compurer L. Rep.
145 (1986) [hereinatier Rough Ground]; Lichman; Katsch & Letich, Back to Bast
Critique of the Emerging Judicial AAnalysis of the Quter Lt
CoMmpuTter Law., Dec.l, 1985 |hercinafter Back to Basus).

10. See Whelun Assoc. v. Jaslow Dental Laboratory, Inc., 797 F.2d 1222 (3d
Cir. 1986), cert. denied, 107 S. Ct. 877 (1987); M. Kramer Mfg. Co. v. Andrews, 783
F.2d 421 (4th Cir. 1986); Apple Computer, Inc. v, Franklin Computer Corp., 714
F.2d 1240 (3d Cir. 1983), cert. dismnsed, 464 U.S. 1033 (1984); Stern Elee Tne. v,
Kaufman, 669 F.2d 852 (2d Cir. 1982); SAS Inst., Inc. v. § & H Computer Sys-

ties with windh the
wional compaat

s of Prograomming “Expressio

1500 UCLA LAW REVIEW [Vol. 34:1493

Forty years ago the computer program did not exist.
Today a multibillion dollar industry has materialized to pro-
vide customers with the high-tech poetry that serves them in
so many ways. According to published reports, in the
United States alone there were over 14,000 enterprises writ-
ing computer programs for commercial distribution in
1984.!1 Since computer programs are software intended to
be run through a hardware “player” (the computer), the de-
mand for software stimulates the demand for hardware—the
sales of which amount to many tens of billions of dollars in
the United States.!> The computer industry as a whole,
hardware and software taken together, is a principal indus-
trial contributor to the American balance of trade.!3 This in-
dustry has also been identified as critical to domestic
economic performance in other major industrial nations. !

Like other technology-based segments of a country’s
economy, the computer industry flourishes in an environ-
ment in which the intellectual creations that fuel techno-
logical ~competition are sufficiently secure from
misappropriation to guarantee the creator an opportunity
for return on invested effort.'s In the case of computer pro-
grams, the principal intellectual property is the program it-
self, the author’s written expression that intrinsically
describes the complete intellectual content of the product—
much as the score of a symphony discloses the complete in-
tellectual content of the composer’s creation. For a product
with such attributes, and for which the act of marketing can
constitute publication,'¢ copyright is the principal source of

tems, Inc.,, 605 F. Supp. 816 (M.D. Tenn. 1985); E.F. Johnson Co. v. Uniden
Corp., 628 F. Supp. 1485 (D. Minn. 1985); Apple Computer, Inc. v. Formula Int’l,
Inc., 562 F. Supp. 775 (C.D. Cal. 1983), aff 'd, 725 F.2d 521 (9th Cir. 1984).

1. U.S. Depr. oF COMMERCE, A Competitive Assessment of the U.S. Software Indus-
ry, 5 Washingion, D.C., U.S.G.P.O. (December 1984) [hereinafter Competitive
Assessment].

12, W.H. Davipson, THE AMaZING Race 113 (1984) [hereinafier Davinson|.

13. NamionarL Researcu Councit, The Competitive Status of the U.S. Electronics
Industry 29, 58 (1984) [hereinafter Competitive Status).

14. See DAVIDSON, supra note 12, at 97. See also U. WEIL, INFORMATION SySTEMS
IN THE 80's 307 (1982) [hereinafter U. WEIL).

15. Competitive Status, supra note 13, at 57.

16. Indeed, those firms that act as distributors of the works of program au-
thors are referred 1o as “software publishers.” See, eg., I'. Harris, THE LEcaL
Guipe To COMPUTER SOFTWARE PROTECTION 143-48 (1984) [hereinafier Harris].

1987] SILICON EPICS AND BINARY BARDS 1501

intellectual property protection.'” Trade secrecy, and in ap-
propriate cases patent law, provide supplemental safe-
guards,'8 but the copyright grant and its constellation of
exclusive rights, together with the ability to license custom-
ers and others to share in a limited way in those rights, form
the basis for the software industry as we know it today.

The vitality of the software industry could be imperiled
by a drastic limitation of the scope of copyright protection
available to authors of computer programs. Yet, largely on
the basis of misapprehensions and ignorance, movements to
do exactly that are gathering adherents in this country and
abroad.!? This Article attempts to cast light on the status on,w
computer programs as literary works and explain why tradi-
tional rules of copyright law adapt very comfortably to these !
novel forms of expression. It is an exercise that several fed-
eral courts have undertaken recently. In illuminating what is
evidently a murky technological twilight for many commen-
tators and policymakers, we hope to allay the fears they har-
bor and to provide a base of understanding similar to that
which those courts have already acquired.

s

17. Braunstein, Fischer, Ordover & Baumol, Economics of Property Rights as Ap-
plied to Computer Software and Data Bases, in TecHNOLOGY anp CopyricuT 237-38
(G. Bush & R. Dreyfuss eds. 1979); J. Kasdan, The Economics of Copyright with
Application to Licensing 1-2 (paper presented at the Conference on the Interna-
tional Legal Protection of Computer Software, Stantord Law School, July 24-26,
1986).

18. See 1. Harris, supra note 16, at 131, 133-39; see also Diamond v, Dichr,
450 U.S. 175 (1981); Diamond v. Bradley, 450 U.S. 381 (1981); F. Nerzke, A
Soriwake Law Primer 25 (1984) [hereinafter Nermzkel.

19, See authoritics cited supra note 9; see abso the following papers presented at
the Conference on the International Legal Protection of Computer Sofiware,
Stanford Law School, July 24-26, 1986: W.R. Cornish, Legal Protection of Com-
puter Programs in the United Kingdom and Parts of the Brinsh Commonwealily;
i Horse or Sn
awa, Legal Proteat

AL Dicte, Copyright Protection for Computer Prog
for the Future Copyright System? (Germany); 2. K
Computer Programs— One Aspect of Technology Law in Jupan. A recent addi-
tion to the literature of this movement is Karjala, Copyright, Computer Software, and
the New Protectionism, 28 Jurimerrics 33 (1987) [heremnafier Protectionism]. Protec-
fromism s an istractive exercise in the political use of words. By persistently refer-
ring to programs as “technology” and to program authors as “soltware
engineers,” see 1d. at 36-11, and by analogizing programs to yypewriter heyboards,
bridges, and other physical objects not protected by copyright, see id. at 39,43, 15-
the subject under discussion is some-

46, 61, Protectionism gives the impression th
thing other than a work of authorship.

1502 UCLA LAW REVIEW [Vol. 34:1493

II. Tue NATURE OF THE DEBATE
A. The Opposing Viewpoints

~ Since the mid-1970s, the federal courts have been deal-
ing energetically with copyright infringement suits involving
computer software. It has become fashionable to speak of
this htigation in two generations, or waves, with each wave
characterized by a different level of fundamental challenge
to the copyrights asserted by authors of computer pro-
grams.20

. For_the most part, the “first wave” cases involved
@swnmmmﬂmwﬂ or other forms of_slavish-copying. They ex-
amined thé question whether computer programs, or at least
the kinds of programs claimed to be infringed, are protect-
able by copyright at all. This question was premised on the
argument that programs are “functional” or ‘“‘utilitarian”
arid” therefore not within the ambit of the Oov«lw_r, Act.2!
These cases firmly established that, despite the facial differ-
ences perceived by some to exist between computer pro-
grams and literary works of a more traditional nature,
programs are indeed protected by copyright.2?

The “‘second wave” cases have posed the far more sub-
tle question of what copyright protection means in the con-
text of computer programs.2? The question has several
forms:

ea.\rmp kinds of *‘taking” constitute infringement of a
copyright in a computer program?

What kind of evidence is necessary to prove such an
infringement?

20. See, e.g., Laurie, The Copyrightability of Microcode: Is It Software or Hardware .
or .wes. CompuTeRr Law 1 (Mar. 1985). Even before the second wave has crested .»
wm.:d wave of sofiware copyright cases is discernable on the horizon. See infra :o.:w
21. See Apple Computer, Inc. v. Franklin Computer Corp c2d 12
1251 (3d Gir. 1983), cert. dismissed, 464 U.S. 1033 (1984, Storn m._m% e v, Ko,
man, 669 F.2d 852, 856-57 (2d Cir. 1982); Apple Computer, Inc. v. Formula Int’]
Inc., 562 —.‘ M:vv. 775, 780 (C.D. Cal. 1983), aff 'd, 725 F.2d 521 (9th Cir. _cmav.
,Mm.mm%c Williams Elec., Inc. v. Artic Int’l, Inc., 685 F.2d 870, 874-75 (3d Qﬁ.
) 22, Franklin Computer Corp., 714 F.2d at 1249; Stern Elec., Inc., 669 F.2d at 857;
Formula Intl, Inc., 562 F. Supp. at 779-81; Williams Elec., Inc., 685 F.2d at mq.*lqm,
23. ‘Whelan Assoc, Inc. v. Jaslow Dental Laboratory, Inc., 797 F.2d 1222 aa.
F:.u 1986), cert. denied, 107 S. Ct. 877 (1987); E.F. Johnson Co. v. Uniden C..oav
623 F. Supp. 1485 (D. Minn. 1985); SAS Inst, Inc. v. S & H Computer Sys —:m;
605 F. Supp. 816 (M.D. Tenn. 1985). T

1987] SILICON EPICS AND BINARY BARDS 1503

What is the boundary between legitimate competition
and infringement of a computer program?

The “‘second wave” cases have involved nonliteral
forms of copying, such as translation from one program-
ming language to another or from one computer environ-
ment to another,2¢ or duplication of the outline, structure
and flow of a program.?5 In general, the federal courts have
held that substantial nonliteral copying of this sort also con-
stitutes infringement of a program author’s copyright.*
Nevertheless, two opposing camps have formed around
these “‘second wave” issues, and the debate over the validity
of the recent cases is now sharply drawn.

On one side are the commentators who favor a narrow
scope of copyright protection for software, one that would
allow a reasonably free taking from an original program.?” A
principal concern expressed by these commentators 1s that
“broad’” copyright protection would prevent the use of ideas
and concepts embodied in a program, thereby conferring a
monopoly of ideas to the first author in a given field.*® An-
other concern is that traditional copyright principles, if ap-
plied to computer programs, would result in granting
“patent-like” protection to program authors, making It im-
possible for others to offer products in substitution for ongi-
nal programs.?® Not surprisingly, accused infringers in the

24. See Johnson, 623 F. Supp. at 1497; 545, 605 F. Supp. at B21; see also Whelun,
797 F.2d at 1226.

25, Whelan, 797 F.2d at 1228-29.

96. Id. at 1224-25; Johnson, 623 F. Supp. at 1497; 8.45, 605 F. Supp. at 829-30.
But see Synercom Technology, Inc. v. University Computing Co., 462 F. Supp
1003, 1014 (N.D. Tex. 1978) (writing a program that conforms to input formats in
a copyrighted manual not an infringement of copyright in the manual).

27. See supra note 19.

28. OTA Stupy, supra note 9, at 83; see abo M. Mangan, The Software Copy-
right Lawsuit—The Alleged Infringer’s Case, (unpublished manuscript distrib-
uted at Jan. 16, 1987 BNA Copyright Program) [hercinafter Infringer’s Case]. A
more extreme version of this concern holds that—at feast tor a signiicant number
of programs—copyright, while it protects only expression. not the idea, of a pro-
gram, is a cause of the market's fuilure o functon properhy. Menell, Tadonng
Legal Protection for Computer Software, 38 Stan. 1. Rev. 1329, 1372 (1987) {hereinaf-
ter Tatloring].

29. Back to Basics, supra note 9, at 5; Rough Ground, supra note 9, at 148, The
argument that copyright protection against nonliteral copying will stiffe prolifera-
tion of substitute products has reached its shrill apogee in the computer trade
press in a flurry of articles that have imported a new term into the debate: ook
and feel, Zan industryterm thatrefers wo the aspects of a program that a usenp sees
“Whema computer-is operating under the control of that program. See. eg¢,

1504 UCLA LAW REVIEW [Vol. 34:1493

“second wave” cases have tended to embrace these argu-
ments without question or analysis. In some cases, their po-
sitions may reflect a conscious strategy (o sell programs
knowingly “cribbed” from someone else’s original.?® In
other cases, the defendants may have been arguing more
from the expediency of a particular situation than on the ba-
sis of a reasoned view of their economic self-interest.3!

On the other side of the debate are commentators who
argue that software should be accorded the same copyright
protection available for other works of imagination and who
oppose the imposition of artificial restrictions on such pro-
tection.?? Aligned with these commentators, in addition to
the plaintiffs in the ‘“‘second wave” cases, are the authors of
computer programs that have achieved substantial popular-
ity in the marketplace.3® As already mentioned, the federal
Judiciary has, within broadly defined limits, adopted the view
espoused by this group.3* Nimmer’s writings over the years,
his concurring opinion in the CONTU Report, and his em-
phatic declaration, published as the Appendix to this Article,
indicate that Mel Nimmer also believed that this view was the
correct one.

Machrone, Taking the Stand: The Look-and-Feel Issue Examined, PC Macazing 255
(May 26, 1987); The Software Inquisition, PC WorLp 15 (May 1987) [hercinafier
Inquusition]. In part, the “look-and-feel” controversy results from the Lact that pro-
grammers are just now learning what copyright is and in the absence of that
knowledge have been operating in a state of innocence that is aptly reflected in
the comments of Dan Bricklin, co-author of the first spreadsheet program, Visicalc:
“Most of the developers 1 talked to . . . would like to be free to borrow from
others as they see fit, in terms of the user interface You never copy exactly;
you always embellish because of your ego.” Inquisition, supra at 26. The legal as-
pects of the substitution arguments and the look-and-feel debate are considered
in Part 111, infra notes 49-291 and accompanying text.

30. See Petition for Certiorari at 12-13, Jaslow Dental Laboratory, Inc. v.
Whelan Assoc., Inc. (No. 86-675), cert. denied, 107 S. Ct. 877 (1987) [hercinafter
Jaslow Petition]; Back to Basics, supra note 9, at 8 (quoting declaration of Arthur J.
Levine in Whelan).

31. See EF. Johnson Co. v. Uniden Corp., 623 F. Supp. 1485, 1503-04 (D.
Minn. 1985).

32. See, eg., Davidson, Protecting Computer Software: A Comprehensive Analysis,
1983 Ariz. St. LJ. 611, 653; Note, Copyright Profection of Computer Object Code, 96
Harv. L. Rev. 1723, 1733-35 (1983); see also Note, Defining the Scope of Copyright
Protection for Computer Software, 38 Stan. L. Rev. 497 (1986).

33. Brief Amicus Curiae, Association of Data Processing Service Organiza-
tions, Inc., Whelan Assoc., Inc. v. Jaslow Dental Laboratory, Inc., No. 85-1358
(filed October 23, 1986).

34. See infra notes 183-268 and accompanying text.

1987] SILICON EPICS AND BINARY BARDS 1505

In the balance between these opposing camps lies the
future of the international computer industry.

B. The Stakes: The Business That Derives From
the Art of Programming

1. The Role of Software in the Computer Industry

Without software, there could be no computer industry.
The hardware provides heat and a littie light on its own, but
no information. Software controls the operation of the
hardware and adapts the hardware to the performance of a
wide variety of tasks. The critical importance of software 1o
the computer industry as a whole is illustrated by the experi-
ence of Japanese suppliers of computer systems, who are
said to have failed to gain broad acceptance of their hard-
ware products on the world market because of inadequate
software.3”

Mecasures of the amounts of revenue generated from the
commercial distribution of computer programs are inexact
because the population of software suppliers is so diverse
and diffuse, but it appears that for 1985 the figure is on the
order of $8 billion.?¢ Software revenues have grown quite
rapidly, at a rate exceeding approximately 30 percent per
annum in recent years.?” These figures demonstrate that the
art of writing software has fostered as vital and valuable a
market as the art of writing novels or plays or popular music;
perhaps more valuable, in fact, because the social benefits
and economic efficiencies deriving from high-quality com-
puter programs, e.g., to the banking system or the m‘? trathc
control and airline reservation systems or the auto industry
or the public schools, may exceed the cost of the programs
in_question by several orders of magnitude. Because
software plays the pivotal role in expanding the demand :.:,
computer systems, realization of the socal and economic
benefits of eclectronic computers i1s dependent to a large
measure on the means that society uses to encourage the
production of those original works of authorship that adapt

35, Competitive Status, supra note 13, at 63. See also S. McCrevian, Tue CoMing
Compurer INDUSTRY SHAKEOUT 119-20 (1984); U. WENL, sugra note 14, at 311

36. Softwarce Industry Report, June 27, 1986, at 10. See Competitive Assessment,
supra note 11, at 20.

37. Software Industry Report, June 27, 1986, ac 10

[

1506 UCLA LAW REVIEW [Vol. 34:1493

the computer to the conquest of ever more challenging
tasks.

2. The Dynamics of the Programming Business

It is important to keep in mind, as we consider the role
of copyright in this industrial rather than aesthetic context,
that the products in question derive entirely from the crea-
tive energies of authors practicing a craft. The literary na-

ture of computer programming dictates the characteristics
of the software market under consideration here. Program-
ming as a business is characterized by the following eco-
nomic attributes:

1. no significant capital barriers to entry;

2. ahigh degree of reliance on skilled intellectual labor;

3. ahigh degree of variability in the skill level of people

active in the profession; and
4. a shortage o%vmov_a who know how to program at
all, and a severe shortage of good programmers.3%

Because the cost of entry into the business of writing
programs is low, and because skilled individuals can have ac-
cess to a large market with few inputs other than their own
time and energy, one finds a large number of enterprises en-
gaged in the business of programming. One also finds that
programs written by a single author or a small group of au-
thors can become extraordinarily successful,? and garage-
shop operators can suddenly find themselves major forces in
the industry.40

Another characteristic of software is that its inherent
benefits may be realizable on many different brands of hard-
ware. Programs written for one type of computer can be
adapted or translated (or “ported,” to use an industry term)
to a different type of computer, particularly if they are writ-
ten with this possibility in mind.#!' For the author, this
“portability” can increase the demand for her programs, in
the same way that translating a novel from its original lan-
guage into another language can increase demand for copies

38. Competitive Assessment, supra note 11, at 7, 11, 27.

39. See R. LEVERING, M. KaTZ & M. Moskowrrz, TueE COMPUTER ENTREPRE-
NEURS, 115-33, 145-53 (1984).

40. Id. at 155-163, 189-94, 205-12.

41. See, e.g, B. MACLENNAN, PRINCIPLES OF PROGRAMMING LANGUAGES: DE-
SIGN, EVALUATION, AND IMPLEMENTATION 157-59 (1983); J. SAMMET, PROGRAMMING
LANGUAGES: HISTORY AND FUNDAMENTALS, 36—48 :oam:,.

1987] SILICON EPICS AND BINARY BARDS

of the novel. For the user, portability can provide additio
flexibility in configuring computer installations and choc
ing suppliers.

In short, the business of programming has much 1n

/ i common with other branches of the business of writing. The

products of thé programming business are the products of
the human-activity known as authorship; That such author-
ship takes place in the context of a programming language
does not change its essential nature, as we will shortly
demonstrate.*? It does, however, add a dimension of com-
petitive urgency to the author’s motivation, a dimension that
is important to understand.

3. Competition Through Innovauon

~The dynamics of competition in the computer industry
are familiar to students of contemporary commerce. Since
its inception in the 1950s, the computer industry has been
characterized by competition on the basis of the
price/performance and functional capability of suppliers’
products.** This form of competition, sometimes called “in-
novational competition,”** has produced consumer benefit
on a scale unequaled in American industry.*>
The process of innovational competition requires that
firms develop new products. Those developments produce
features that give their products advantages 1n
price/performance or function. Those advantages, in turn,
attract customers. Competing firms must offer similar (or
greater) advantages or risk losing customers. The develop-
ment efforts of the competing firms in the industry cause the

42. See infra notes 49-172 and accompanying text.

43. “Price/performance,” for purposes of this Article, can be thought of as a
measure of a product’s primary capability—e.g., processing speed, storage capac-
ity, or print specd—divided by the product’s price. “Funcuonal capability” is sim-
ply the range of different uses a product offers.

44. See A, ThoMpsON, EcoNomias ofF tHE Firm 464, 469-79 (1973).

45. F. Fisuer, J. McKie & R. Mancke, IBM anp 1oE U.S. Data PROCESSING
INpUSsTRY 35355 (1983); M. PrisTER, Dara PROCESSING T'ECHNOLOGY AND ECo-
NoMics 58-73 (2d ed. 1979). In 1952, it cost about $300 to do a million processor
operations and conswned ten minutes’ tme; in 1980 the cost was $0.001 and the
time was 0.1 seconds. Computation speed in 1980 was 1.000,000,000 times
greater in 1980 than it was in 1950 and by the end of the 1980s is expected to be
1,000,000,000,000,000 times greater. In 1952, computer memory capacity was on
the order of 40,000 characters. In 1975, the memory capacity was as much as
15,000,000 characters. OTA Stuby, supra note 9, at 4.

1508 , UCLA LAW REVIEW [Vol. 34:1493

successive waves of innovation that, in turn, produce dra-
matic improvements in price/performance and functional
capability. In the case of software, these development ef-
forts consist largely of programmer time, whether put for-
ward by large teams of programmers working for established
companies or by individuals or small groups investing their

“sweat equity”’ to produce software for which they feel there

will be a demand.*¢
Reaction by competitors to instances of innovational

competition has generally taken one of two forms beyond
the temporal expedient of price-cutting:

— response by offering products based on independent,
alternative designs, but offering similar or even greater
improvements; or

— response by- nov<_:m the design of the innovative
product.4?

Both forms of competitive reaction have been important
stimuli to technological advance in the industry, but innova-
tion is obviously a more mmportant factor than imitation.
Given that these reactions are predictable, there is a vital in-
terest in preserving that which stimulates the innovator to
innovate in the first place. The question is, what-meves-the
inrRevator.to.expend-her-efforts-to-develop.a-new product?

The innovator calculates, either explicitly or implicitly,
that, despite the competitive reactions, she will be able to
earn an attractive return on her investment in development
of the product in question. This return will be promising if:
— the product has adequate value to potential customers,

— and the innovator will be able to sell her product to
enough customers to justify her risk and investment.

46. “In 1981, it appears that farming is capitalized more heavily than pro-
gramming.” C. JoNEs, PROGRAMMING PropucTiviTy: Issues For tie Eicuties 3
(1981). It cannot be emphasized too strongly that bringing a software system
into existence is not analogous to the production of a car or even a computer
mainframe. It is rather the equivalent of the initial design and prototype con-
struction of the car or the computer” J. BUCKLE, MANAGING SOFTWARE
Projects 4 (1977).

47. See, e.g. F. Fisuer, J. McKiE & R. MANCKE, supra notc 45, at 143-49,
286-303, 409-48; see also C. FREEMAN, THE ECONOMICS OF INDUSTRIAL INNOVATION
179-82 (2d ed. 1982); A. THOMPSON, supra note 44, at 471. The ability lawfully to
copy a product’s design is of course constrained by intellectual and industrial
property laws. Only the constraints imposed by copyright law are considered in
this Article.

1987] SILICON EPICS AND BINARY BARDS 1509

Because imitation is clearly foreseeable in all events,
and can be technically effortless in the case of software, the
innovator will find the economic calculus attractive only if
she is assured sufficient “lead time” before competitive
products begin displacing her product in the market.

4. Copyright as a Precondition to Competition Through
Innovation

The existence of lead time is indispensable to compet-
tion through innovation. Lead time is assured by several
mechanisms:

— keeping new developments secret before they are
announced;

— keeping product details secret afier announcement, and
insofar as possible, even after shipmeng;

— patenting inventions; and

— copyrighting expressions.

Hardware products produce lead time because reverse-
engineering hardware entails a substanual expenditure of
time. Would-be imitators must first determine how the new
product works and what manufacturing processes were used
to produce it, then adapt or build the requisite manufactur-
ing facilities, and then build and test their own products.

Sofiware is different. There are typically no manufac-
turing processes to analyze, and no mvmnmmw factories to set
up. Software is written and tested; it is then published, like
books, records, or videotapes. It is possible to copy a com-
puter program in seconds and nmma_E reproduce that copy
by the-hundreds or thousands. It is more difficult, but none-
theless relauvely easy, to adapt, translate, or “port” a pro-
gram, and thereby appropriate much of the value inherentin
the original author’s creation. Software, by its nature, lends
itsell to quick and unexpected duphication and even transla-
tion. Thus, il a programmer’s only lead ume “is the time it
takes a technician to copy or adapt his work,” rarely, if ever,
will the first author enjoy the exclusive use of his work long
enough to justify the effort and risk of its creation.*®

48. Braunstein, Fischer, Ordover & Baumol, supra note 17, at 237-38; Tavr-
tng, supra note 28, at 1337, The fact that computer programs, like other hiter:
works, require legislation to deter copymg—i.e., th 1
y for the product from taking the be
two factors that render software a “public good,” similat to a garden or m

1510 UCLA LAW REVIEW [Vol. 34:1493

In this environment, what produces the lead time? The
answer that has worked well with other forms of authored
products is the copyright law and its proscription against
copying, adaptation, translation, or preparation of derivative
works by others. The proscription ensures that rivals must
invest in authorship in order to compete, while guaranteeing
that such rivals have the free use of ideas embodied in the
original expression. Moreover, the scope of the copyright
protection available to programmers will be a determining
factor in the level of investment in software development,
the degree of competition by innovation, and the resulting
rate of technological progress in the computer industry.

III. RESOLVING THE CONTROVERSY

In order to decide what scope of protection the copy-
right law properly affords to computer programs, it is neces-
sary to understand what comprises expression in computer
programs, and then to consider how the copyright law ap-
plies to this expression. Developing that understanding, at
least on a general level, simply requires an examination of
the way programmers express themselves in programs, and
of the process of writing programs. It is to that examination

that we next turn.

A. How Programmers Express Themselves
1. Works of Authorship vs. Results

There are two fundamental modes of thinking about
what computer programs are. One mode represents the
perception of the typical customer. A typical customer per-
ceives computer programs as things that cause computers to
act in a particular way. In a sense, this perspective is similar
to the concertgoer’s impression of a symphony. To the con-
certgoer, the symphony is the set of sounds which he hears,

defense (the other factor being that additional consumers do not deplete the sup-
ply of goods available to others). Tailoring, supra note 28, at 1337. While in a
technical economic sense software may be likened to public gardens or miluary
defense for some purposes, the analogy is not particularly instructive. The vigor
of the American software industry (see supra text accompanying notes 35—17) be-
lies the notion that the government needs to be a supplier—or the supplier—of
software to industrial or individual customers or to subsidize the supply of
software to such customers. That intellectual property requires legal protection
against misappropriation does not mean that property “belongs in some sense o
the public.” See infra note 179.

1987] SILICON EPICS AND BINARY BARDS 1511

an aesthetic experience. Yet the concertgoer knows that the
symphony, as created by its composer, is in fact a sequence
of instructions that must be processed by an instrumentality,
the orchestra, to produce the ‘“symphony” heard by the
listener.

The other way of thinking about computer programs, or
symphonies, is to consider them as writings. Programs, like
other literary works, consist of lines of text composed of
symbolic characters. That is the programmer’s perception,
for that is the way she or he writes, or reads, a program.
Returning to our concert analogy, the programmer’s view
would be analogous to that of the composer.

The expression in a program may be discerned from
either perspective, but more of it is discerned when pro-
grams are considered as writings.*? In this Section, we invite
the reader to experience the programmer’s view of her craft.
We will first examine whether the constraints on program
authorship imposed by the computer itself are quite as hmit-
ing as some commentators think. Then we will have a quick
course in the elements of programming style, after which we
will consider what the experts have said about the range of
programming expression. We conclude our excursion with
an overview of the process of writing programs and a consid-
eration of what that process suggests about the scope of pro-
grammeis’ expression.

49. There are, of course, programs (such as computer games and other highly
interactive programs) in which a great degree of expression also appears in the
audio-visuul display which the program instructs the computer to present. This
Article does not deal with questions involving expression in such audio-visual dis-
plays, as 1o which ¢ . I copynght !

understood. Al :
industry recently concerning the hability of those who copy the “look and feel” of
the audio-visual displays of screen-oriented computer programs, see, e.g., Com-
plaint, Lotus Development Corp. v. Mosaic Software, Inc., No. 87-007-4k (). Mass
1987); Complaint, Lotus Development Corp. v, Paperback Software Incl, No. 87-
0076K (D. Mass 1987) ; see also Sanger, A Dwiswe Lotus “Clone War™, N.Y.
Feb. 5, 1987, at D1, col. 8, the scope of protection attorded o such andio-visual
displays is quite well articulated and would appear not o r depending on
whether the source of those displays 1s computer progr nicions, moton
picture film, videotape, or any other tangible medium of expression. See
Broderbund Software, Inc. v. Unison World, Inc., 648 F. Supp. 1127 (N.D. Cal.
1986).

HIICS,

1512 UCLA LAW REVIEW [Vol. 34:1493

2. The Context in Which Programs Are Written

It is sometimes said that programs differ from other
kinds of literary works because they are not intended to be
read by people. That assertion is false. Programs written
for commercial distribution are almost always written with
the idea that they will be read by people. We are not talking
about bedtime reading, of course (except perhaps for hard-
core “byteniks’’), but about the fact that for programs to be
modified, enhanced, or corrected, they must be “human-
readable.”’3°

Eventually, of course, a program is reduced to a form
that can be read by a computer. Even in “machine-reada-
ble” form, however, a program can be read and understood
only by humans, although that form is the most difficult of
all versions of a program for humans to read and use.5!

For programs to be “machine-readable” as well as
“human-readable,” the programmer must adhere to special
kinds of syntactic, semantic, and constructional conventions.
These conventions affect the form of expression but, as we
shall see, not the range of expression for computer
programs.

a. What Computers “‘Understand”

In the present context, “‘computers” are no more than
machines fabricated of steel, silicon, plastic, and other physi-
cal components. Conceptually, these machines are only ar-
rays of elements capable of being in a “turned on” or a
“turned off” state like so many light bulbs. They are
brought to life by the requisite switches either automatically
in response to a change in some other element or at the di-
rection of some intelligent operator.

50. R. LINGER, H. MiLLs & B. WrTT, STRUCTURED PROGRAMMING: THEORY AND
PracTice 147-48 (1979). See also J. SAMMET, supra note 41, at 14-17.

51. Ironically, most “narrow protectionists” readily concede that the strict
machine-readable sequences of a program are protected by copyright—and are all
that is protected—whereas the elements of the program that survive translation
into a higher-level, more human-intelligible expression are said to be not protect-
able. In other words, copyright protection should, the critics say, be severely
truncated because programs are not human-readable; yet, it is precisely the most
human-readable elements of the program’s expression that would be denied pro-
tection by the truncation they propose. The paradox signals the fallacy of the
argument.

1987] SILICON EPICS AND BINARY BARDS 1513

Such a machine cannot “‘understand” anything. It sim-
ply reacts in accordance with the principles of physics to the
actions of operators on its various circuits. The “hghts”
turning “on” and *oftf”" have significance only to human be-
ings who have designed a code that can be expressed in se-
quences of on’s and off’s, a code in which known electrical
reactions will correspond exactly to large numbers of ele-
mentary mstructions.

In order for this machine to do anything useful, some-
one must work the switches. This could be done by hand,
switch by switch; and in the earliest days of electronic com-
puting, 1t was.?2 Over the years, however, people have in-
vented ways to work switches by ‘“remote control.” One
way, exemplified by the Jacquard loom of post-revolutionary
France, is to use cards with holes in them. In the Jacquard
loom, selected pegs would fall into holes in the inserted
cards, thercby switching the loom’s pattern. A much more
sophisticated approach is to use electronic signals—“on’s”
and “off’s;” 1.e., to mnstruct the hardware to turn the swiiches
on or off according to a predetermined plan and, as it turns
out, at electronic speed.

Use of this latter technique is the hardware underpin-
ning of the art of programming and the basis of modern
computer systems. The power of this technique is so great
that no general purpose computer 1s made up of hardware
alone. All computers consist of (1) hardware that stores and
manipulates “on’s” and “off’s” representing informaton or
data, (2) hardware that controls the critical switches of the
computer in specified ways in response to a set of predefined
patterns of “on’s”" and “oft’s’" called the “instrucuon set” of
the computer, and (3) eclaborate sets of instructions—pro-
grams—that will cause the computer to perform operations
that human beings can translate into intelligible and useful
results.

These three constituents of a computer or, more prop-
erly, a computer system, are organized functionally accord-
ing to the following taxonomy:

1. Processing: The hardware device that “‘reads’ the pro-
grams is the processor. The job of the processor is to act on

52, See tnfra notes 82-84 and accompanying text.
53. C. Geag, INTRODUCTION TO COMPUTER SCIENCE 49-50 (1973); M. Manbi.,
Funpamentars oF Erectronie Comprurers: DIGTal aNp ANaLoG, 6-8 (1967).

1514 UCLA LAW REVIEW [Vol. 34:1493

data in accordance with the program’s instructions.>* Impor-
tant elements of the processor are:
(1) a pointer to the address of the instruction next to
be processed,
(1) circuitry to interpret instructions,
(11) storage locations, or registers, to hold the data to
be acted on, and
(iv) circuitry to perform the arithmetic or logical opera-
tion on the data which is called for by the
instruction.%®
With modest exception, today’s processor hardware can
process, albeit very rapidly, only one elemental instruction
at a time, such as adding two numbers or comparing two
numbers.>® It can perform only those elemental operations
that are built into its circuitry.’ For any given computer,
the set of such operations corresponds to a series of elec-
tronic signals that we have already referred to as that com-
puter’s “instruction set.” One rule of expression for
computers, therefore, is that instructions must be expressed
to the processor in terms of combinations of the elemental
operations in its circuitry.>s
Another rule of expression for programmers is that the
processor can only read ‘“on’s” and “off’s.”’%® That limita-
tion forced programmers in the early days of the industry to
use a “‘binary” notation system, i.e., a system in which all
characters are expressed as combinations of the symbols
“O” and “1.76° Binary numbers work very much like Arabic
numbers, although they are much less compact. For exam-
ple, the decimal number 37 is written in binary as 001001 10.
Binary notation may also be used to represent letters.
In many computers, binary information is separated
into blocks—each of which can represent a single character
in some other language, such as a letter of the alphabet or

54. Tue McGraw-Hie Computer Hanpsook §§ 2-8 (H. Helms ed. 19839).

55. Id. at §§ 2-8, 6-16; see also A. RALsTON, ENCYCLOPEDIA OF COMPUTER SCI-
ENCE AND ENGINEERING 102-06 (2nd ed. 1983).

56. TuE McGraw-HiLe CompPUTER HANDBOOK, supra note 54, §§ 6-16. The
exception referenced in the text is the so-called *parallel processor,” which is not
yet an important commercial factor but which will, in time, add yet another new
dimension of complexity and flexibility to the task of writing programs. See Paral.-
LEL PROCESSING SysTeEMs (D. Evans ed. 1982).

57. THE McGRraw-HiLL CoMPUTER HANDBOOK, supra note 54, §§ 6-16.

58. Id.

59. Id. at §§ 1-7.

60. A. Giurie, BiNary ARITHMETIC AND BOOLEAN ALGEBRA 1-14 (1965).

1987] SILICON EPICS AND BINARY BARDS 1515

the symbol for an Arabic numeral. Thus, many computers
use eight “‘bits”” (binary digits, 1.e., zeros or ones) to repre-
sent characters. With eight bits, we can represent 256 char-
acters, which can include the English alphabet in both upper
and lower case, the numerals 0-9, and many other symbols
as well. This eight-character block is called a “byte” of in-
formation, and is a common way of organizing binary infor-
mation in computers.o!

Binary arithmetic has much in common with formal
logic.52 The two-state format, 1 and 0, is analogous to the
true-false format of formal logic. As a result, the binary sys-
tem lends itself not just to the computation of mathematical
solutions, but also to the parsing of logical problems. For
example, a computer may be instructed to do the following:
If it is true that a case mentions the word *“‘copyright,” and
true that it mentions either ‘‘computer program’™ or
“software,” and true that it was decided after 1982, then the
name of that case should be printed.

As already suggested, there are electronic circuit ele-
ments that function in exactly the same way as binary arith-
metic.93 That is, they are only capable of being in one of two
states, on or off. One circuit that can be built from such ele-
ments is an “And” circuit. A simple “And” circuit has two
input lines and one output line. In this circuit, current will
flow out (signifying a binary 1) only if current is flowing in
on both inputs. Another such circuit is an “Or” circuit, out
of which current will flow only if current is flowing in on
either input. From such elementary circuits, a simple adder
may be constructed in which the inputs 1 and 0 result in the
output 01, the inputs 1 and I result in the output 10 and the
mputs 0 and 0 result in the output 00.

By interconnecting large numbers of these elementary
circuits, powerful computers capable of performing millions
of mstrucuons per second are created.®* By switching the
connections between these circuits through software, the

61. M. WEeiK, Stanparbd DicrTioNary oF COMPUTERS AND INFORMATION
PROCESSING 49 (2d ed. 1977).

62. S. Avetr1o & C. NoLAN, PRINCIPLES AND APPLICATIONS OF BOOLEAN ALGE-
BRA 51 (1U64).

63. Tur McGraw-Hun Comruirr HANDBOOK, suma note 51 § 520 8.
ADELFI10 & C. NoLAN, supra note 62, at 206-15.

64. A, RatsToN, supra note 55, at 103, 1127-31.

1516 UCLA LAW REVIEW [Vol. 34:1493

range of problems that computers can be directed to solve
is, in fact, infinite.

ii. Storage: Just as there are circuits that can perform
logic operations, there are also circuits that function to store
a bit of information (a 1 or a 0), to report on what is stored
when queried, and to change the contents of storage on
command.®5 Large numbers of such circuits can be created
on a semiconductor chip. In 1981, the storage chips in wid-
est manufacture could hold sixteen thousand bits of infor-
mation.5¢ Today, the million-bit or megabit chip, is widely
available and the 16-megabit chip is being discussed in the
trade press.®?

For our purposes, storage in a processor can be concep-
tualized as a collection of mailboxes or cells, each of which
can hold one bit of information.6® That information may be
data or it may be part of an instruction. Each cell has an
associated address and the processor sends information to
or retrieves information from a cell by referencing its
address.

Processor storage is temporary storage for data or in-
structions immediately needed by the processor.®® Long-
term permanent storage is generally provided by disk drives,
tape drives, or other devices that store the information mag-
netically or, to refer to an exciting new technology, optically
as points formed on a surface by light from a laser.? These
devices generally offer much larger storage capacity than
processor storage but retrieve stored data at a much slower
speed than the processor storage. One job of the program

65. THE McGRraw-HiLL CoMpuTER HANDBOOK, supra note 54, § 7.3.

66. W.H. Davipson, supra note 12, at 107.

67. See 16 Meg—A Test Vehicle for Now, ELECTRONIC NEWS, Mar. 2, 1987, at 36.

68. M. ManpL, supra note 53, at 164. In actual practice, the information in
cells may only be retrievable in a string, e.g., a byte, rather than bit-by-bit. A.
RALSTON, supra note 55, at 944-45.

69. In other words, the data and instructions in processor storage may con-
stantly be changing as the processing proceeds. See THE MCGraw-HiLL COMPUTER
HANDBOOK, supra note 54, at 2-4.

Like all generalities, this one has its infirmities. For example, many com-
puters contain some permanent storage in the form of read-only memories, in
which certain programming steps are permanently or semi-permanently recorded.
A. RALSTON, supra note 55, at 1264-65.

70. A. RALSTON, supra note 55, at 955-67. See also J. Hecut & D. TERisI, La-
SER, SUPERTOOL OF THE 1980s 207-08 (1982).

1987] SILICON EPICS AND BINARY BARDS 1517

author is solving problems caused by such differences in
speed.”!

iii. Input and Output: The information processed by a
computer system must originally come from somewhere else
and ultimately must be delivered somewhere else.

The input information may be in one or more of several
forms. Data, text, image, voice, and graphics are five com-
mon types of information “input” into a computer.”* The
component of the computer that performs the input task
may also take any number of forms: card readers, tape, disk
or diskette drives, punched paper tape readers, keyboards
on video display terminals, optical or magnetic character
readers, or speech recognition devices.” Increasingly, com-
puters themselves are serving as input devices to other com-
puters.” The results obtained from processing may be
stored on tape or disk storage. They may also be printed out
on a printer or displayed on a screen, spoken over the tele-
phone by a voice response unit, punched as holes in cards or
paper tape, graphed on a plotter, or sent directly from one
computer to another.”s

Each type of input and output device has its particular
way of addressing, or being addressed by, the processor.
The ability to communicate with such devices is generally
provided to the processor by means of software. One of the
tasks typically performed by the authors of operating system
software is to facilitate the input and output of information
between the processor and the profusion of input and out-
put devices with their various operating requirements.”

iv. Control: Computer systems are composed of a mul-
tiplicity of elements. The interactions of these elements
must be controlled. For the most part, controlling the cle-

71. See S. Kurzsan, T. HEINES & A. SAYERS, OPERATING SYSTEMS PRINCIPLES
93-107 (1975).

72. A. RALSTON, supra note 55, at 736-38.

73. Id. at 739-66.

74. Id. at 647 (front end processors). See also D. CHaroras, Personat. Com-
PUTERS AND DaTa COMMUNICATIONS 299 (1986) (“The successful implementation
of intelligent, multifuncuonal, interactive workstations is tantamount (o their on-
line connection to mainframe resources, particularly to large databases.”).

75. A. RALSTON, supra note 55, at 739-66.

76. S. Kurzean, T. HEINES & A. SAYERS, supra note 71, at 93-107.

1518 UCLA LAW REVIEW [Vol. 34:1493

ments of the computer is the task of software writers.”?
Their creative energies transform the hardware world of ele-
mentary operations on ones and zeros into a coordinated set
of products that can store and retrieve vast libraries of infor-
mation, transmit messages among thousands of terminals,
and allow users at those thousands of terminals to share the
resources of the same central processor at the same time.
“Control,” in this sense, denotes the imaginative elabora-
tion of instructions that take as given a computer’s instruc-
tion set and compose on that limited base a complex, finely-
articulated environment that, because of the speed of
processor circuitry, responds in almost miraculously varied
ways to customer prompting.

v. Communication: Computer systems can communicate
with one another and parts of computer systems may com-
municate with one another over telecommunications lines.”8
The personal computer behind a lawyer’s desk can access
case law data bases in a large computer hundreds of miles
away; an international enterprise’s computers around the
globe can transfer information to one another via satellite.”
The various teller terminals in a bank may communicate with
a processor over telephone lines or other wiring systems,
forming a “local area network” or ‘“‘data communications
network.”’8® For such networks to succeed, there must be
programs that instruct the computers to behave much like a
post office or central telephone exchange.8!

77. See M. MANDL, supra note 53, at 241 (“Thus, a program tells the machine
what to do, how to do it, and where 1o find the data to be acted on during execution
of the program.”).

1982).

79. See West Publishing Co. v. Mead Data Cent,, Inc., 616 F. Supp. 1571 (D.
Minn. 1985), cert. denied, 107 S. Ct. 962 (1987); W. StaLLINGs, DaTa anp Com-
PUTER COMMUNICATIONS 299-319 (1985).

80. “Local area networks” are communications systems that interconnect de-
vices installed proximate to one another (i.e., a few kilometers or less apart). They
may utilize privately-owned wiring systems. See CoMPUTER NETWORK ARCHITEC-
TURES AND PROTOCOLS supra note 78, at 148 (“'Data communications networks'” are
communications systems that interconnect devices that are installed remote from
one another (i.e., up to thousands of miles apart). They usually utilize shared
switched networks or broadcast networks, most prominently the public switched
network.). See W. STALLINGS, supra note 79, at 189-92, 240—13.

81. See U. Brack, Data CoMMUNICATIONS, NETWORKS, AND DISTRIBUTED
ProcEessING 121-35 (1983).

1987] SILICON EPICS AND BINARY BARDS 1519

b. The Language(s) of Computers

The foregoing discussion indicates that computer hard-
ware imposes certain requirements on the way programs are
written. Yet those requirements provide a view of program-
ming at its most primitive level, a level hke that of an Ur-
language that is no longer employed in actual discourse.
Rather, programmers have created languages more conve-
nient to human expression, which computers then translate
into elemental patterns of 1's and 0’s. We will now take a
brief look at the development of such languages during the
history of computer usage.

One of the first programmable computers was the EN-
IAC, which was designed and built at the University of Penn-
sylvania in 1946.82 It weighed 30 tons, contained 17,000
vacuum tubes, and occupied 1800 square feet.83

The ENIAC was designed to calculate trajectory tables
for artillery shells but it was capable of being adapted to
solving other problems as well. In order to adapt the EN-
IAC, the operators had to reset some of the 6,000 switches
on the machine and replug some of the hundreds of cables,
like telephone operators at an old-fashioned switchboard.
In effect, they were rewiring the connections among the EN-
IAC’s circuits. The technicians who did this work no doubt
used written mstructions from the machine’s designers that
indicated in human-readable diagrams or language which
switches should be set and how cables should be plugged in
order to cause the machine to produce the desired result.

Replugging the computer was obviously a ime-consum-
ing, error-prone process, and if it had not been mechanized,
there would be no commercal computer industry today.
Fortunately, one of the people famihar with the ENIAC pro-

82. The development of the ENIAC is described in S. AvGarten, Brr By Bre:
AN ILrustrated History oF COMPUTERS AND THEIR INvENTORS 10731 (1984). A
certain amount of controversy attends the history of this pivotad development
ject and that of 1ts successor, the EDVAC, with substanual discord among the par-
ticipants as 1o who was responsible for what aspects of the developme Fhree
personal views of what wanspived are available in L Gorosting, Toe CoMmeerer
FROM Pascar to voN Neumann 149-84 (1972); H. Lukort, From Dirs To Bris: A
Personat History or THE Erecrronic Comrurer 29-41 (1979); and N. Steen,
From ENIAC To UNIVAC 7-86 (1981). The textual description of the ENIAC
computer and the central concept of the stored program to which the difliculues
of programming the ENIAC gave risc is taken from S, AUGARTEN, supra, at 12142
and N. STERN, supra, at 50-51.

83. Today's hand-held programmable calculators are more powertul

1520 UCLA LAW REVIEW [Vol. 34:1493

ject was the great mathematician John Von Neumann. Von
Neumann championed the idea that the instructions for
replugging the ENIAC were a kind of information in them-
selves and that they could be stored in the computer just like
the data on which the computer operated. By running the
instructions, which we now call a “program,” through the
computer along with the data and thereby indicating to the
computer through which of its circuits the data should flow
and in what sequence, the task of rewiring the computer
could be eliminated and the computer would become a truly
general-purpose, problem-solving tool.

This concept, the “stored program,” is the key to the
industry and to understanding the computer. By storing—
for example, on disk or tape—a vast variety of programs and
calling them into the processor’s storage as needed, the
same computer can be made to process a payroll, look up a
customer history, book an airline reservation, send an item
of electronic mail, play chess, simulate a hurricane, or keep
track of a manufacturer’s inventory.

The instructions that comprise the program must be
written in a language that the processor reads. Strictly
speaking, processors read only their own ‘“machine lan-
guage.” (“‘Read” in this context means ‘‘can execute.”’) The
“instruction set” of a computer is a specific set of strings of
binary numbers that have particular ‘““meaning” to the
processor; when they are presented as input to the proces-
sor, they cause the processor’s circuitry to perform specified
actions.84

Machine-language programs, then, are programs ex-
pressed as strings of 1's and 0’s. Each machine-language
program consists of sequences of instructions. The instruc-
tions, generally speaking, take the form of (1) a command to
the processor to perform some operation, (2) the identifica-
tion of the parameters on which the operation is to be per-
formed, and (3) the locations in processor storage where
certain actions are to take place.3> One such instruction,

E

84. M. WEIK, supra note 61, at 80, 296, 315 (defining “instruction set” as the
set of operators of the “instruction repertory” or “‘operating codes” which the
computer is capable of executing).

85. M. Boui, INFORMATION PROCESSING 192-93 (4th ed. 1984). The discus-
sion in the following text paragraph of the evolution from machine languages to
more natural programming languages is taken from id. at 365-68.

1987] SILICON EPICS AND BINARY BARDS 1521

translated from its binary form, might be “move parameter
A to memory location 1103.”

Machine-language programs contain large numbers of
such instructions all written as sequences of ones and zeros.
In the very early days of the industry, almost everyone who
wrote computer programs wrote them directly in machine
language because it was the only way to instruct the
machine. This was a long, tedious, error-prone process. Be-
causc of the problems of writing in machine language, peo-
ple began to write programs that would make the job of
writing other programs easier, by serving as translators be-
tween symbols that humans could more readily understand
and machine language. These translation programs perform
tasks somewhat akin to those performed by translators at the
United Nations. Programmers write their programs in lan-
guages other than machine language, languages that are
more natural for them to write in, and the translation pro-
grams translate into machine language the programs so writ-
ten. The translations are not necessarily simultaneous;
except in the case of programs called “interpreters,” transla-
tion programs generally prepare complete translations of
other programs and then present the completed translations
to the processor for processing. The languages that these
translation programs accommodate may be categorized as
follows:

Assembler language 1s simply machine language written in
symbols more comprehensible to humans than binary nota-
tion.#¢ In other words, the commands are the same as in
machine language, but they are expressed as alphabetic
characters or recognizable words (such as ADD) instead of
as I’s and 0’s. Parameters may be expressed as decimal or
hexadecimal numbers instead of as binary numbers.#? Loca-
tions are given names as well and those names can be chosen
to provide some idea of what is stored in each location, e.g.,
“BALANCE” or “SUM” or “TOTAL.”

A further aid to the readability of assembler-language
programs is the ability of the programmer to write com-

86. Id.

87. A hcexadecimal number is a number expressed in base-16 notation rather
than base-10 (decimal) notation. Any group of four binary numbers may be rep-
resented as one hexadecimal number. /d. at 77-79. Hexadecimal 11, for example,
is the same as decimal 17. Hexadecinal 1A is the same as decimal 26.

1522 UCLA LAW REVIEW [Vol. 34:1493

ments as to the reason for each instruction.®® The com-
ments are written for purposes of later reference by the
author or any other reader; they are not processed by the
computer during execution of the program.®®

Assembler language cannot be read directly by the com-
puter. A program called an “‘assembler’ translates programs
written in assembler language into the I's and 0’s of
machine language.®®

Both machine language and assembler language are
based on the way computers are designed, rather than the
way people think. They specify each elementary action that
the computer must take, a very tedious thing to do.%!
Although a significant improvement over writing in machine
language, assembler-language programming is still burden-
some because, generally speaking, each instruction that the
processor is to perform has to be written by the program-
mer. However, in the 1950s people began to realize that
programs could be written that would translate single, high-
level instructions into strings of assembler or machine-lan-
guage instructions.

High-level languages are based on the notion that the job
of translating a program written the way people think (high-
level) into a program written the way computers are
designed (low-level) could be mechanized if the high-level
language was sufhciently formalized.??

The first formalized, high-level language available com-
mercially was FORTRAN (FORmula TRANGslator), created
at IBM in the late 1950s. Since then, many others have been
created, with names like COBOL, BASIC, PASCAL, and
LISP.v3

Just as assembler language programs are translated into
machine language by “assemblers,” high-level language pro-
grams are translated into assembler or machine language by

88. Tue McGraw-Hit. CompuTER HANDBOOK, supra note 54, at § 11.3.

89. S. Aracic & M. AcsiB, THE DESIGN OF WELL-STRUCTURED AND CORRECT
ProcGrams 11, 17, 254 (1978).

90. M. Bowt, supra note 85, at 368.

91. Id. at 365-68. See also T. PRATT, PROGRAMMING LANGUAGES: DESIGN AND
IMPLEMENTATION 21 (2d ed. 1984).

92. M. Bont, supra note 85, at 370-71.

93. See HisTORY OF PROGRAMMING LANGUAGES CONFERENCE 25-41 (R. Wexel-
blatt ed. 1981).

1987] SILICON EPICS AND BINARY BARDS 1523

programs called “compilers.””* By expanding a single,
high-level instruction into several “low-level” instructions,
compilers remove from the programmer the burden of
knowing how a specific processor actually works (..., what its
“instruction set’’ is).95 As a result, the programmer can ex-
press the program in a language that is both more economi-
cal of her time and more comprehensible to a human reader.
Additionally, the existence of compilers for a popular lan-
guage like COBOL allows the same programs to run on
processors with very different instruction sets. In other
words, compilers written for each processor can translate
the same high-level language program into different
machine languages.’¢

In high-level languages, the command-parameter-loca-
tion format of instructions can be substantially softened.
The direct imperatives of low-level languages (e.g., “Add A,
B,” “Move X, Y”) are replaced by more refined directions
(eg., “If A exceeds 1000, then print ‘continue;’ else print
‘stop’ ”’); or by descriptions of relationships among ‘‘ob-
jects” and query verbs that allow inferences to be drawn
from those relationships; or by graphic icons and screen
pointers.®?

The point here is twofold. First, computers can be
programmed in languages that are increasingly “‘natural” for
people to use. Therefore, any argument that programs
should be treated differently from other literary works be-
cause programming languages are different from human lan-
guages proceeds from a fundamentally erroneous premise.
Second, there is no linguistic basis for distinguishing be-
tween the protection to be afforded programs expressed in
high-level languages and that to be afforded programs ex-
pressed in machine or assembler languages, since a machine
language or assembler language version of a high-level lan-
guage program is nothing but a translation (in many cases, a
mechanical translation) of the expression from one language
into another.

94. T. Pratr, supra note 91, at 21. See also M. Boui, supra note 85, at 372-74.

95. J. SAMMET, supra note 41, at 9.

96. Id. at 9-10, 36-43.

97. A councise comparison of solutions to the same problem written in ditler-
ent high-level programming languages is provided in Tesler, Programuming Lan-

guages, Scr. AM., Sep. 1984, at 70-78.

1524 UCLA LAW REVIEW [Vol. 34:1493

c. The Categories of Programming Works

For purposes of this Article, we can think of two broad
categories of programs:

Application programs are programs that customize the
computer so that it can solve a particular problem for a cus-
tomer.?8 Examples are word processing, airline reserva-
tions, or income tax computations.

Operating systems are programs that enable the other pro-
grams to run.?® They act as a buffer between the application
program and the hardware.!®® They also coordinate the
many things that are happening in the computer system.!0!

B. Elements of Programming Style

A program is a literary work. It is a particular kind of
literary work, to be sure, as is a musical composition or a
“shooting script” for a movie, but one that has attributes in
common with more familiar kinds of literary works. Those
attributes are structure, flow, logic, design, naming conven-
tions, commentary, and resultant style.

1. Structure of a Program

Programs have structure. They are organized into rec-
ognizable sections and subsections. Programs of any size
have both a “coarse” structure and a “fine” structure. The
coarse structure is generally called modularity.

a. Modularity

Large programs are usually organized into sections that
are called modules. Typically, each module will be devoted
to one of the major capabilities of the program.'*? Modules

98. A. RALSTON, supra note 55, at 92.
99. Id. at 1053.

100. See D. BARrRON, COMPUTER OPERATING SYSTEMS 5-6 (1971); M. Bouw, supra
note 85, at 401-02. A brief but comprehensive history of operating systems
evolution appears id. at 404-31.

101. See A. RaLSTON, supra note 55, at 1055-58.

102. Id. at 996. See D. VAN TASSEL, PROGRAMMING STYLE, DESIGN, EFFICIENCY,
DEBUGGING AND TESTING 67-73 (1978). It seems to be a commonly accepted
tenet of good programming style that modules be self-contained in terms of pur-
pose and accessible to one another through a minimum number of connections.
See, ¢.g., J. ARON, THE PROGRAM DEVELOPMENT PROCESs 99 (1974); A. RALSTON,
supra note 55, at 996; D. VAN TasSEL, supra, at 68-69. However, the design of a
program may be divided into modules in a number of different ways. The division

1987] SILICON EPICS AND BINARY BARDS 1525

are roughly equivalent to chapters in a book. A module may
be broken down into recognizable submodules,!%3 just as a
chapter may have subchapters or paragraphs.

b. Blocks of Code

The fine or “detailed” structure of a program includes
two types of structural elements: blocks of code and data
areas.

Blocks of code may be linear or reusable. A linear block
of code is simply a series of contiguous lines of program-
ming text. A reusable block of code is a series of contiguous
lines of programming text that is susceptible of incorpora-
tion by reference where desired when writing a program.'o*
Reusing the same set of instructions at different places
within the flow of a program is a fundamental technique of
program authorship.!9%

Programmers have developed various approaches for
“marking” segments of code for reuse, for “pointing” the
program to the location of a desired segment, and for re-
turning the program to the next proper instruction once the
referenced code segment has been executed.!%¢ The princi-
pal distinctions among the various approaches used for
marking and using reusable segments of program text lie in
the way the computer is told to identify the reusable unit in
question. Some of the principal types of reusable units of
code are ‘“‘macros,” ‘“‘routines,” ‘‘subroutines,” and “entry
points” within routines.

The term “macro” (short for macro-instruction) refers
to a reusable block of code that can be incorporated by ref-
erence using a convenient procedure provided in the assem-
bler program.!°? This procedure permits a desired block of
reusable code to be assigned a symbolic name (e.g., COM-

&6

may be based on the functions to be provided by the program, on the sequence of the
program’s contemplated execution, on the anticipated relationships among parts of
the program, or on some combination of the foregoing. See . ArRON, supra. at
99-100.

103. J. AroN, supra note 102, at 100-01.

104. See P. SHERMAN, TECHNIQUES IN COMPUTER PROGRAMMING 100-02 (1970).

105. 1d.

106. Compare P. SHERMAN, supra note 104, with J. Urisman, Funpamenrar Con-
CEPTS OF PROGRAMMING SYSTEMS 133-40, 152-53 (1976).

107. J. ULLMaNn, supra note 106, at 133-34. Macros arc commonly associated
with assembly language programs. Id.

1526 UCLA LAW REVIEW [Vol. 34:1493

POUNDINT). The assembler will automatically be able to
locate that sequence of instructions when another program
refers to it by its symbolic name. Thereafter, a programmer
need only specify the appropriate macro name. The assem-
bler or compiler will include the instructions from the macro
routine of that name in the programmer’s program as if they
had been written out in sequence at that place in the flow of
the program.

Generally, a macro will be set up to allow the using
programmer to customize it by “inserting” one or more spe-
cific values.'98 In a sense, such a macro is like a standard
letter that is customized by filling in the blanks. The
“blanks” that allow these insertions are the ‘‘formal parame-
ters” of the macro and the values inserted by the using
programmer are called “actual parameters.”!%® Definition of
the formal parameters that a particular macro will support is
an important part of the design process and is reflective of
the creativity and style of the particular programmer or
group of programmers who write a given program.''?

Macros have many uses in computer programming.
Most importantly, they allow programmers to avoid writing
detailed series of instructions over and over.'''! They can
also be used to simplify the connection between two pro-
grams, ¢.g., an operating system and an applications pro-
gram.!'2 Communication between two programs must be
effected more carefully than communication between two
people. If one person asks another for her address and
phone number and the other person gives her phone
number first and then her address, her response will stll
have been understood. Computer programs do not gener-
ally have that sort of flexibility. One of the purposes for
writing macros can be to save a program author from having
to remember cumbersome rules for program-to-program
communication that have to be embodied in the program.
(A telephonic analogy to calling a macro for this purpose
would be pushing the speed-dial button on a programmable
phone.)

108. Id.

109. 1.

110. See E. YOURDON & L. CONSTANTINE, STRUCTURED DESIGN 285-86 (1976).
111. A. RALSTON, supra note 55, at 904.

112, See, e.g., A. S1MPsON, UNDERSTANDING DBask I11 170-73 (1985).

1987] SILICON EPICS AND BINARY BARDS 1527

Definition of a macro is but one of the ways to mark a
reusable block of code. The procedure described above 1s,
however, for our purposes adequately descriptive of the al-
ternative methods of “‘blocking” sets of instructions for ref-
erence or reuse. These alternative methods are:

Nonreturning Routine, a self-contained block of code or
set of instructions that may be “callable” by reference to a
symbolic label but which has no provision within it for re-
turning control to the “calling” part of the program.'!3

Subroutine, a block of code that can be ‘“‘called” from
elsewhere in the program and that will return control to the
next instruction following the calling instruction (or to an-
other specified part of the program).!!* From the program-
mer’s standpoint, “calling” a subroutine only requires the
use of a symbolic name; the assembler does the rest.

Entry point, a label to which the program can branch if
the calling programmer wants to perform some, but not all,
of a routine.!!®

¢. Data Structures

We now turn from the notion of reusable blocks of code
to the other major distinguishing feature of a program’s de-
tailed structure: the way the program organizes and refers to
the data that it uses. The facilities for accomplishing this are
known as the program’s data areas or data structures.

Among the features provided by almost all program-
ming languages is the ability to refer to an item of data by
assigning it a name or identifier. Some of the quantities so
named may be constants, which have the same value
throughout. For example, pi might be assigned the value
3.14159. Other named quantities are variables, which can
be assigned new values by statements within the program, so
that their values cannot be known until the program is run.
The variables DIAMETER and CIRCUMFERENCE, for ex-
ample, might take on new values cach time a calculavion 1s
done.

113. See M. WEIK, supra note 61, at 302.
114. P. SHERMAN, supra note 104, at 110-15.
115, See M. WEIK, supra note 61, at 261.

1528 UCLA LAW REVIEW [Vol. 34:1493

A data structure is an organized collection of data.!'s
Volumes have been written on the subject of data structures
for computer programs.!''” For economy of exposition, we
will treat here only the data structures known as *‘control
blocks,” which are data structures used for control purposes
by many types of programs. The following discussion may
be generalized to other types of data structures, however.

A control block is an area of memory reserved in ac-
cordance with instructions from a program and used as a
“file card” or ‘“‘notepad” to store information that the pro-
gram will need from time to time to carry out given tasks.!!8
A loose analogy might be a set of reference tables for the
identities of characters in a lengthy novel. A control block 1s
made up of a series of fields in which discrete items of infor-
mation are to be filed.''® The fields, and sometimes even
individual bits within the fields, are assigned symbolic
names.'?° The control block is defined by the variables that
it includes, the order of the variables, and their respective
sizes.!2!

The definition of individual control blocks, the selection
of information to be contained in those control blocks, and
the reservation of fields of certain sizes to hold presently-
needed information or information that may be needed in
the future are matters within the discretion of the program

116. See A. RALSTON, supra note 55, at 497-501. Commonly occurring types of
data structures are arrays (indexed groupings of data), sets (groupings of data in
which the order within the set is irrelevant), lists (sequentially organized and ac-
cessible groupings of data), trees (lists in which one entry is the root and all the
rest have unique predecessors), stacks (lists in which entries are created or deleted
on a last-in-first-out basis) and queues (lists in which entries are created or deleted
on a first-in-first-out basis). Id.

117. See, e.g.. A. BerzTiss, Data Structures (2d ed. 1975); R. Erizey, Dara
STRUCTURES FOR COMPUTER INFORMATION SysTEMS (1982); I. FLorEs, DaTa STRUC-
TURE AND MANAGEMENT (1970); C. GorLiEB & L.. GoTLIEB, DAaTA TYPES AND STRUC-
TURES (1978).

118. D. Hsia0, SystEMs PROGRAMMING: CONCEPTS OF OPERATING DaTA Base
SysTEMs 79-81, 218 (1975); M. WEIK, supra note 61, at 44.

119. See, e.g., D. Hs1a0, supra note 118, at 79-81.

120. See, e.g., INTERNATIONAL BUSINESS MacCHINES CORPORATION, SySTEMS NET-
WORK ARCHITECTURE FORMAT AND PROTOCOL REFERENCE MANUAL: ARCHITECTURAL
Locic App. A at A-23 (3d ed. 1980) [hereinafter SNA MaNuaL]; A. Lister, Funpa-
MENTALS OF OPERATING SysTEMms 95 (3d ed. 1984).

121, See, eg., H. LEvy & R. Eckuouse, CoMPUTER PROGRAMMING AND ARCHI-
TECTURE—'HE VAX-77 192-93 (1980); H. Lorin & H. DErtEL, OPERATING Svs-
TEMs 172-78 (1981).

1987] SILICON EPICS AND BINARY BARDS 1529

author.'22 The choices made by the program author can
substantially affect the quality and efficiency of the resulting
program.'?* More importantly, such choices are generally
selected from a large ficld of alternatives based on a pro-
gram author’s training, experience, and writing style.1=4

2. Flow of a Program

Programs have flow as well as structure. The flow of a
program is roughly akin to the flow of a plot in hterature. It
answers the question “what happens next?” There are two
types of flows that can profitably be considered heremn. One
is the flow of control; the other is the flow of data.

The flow of control answers the question “what instruc-
tion is presented to the processor next?” Control of the
processor rests in the program and is passed from instruc-
tion to instruction in various fashions.'?> The simplest fash-
ion is seriatim. Unless the programmer decides differently,
instructions will be presented to the processor in the order
in which they appear in the author’s text, known as the
“source code.”

As discussed above, however, the programmer can de-
cide that control of the computer should be passed from onc
part of the program to a remote part rather than to a contig-
uous part. This can be done by calling a macro, tor exam-
ple, or branching to a subroutine. Programs can also loop
through the same string of instructions a number of times
before moving on. 126

122, See 1). Van Tasskr, supra note 102, at 52

123. H. Levy & R. ECKHOUSE, supra note 121.

194. 1d. See also B. SCUNEIDERMAN, SOFTWARE Psycnorocy 161-71 (1980); G.
WEINBERG, ['E Psycnorocy oF COMPUTER PROGRAMMING 29 (1971); E. YOourbON
& L.. CONSTANTINE, supra note 110, at 223-27.

125. M. Hecir, FLow Anavysis oF Computer Procrams 4 (1977); M. Masot,
supra note 53, at 2415 P SHERMAN, supra note 104, ar 48.

126. ‘The purpose of looping is not simply to cause the computer 1o repeat the
same instruction sequence with the same data, like a phonograph necdle stuck na
single segment of the groove of a scratched record, but to repeat the same -
struction sequence on data that differs with each pass through the loop. 1. Fro-
RES, supra note 117, av 139-71.

For example, the calculation of compound nterest may be achieved by re-
peating the simple-interest computation for as many times as the interest is (o be
compounded, cach time using as principal the result of the previous calculation.
that s other than seratm

Many types of literary works have a flaw ol co

ready have an understanding of contract Law, ship 1o chapter 3.7 o

(e.g, U you

“For the recipe for Bernase Sauce, turn back to page 427). There are even miter-

1530 UCLA LAW REVIEW [Vol. 34:1493

The flow of control 1s dependent on two factors: the ex-
tent to which the program uses linear or reusable blocks of
code and the extent to which parts of separate modules in-
teract to accomplish a single purpose.

The flow of data, on the other hand, answers the question
“where 1s what data sent and when?”’127 [tems of data in
computer programs are roughly analogous to characters in a
novel. They have names or “labels,” and each has a role 10
play in the program.'*® Some of these characters are con-
stant and unchanging, while others are transformed by the
flow of events in the computer as controlled by the program.

As already noted, items of data are stored in data areas;
a common type of data area is the “control block,” so called
because it contains information relating to control of the
system, rather than data required by applications programs.
In the control block the data are stored in named fields.!2?
An item of data flows (or, more accurately, 1s copied) out of
the control block when its name is called and then is either
compared to some other data or modified and replaced or
otherwise acted upon.'3® One of the distinguishing features
of a program is the pattern described by the movement of
data.'3! This pattern consists of several elements: when an
item of data is called, where it is called from, for what pur-
pose it is called, where else in the program it is passed, if
anywhere, and what its ultimate disposition 1s. A tracing of
the flow of data in a program produces a road map to all of
the activities of the *“characters” in the literary work that the
program represents.

active novels today, wherein the choices made by the reader will dictate what
portion of the work should be read next. See, e.g., E. PACKARD, SUGARCANE ISLAND
(1976). Provision for non-seriatim playing of musical picces has long been a fea-
En.c of musical notation. Finally, non-seriatim flow is, of course, essential to the
enjoyment of computerized interactive novels or adventure games. See, e.g., C.
CRawrORD, BaLANCE OF POweRr (1985); ICOM Simurations, Inc., Deja Vo (1985).

127, See, M. HecnT, supra note 125, at 4-5 (suggesting that ..:_,._?«,7 of a pro-
gram’s data flow can be similar 1o observing “the way gossip is propagated™).

128. J. HarTLING, L. DRUFFEL & F. HILBING, INTRODUCTION TO COMPUTER PRO-
GRAMMING: A PROBLEM-SOLVING AprPrOACH 3844 (1983).

129. See, e.g., SNA MaNuAL, supra note 120, at 123-24.

130. See . HARTLING, L. DrUFFEL & F. HILBING, supra note 128, at 38-39.

131. M. HEecHT, supra note 125, at 14-15.

1987] SILICON EPICS AND BINARY BARDS 1531

3. Logic of a Program

Another principal characteristic of programs is their
logic. Logic'3% is of course a charactenistic of all hterary
works. Works of persuasion are generally recognized as pro-
cceding in a logical fashion, using various kinds of rigorous
reasoning to impel the reader to follow and accept the au-
thor’s argument. Fictional works, too, require logical devel-
opment to maintain tension, keep the reader engaged, and
sustain believability; the logical relationship among words,
sentences, paragraphs, or chapters in a novel is an important
element of a novel’s expression.!3¥ Computer programs ex-
hibit analogous logical relationships.

As in the case of a program’s structure, there 1s a
“coarse” logic and a “‘fine” or “detailed” logic n every pro-
gram. The coarse logic is simply the set of major capabilities
that the program provides and the relationship among those
capabilities.’** The detailed logic of a computer program

132. The term “logic” has many meanings and some of those meanings (e.g.,
“principles of reasoning”) describe levels of abstraction presumably referred to
by those commentators, including the Copyright Office of the United States, who
contend that program “logic” is not protected by copyright. See Coryricur OF-
rice, Compenpium [1: CoMpENDIUM OF CoPYRIGHT OFFICE PRACTICES, § 325.02(C)
(1984). It will be clear from whad follows that program logic incdludes much more
than such high levels of abstraction, however. As Professor Nimmer reminds us:

The crudial question is whether a particular word describes only an
idea or whether it refers 1o the conarete expression of an idea i a
program. Where such words as “logic, Yor!

flow,” or “structure” refer
o expression (as, e.g., under the pattern test as explained 1in my
Treatise) they refer to copyrightable subject matier,

Nimmer Declaration, supra note 3, at pt. 28 (see tnifra Appendix).

133. Perhaps the logical first step in the ficional processis the writer's
conscious or intuitive recognition of the nature of narvative, and his
acceptance ol the shackles imposed by his decision to el a story

By delinition—and of aesthetic necessity—a story contains
profluence, a requirement best satisfied by a sequence of causally re-
lated events, a sequence that can end in only one of two wavs: reso-

ake place oL orin logical

lution, when no further event ¢
exhaustion, our recognition that we've reached the stage of mhinite
ﬂh.—:.::o: .

J. Garoner, Tue Art or Frerion 53 (1983). And again:
As for fiction, . . . it seems fair to say that, since no muranve beyond
a certain length can hold interest without some such profluence as a
causal relation of events (by either real-world logic, comic mock-
logic, or poetic logic), no narrative except a very short one can es-
cape real-world relevance. . . . Fiction sceks out truth.

Id. at 79,

134. For example, the coarse logic of a payroll program mght be described as

follows:

1532 UCLA LAW REVIEW [Vol. 34:1493

comprises the sequences of individual steps that make up
the program.'® As in the case of different human lan-
guages, not all clements of expression exist in all program-
ming languages,'3¢ but the following principal elements are
relatively common.

One common element of logic expression is IF-THEN-
ELSE: IF a certain condition exists, THEN take a prescribed
action, ELSE take a prescribed alternative action. IF-THEN-
ELSE 1s one way for the computer to test the status of data
and take an action depending on the outcome of the test.

Programmers often use IF and THEN statements with-
out ELSE statements in order to accomplish a conditional
result without specifying an alternative action. (“If your
shoes are muddy, then take them off before you come in.”)
IF will usually test a variable to see if it is equal to, less than,
or greater than a specified value, as in “IF counter = 0.”
THEN may be followed by an action or it may be followed
by one or more IF statements. (IF Johnson’s birthday is
March 29, THEN IF today’s date is March 27 or before but
not earlier than March 1, THEN send a birthday card. ELSE
call)

The actions that can follow a THEN are the same kinds
of actions that may be taken without IF-THEN tests preced-
ing them. They are other forms of logic expression, e.g. :

This program instructs the computer to read time-card information
and update the employee time record for all employees. That up-
dated record is then used to compute compensation for cach em-
ployee for the pay period just ended. Straight-time and overtime are
computed separately and then summed. The summation is used to
compute taxes and social security deductions. Those deductions as
well as any other deductions for the pay period are summed. The
deduction sum is offset from the compensation sum for cach em-
ployee and a check is printed.

135. These sequences define in detail the specific way in which, through a se-
ries of clementary statements conforming to grammatical rules, a program author
has instructed a computer o provide each of the capabilities specified in his pro-
gram. See |. CLEAVELAND & R. UzGAaDis, GRAMMARS FOR PROGRAMMING LANGUAGES
(1977); G. Mvyers, SOFrwARE RELIABILITY: PRINCIPLES AND PRAGHICES 89-90
(1976).

136. There are literally hundreds of programming languages and language
characteristics can differ substantially. See M. Bout, supra note 85, at 391-93. The
exposition of program logic elements that follows in the text is based on the P1./1
programming language described in S. Porrack & T. STeRLING, A Guink 10 PL/1
39-55, 318-27, 365 (1969) and M. AUGENSTEIN & A. TENENBAUM, DATA STRUG-
TURES AND PL/] ProGrRAMMING 47-81, 97 (1979).

1987] SILICON EPICS AND BINARY BARDS 1533

e Set Variable A equal to some value, cither constant or
variable, e.g., VARA = R15 (where R15 1s the contents
of register 15).

e CALL a macro or subroutine.

e GO TO some other part of the program (in other
words, transfer control to another part of the pro-
gram with no return).

¢ DO aseries of steps. The steps referenced by the DO
command may be presented repeatedly if desired, us-
ing DO WHILE or DO UNTIL, where¢ WHILE and
UNTIL insert tests of the conditions under which the
steps are to be done.

Taken individually, of course, no one of the described
logic elements can be said to be highly expressive n itself.
The combination and sequence of these logic elements,
however, can represent creative expression. Out of these el-
ementary logic expressions and many others, computer pro-
grams of great elegance and complexity can be written. I'he
choice of logic elements, their pattern, sequence, and signifi-
cance are as fundamental to programmers’ expression as the
choice of words, their sequence, and significance are to
poets’ expression. To make the sweeping statement, as
some do, that “program logic” is not protectable by copy-
right, is to display a profound ignorance of the nature not
just of programming languages but of languages in
general 147

4. Design of a Program

Another attribute which programs have in common with
other literary works is design. Design is the qualitative result
of combining structural, flow, and logic clements in the par-
ticular fashion chosen by the author.'?® As with structure,
flow, and logic, design ts an attribute that may be considered
at a high level of abstraction™? or at a low level of abstrac-

137. Once could as well say that taken individually neither the not
Minor chord or a three-quarter note middle C or a whole-note rest would be
highly expressive or arbitrary in itsell. Taken in a combinaton and in context,
however, the aggregations of clemental music notatonal clements express avast
body of highly creauve effort.

188, See DL Van Tasser, supra note 102, ac-41-112

189, Eg, " This program is divided into twenty modules and makes heavy use

of macros.”

1534 UCLA LAW REVIEW [Vol. 34:1493

tion.'*® The low level of abstraction, the program’s detailed
design, is a complex web of structure, sequence, pattern,
and organization. The resulting combination is a tapestry of
decisions and actions that is the essence of the author’s
expression.'4!

5. Naming Conventions

The writer of a program, unless he or she is writing in
machine language, must invent names for numerous ele-
ments of his or her program. Reusable blocks of code, data
items, and variables are generally referred to by name.
These names are entirely arbitrary since they are converted
into memory addresses when the program is translated into
machine language. The computer does not in fact “‘see’ the
names that are chosen. Thus, within very modest con-
straints (word length, reserved names, etc.), the program au-
thor’s range of choice for naming conventions is very large
indeed. As one would expect, therefore, the choice of
names tends to reflect the personality and experiences of the
individual programmer.'¥2 Since most programs are in-
tended to be read by other programmers, it is preferable for
names to convey some sense of the purpose of the thing be-
ing named,'43 but the reference may be explicit or cryptic,
abbreviated or full, tied to the name of another program cle-
ment or not, or totally arbitrary, at the whim of the author.

6. Comments

It is common for programmers to insert comments in
their programs to assist themselves and others in under-
standing the programs.'** Like names, the comments are

140. E.g., “At this point, we test to see if the number of years exceeds ten. If it
does, we branch to a subroutine to calculate the pension amount and store the
result in the ficld called 'Retmnt’ of the control block titled ‘PersBen’.

141. See P. BRUCE & S. PEDERSON, 'tk SOFTWARE DEVELOPMENT PROJECT: PLAN-
NING AND MANAGEMENT 85-86 (1989).

142, See G. WEINBERG, supra note 124, at 223-24.

143. B. KerRNIGHAN & P. PLAUGER, ELEMENTS OF PROGRAMMING STYLE 144-45
(2d ed. 1978); D. Van TasskeL, supra note 102, at 11-18.

144. D. Van TasskL, supra note 102, at 4-7, identifies three types of comments:
Prologue Comments, which may appear at the beginning of each significant structural
clement of the program and explain the purpose for that element; Directory Com-
ments, which may appcar at the start of a lengthy program and provide, in eflect, a
table of contents; and Explanatory Comments, which explain individual logic ele-
ments ol the program.

1987] SILICON EPICS AND BINARY BARDS 1535

not processed by the computer when the program is exe-
cuted and therefore within broad constraints can be any-
thing the author wishes.'®> They can be numerous or
sparse, expansive or concise, abbreviated or full text. The
context of the comments and the aspects of the program on
which she chooses to comment reflect the arbitrary choices
of the author.

7. wﬂcmamiam:&_ M\m&;_;m%

Not surprisingly, each programmer develops her, own
style of expression.!*¢ To some extent, the stylistic charac-
teristics are reflective of the education or training of the
programmer, her imagination or intellect, or lack thereof.¥?
To some extent, they may result from conventions adopted
within her department.'*8 In some cases, style is collecuve
rather than individual.'*¥ The style in which a program is
written may also reflect the environment in which the pro-
gram was written. '

Style is reflected in the logic elements that the program-
mer tends to favor and in the way those elements are em-
ployed.!®! It is reflected in the modularity of the program
and the extent to which modules call on once another or are
self-contained.!52 It is reflected in the data structures chosen
by the author.'s® Some programs are clegant; others are

145. See td. at 3-9; B. KERNIGHAN & P. PLAUGER, supra note 143, at 4144 B.
SCHNEIDERMAN, SOFTWARE PsycnoroGy: HuMan FAcTors In COMPUTER AND IN-
FORMATION SysTEMS 66-70 (1980).

146. G. WEINBERG, supra note 124 passum.

147, 1d. au 161-99 (discussing the role of intellect, education, and experience
in the development of programming styles).

148. See id. at 47-139.

149. See ADvANCES IN COMPUTER PROGRAMMING Manacement 135-51 (T. Rullo
ed. 1980); P. METZGER, MANAGING A PROGRAMMING ProjecT 86-01 (2d ed. 1981).

150, See G. WEINBERG, supra note 124, at 67-93. (In parucular, note that difler-
ences in composition of programming teamns may engender expliat differences in

structure for programs having the same function. The contrast driwn by Weaem-
berg is that between a team composed of one experienced programimer iand fow
trainces, which could be expected to produce a program consisting of one “main
program” component and several refatively small subroutines, and a tcam of
three experienced programmers, which could be expedied o produce a program

of three modules or “phases.”).

151, B. Kernicuan & P PLavGer, supma note 143, at 9-26
152, Id. at 59-738.
153, 1. Van Tasser, supa note 102, a0 52

1536 UCLA LAW REVIEW [Vol. 34:1493

clumsy.'3* Some are written to execute very rapidly n a
processor; others are written to take up little memory.!>®
Some are written using techniques that reduce the program-
mer’s writing time, irrespective of the resulting execution
time or memory space utilization.!56 There are other indicia
of individual style, oriented toward the readability of the
program to other programmers: the use of comments, for
example, or the choice of labels.!5? All these elements com-
bine to give a program the same individuality that makes one
novelist’s work different from another.

C. Potential for Alternative Expression

Commentators and copyright defendants have argued
that the potential for alternative expression in computer
programs is limited; therefore, they say, the scope of protec-
tion for such works should be narrow, akin to that provided
for accounting forms or contest rules.!58 Neither the experts
nor the cases nor common sense bear out this premise or
conclusion.

1. Expert Opinion

Consider first the following description of the craft of
writing computer programs, a description that will doubtless
surprise many non-programmers. It was written by a gen-
tleman with broad and deep experience in computer science,
both in industry and in academia.

Why is programming fun? What delights may its
practitioner expect as his reward?
First is the sheer joy of making things. As the child

Qc.:m:? in his mud pie, so the adult enjoys building

things, especially things of his own design. I think this

154. B. KeRNIGHAN & P. PLAUGER, supra note 143 passim, provide a large
number of examples of clumsy programs, together with suggested rewritings and
general stylistic maxims applicable to each example.

155. See G. WEINBERG, supra note 124, at 22-25,

156. Id. at 19-20.

157, See supra text accompanying notes 142-145.

158. See, e.g., Back to Basics, supra note 9, at 4-6; faslow Petition, supra note 30, at
19-20. Professor Goldstein has suggested that for operating systems, as opposed
to applications programs, the limitations of expression and reasons for narrow
protection are particularly acute. See Infringement of Copyrvight, supra note 9, at
1126-27. That such a view is predicated on factual inaccuracy is cloquently
demonstrated by the fact that both the Brooks and Alsing quotes reproduced in
this section rclate 1o the writing of operating system software

1987] SILICON EPICS AND BINARY BARDS 1537

delight must be an image of God's delight in making

things, a delight shown in the distinctness of newness of

cach leal and each snowflake.

Second is the pleasure of making things that are use-
ful to other pcople. Deep within, we want others to use
our work and to find 1t helpful. . ..

Third is the fascinaton of fashioning complex puz-
zle-like objects of interlocking moving parts and watching
them work in subtle cycles, playing out the consequences
of principles built in from the beginning.

Fourth is the joy of always learning, which springs
from the nonrepeating nature of the task. In one way or
another the problem is ever new, and its solver leains
something: sometimes practical, sometimes theoretical,
and sometimes both.

Finally, there is the delight of working in such a
tractable medium. The programmer, like the poet, works
only slightly removed from pure thought-stufl. He builds
his castles in the air, from air, creating by exeruon of the
imagination. Few media of creaton are so flexible, so

:asy to polish and rework, so readily capable of realizing
grand conceptual structures. .

Programming then is fun because 1 graufies creanve
longings built deep within us and delights sensibilities we
have in common with all men.'?

It scems exceedingly unlikely that a tormn :M,w::::.wr:uw
in which the range of expression is substantially limited;
could be described in such terms. Consider, too, the confes-
sions of Data Gencral microcode author Carl Alsing:'%°

}

Writing microcode 1s like nothing else iy hile. For
days there’s nothing coming out. The empty yellow pad
sits there in front of me, reminding me of my madequacy.
Finally, it starts to come. [feel good. That feeds it, and
finally T get into a mental state where 'mea microcode-
writing machine. .

You have to understand the problem thoroughly and
you have to have thought of all the myriad ways in which
you can put your microverbs together. You have a hun-
dred L-shaped blocks to build a building. You take all
the Trxdm, put them togcther, T:: them apart, put them
together. After a while, you're like a kid on a jungle gym.
There are all these constructs in your mind and you can
swing from onc to the other with easc.

159, Broors, Tue Mynincat, Man-Monri 7-8 (1975).

160. T Kioper, Tue Sout. or A New Maciine 101-02 (1981). Microcode, or
iming, is roughly analogous to an assembly-language program. See
supgna note 53, a 263,

microprog
M. Man

1538 UCLA LAW REVIEW [Vol. 34:1493
I've done this in short intervals for a short period
each year. There’s low intensity before it and a letdown
at the end. There’s a big section where you come down
.. ofl'it, and sometimes you do it awkwardly and feel a liutle
strange, wobbly and tired, and you want to say to your
friends, “Hey, I'm back.”
. Alsing’s description affirms that computer program-
ming~i§7a kind of creative writing. Indeed, as much as

‘the "employers of computer programmers would love to

“structure” their work'¢! and think of it as “software engi-
:mml:m.:a.u it is generally accepted in the industry that pro-
gramming is art as much as science.!%?

In the United States, the National Commission on New
Technological Uses of Copyrighted Works (CONTU),
whose Final Report was the basis for the 1980 amendments
to the Copyright Act, considered the question of the range
of programming expression explicitly and concluded that in
program authorship the ‘‘availability of alternative nonin-
fringing language is the rule rather than the exception.” 164

2. Judicial Authority

Those who have actually written computer programs
feel that the medium is a very creative one. Nonetheless, as
noted at the outset of this section, commentators and copy-
right defendants often argue that there is a limited range of
expression for software. Such arguments have been re-
soundingly rejected by the courts that have considered the
question. As the court recognized in SAS Institute, Inc. v.
S&H Computer Systems, Inc.,

B 161. See, eg., C. McGowaN & J. KeLLy, Tor-DOWN STRUCTURED PROGRAMMING
TEcHNIQUE (1975).

162. See, e, R. Junsin & C. Tonies, SOFIWARE ENGINEERING (1979); see also
Protectionism, supra note 19, at 39.

163. The &wﬁmmo: to write a program “‘is very much like the decision 1o write a
:¢<n_ Or Lo write a poem. In both software and the literary analog we are dealing
with a highly creative activity.” J. LEATHRUM, FOUNDATIONS OF SOFTWARE DESIGN
1 :wmwv.. Ben Schnceider, Jr., opines that the concepts underlying “tops-down”
programming and “'structured” programming have been known 1o writers of fic-
tion “at least since Homer.” Schneider, Programs as Essays, Daramarion, May,
1984, at 162. ‘

164. Finar REPORT OF THE NATIONAL COMMISSION ON NEW TECINOLOGICAL
Uses or CopYRIGHTED WORKs 20 n.106 (July 31, 1978) [hereinatier CONTU Re-
.vcz_, In support of that conclusion, CONTU quoted the following colloquy from
its tenth meeting:

1987] SILICON EPICS AND BINARY BARDS 1539

Throughout the preparation of a comphicated com-
puter program such as SAS, the author is faced with a
virtually endless series of decisions as to how to cairy out
the assigned task. . . . The author must decide how to
break the assigned task into smaller tasks, cach of which
must in turn be broken down into successively smaller
and more detailed tasks. . .. At every level, the process is
characterized by choice, often made arbitrarily, and only
occasionally dictated by necessity. Even in the case ol
simple staustical calculations, there is room {or variation,
such as the order in which arithmetic operations are per-
formed. . . . As the sophistication of the calculation -
creases, so does the opportunity for variauon of
expression. 0%

Similarly, the Federal Court of Canada, Irial Division,
had the following to say about computer programs:

There is no doubt that computer programs are
highly individualistic in nature and contain a form of ex-
pression personal to the individual programmer. No two
programmers would ever write a program in exactly the
same way (except perhaps in the case of the most simple
program). Even the same programmer, after wriung a
program and leaving it for some time, would not write
the program the same way on a second occasion. ‘The
sequence of instructions would most certamly be differ-
ent. The possibility of two programmers creating identi-
cal programs without copying was compared by the

Commissioner Miller: How many different ways arc there to
produce a program . . . ?

Dan McCracken |Vice-President of the Association for Comput-
ing Machinery]: An infinite number in principle, and in practice
dozens, hundreds.

Miller: So it is comparable to the theorctically inlinite number
of ways of writing Hamlet?

McCracken: 1 believe so. Itis not really true that there s avery
restrictive way to write a program which might make it not copy-
rightable. T don’t believe that at all.

Miller: When you say ‘infimte,” 1 assume that along that scale

there are increases and decreases in the efficiency with which the
machine will operate?
acken: Perhaps.
In all of the programs that we have been talkimg about
this morning, with particular reference 1o .. . con programs,
does it continue to be true that there are ¢ number of ways
ol writing particular programs to do parucular jobs?

McCracken: Yes . . . There are hundreds of different compiler
programs for going from FORTRAN to some machines. .

ld.
165. SAS Inst. v. S & H Computer Sys., 605 F. Supp. 816, 825 (M.D. Tenn.
1985).

1540 UCLA LAW REVIEW [Vol. 34:1493

defendants’ expert witness to the likelihood of a monkey
sitting at a typewriter producing Shakespeare.!6¢

The U.S. Court of Appeals for the Fourth Circuit has

reached a similar conclusion:

~ [I]n the computer field “[t]here exists a virtually un-
limited number of instruction sequences that would en-
able a programmer to construct a program which
performs even the more basic algorithmic or mathemati-
cal procedures.” ... It follows, therefore, that normally
in the computer field, courts are concerned with expres-
sion and not idea, as those terms are defined in copyright

-NS\ V67"

Most recently, in the Whelan case,!'®® the Court of Ap-
peals for the Third Circuit, after carefully considering how
computer programs are written, took pains to reject the ar-
gument that the process of development and progress in
computer programming is significantly different from that in
other areas of science or the arts.

The argument that limited possibilines for alternauve
expression exist often arises in connection with one firm’s
business strategy to offer programs that are, in one sense or
another, “‘compatible replacements” for the programs of an-
other firm.'%® The replacer claims that its compatbility
strategy dictates close conformance, if not identity, with the
expression in the target program; in other words, that the
“idea” and the “expression” in the target program have
merged, and since copyright does not protect ideas, it doces
not, as a result of the merger, protect the expression
either.!’ Even in that context, however, the courts so far
have not been convinced that there were few or no other
ways in which the replacer could have mxc?&é; the replac-
ing program. In the first place, as the Court of Appecals for
the Third Circuit pointed out in Apple v. Franklin, the fact

166. Apple Computer, Inc. v. Mackintosh Computers, Lid., No. T-1232-84,
No. T-1235-84, slip op. at 3 (F. C. Can,, Apr. 29, 1986).

167. M. Kramer Mfg. Co., Inc. v. Andrews, 783 F.2d 421, 436 (4th Cir. 1986).

168. Whelan Assoc. v. Jaslow Dental Laboratory, Inc., 797 F.2d 1222, 1238 (3d
Cir. 1986).

169. See Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240,
1253 (3d Cir. 1983); E.F. Johnson Co. v. Uniden Corp., 623 F. Supp. 1485, 1501
(D. Minn. 1985); SAS Inst., Inc. v. S & H Computer Sys., Inc., 605 F. Supp. 816,
825 (M.D. Tenn. 1985); Apple Computer, Inc. v. Formula Int’l, Inc., 562 F. Supp.
775, 782 (C.D. Cal. 1983); see also Protectionism, supra note 19, at 63-72.

170. See Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240,
1253 (3rd Cir. 1983); Infringer’s Case, supra note 28, at 24.

1987| SILICON EPICS AND BINARY BARDS 1541

that one firm establishes a compaubility strategy cannot o
facto cause a merger of idea and expression in the program
of another firm.'7”! Secondly, the courts that have focused
on this question have found that even if the idea of compau-
bility is adopted, the range of expression is not limited.'”

In short, the courts that have actually considered the
question have concluded that idea and expression do not as
a rule merge in houzmv::w% progranis.

3. Commentators

How does one account, then, for the contrary views ex-
pressed by some commentators? How can it be that a body
such as the Office of Technology Assessment of the United
States Congress can conclude that if the copyrightable ex-

171, Franklin claims that whether or not the programs can be rewnten,
there are a limited “number of ways to arrange operating systems to
enable a computer o run the vast body of Apple-compatible
software”. . . . This claim has no pertinence 1o cither the
idea/expression dichotomy or merger. ‘The idea wlnch may merge
with the expression, thus making the copyright unavailable, is the
idea which is the subject of the expression. The idea of one of the
operating system programs is, for example, how to translate source
code mnto object code. If other methods of mxtqcmu.:m that idea are
not foreclosed as a practical matter, then there is no merger.

Franklin may wish to achieve total compau y with indepen-
dently developed application programs written for the Apple 11, but
that is a commercial and competitive objecuve which doces cnter
into the somewhat metaphysical issue of whether partcular adeas
and expressions have merged.
Apple v. Franklin, 714 F.2d at 1253.

172. “Many different computer programs can produce the same “results)”
whether those results are an analysis of financial records or a sequence of mages
and sounds. ... Obviously, writing a new program to rephicate the play of “Scram-
ble’ requires a sophisticated effort, but it is a manageable task.”™ Stern Elee. Tn
v. Kautiman, 669 F.2d 852, 855 (2d Cir. 1982).

Defendant will still be free o produce progs

the .:;L::n Tclcis.:m the same calculations, sctups, memory
s software does and thus compete with

Plaintift in the soltware market. As the CONTU Reportaptly put i,

“One is always free to make the machine do the same thing as 1t

would i it had copyrighted work placed in i, but only by one’s own

creative effort rather than by piracy.”
Apple Computer, Inc. v Formula Intl Inc., 562 F. Supp. 775 (C.D. Cal. 1983),
af 'd, 725 ¥.2d 521 (9th Cir. 1984). ""Thus, the mere fact that defendant set out
with the objective of creating an LTR-compatible radio does not, without more,
excuse its copying of plaintifl’s code. The Court finds copying plamufl’s
code was not the only and essential means ot creating an LTR-compauble
software program.” E.X. Johnson Co. v. Uniden Corp., 623 F. Supp. 1485, 1502
(D. Minn. 1985).

1s which resuluim

1542 UCLA LAW REVIEW [Vol. 34:1493

pression in computer programs is deemed to include the
programs’ “‘design,” “logic,” or “‘structure,” the result will
be the extension of copyright protection to procedures,
processes, systems, or methods of operation?'”* The expla-
nation lies in the somewhat abstruse nature of programming
works that puts intellectual distance between, on the one
hand, the legal commentators who have not studied the craft
of programming and, on the other hand, the programming
experts who know the territory and the judges who have
learned the territory. Put another way, the judges who are
charged with deciding what constitutes programming ex-
pression, in the concrete context of two programs whose at-
tributes must be first identified and then compared, have
learned more about what programming actually is than have
commentators who deal in a more abstract way with matters
of theory or policy.

Consider the following example. Federated Com-
puters, Inc. writes a new program for its line of computers.
The new program is an instant success and materially ad-
vances sales of FCI computers. The Consolidated Com-
puter Company offers a competitive line of computers.
Consolidated translates the new Federated program into a
language more appropriate for Consolidated computers and
offers the translation commercially, increasing the competi-
tiveness of its line of computers against Federated’s. Be-
cause of differences between the language in which the
Federated program was originally written and the Consoli-
dated language, the translation bears little immediate visual
resemblance to the original. Has Consolidated infringed
Federated’s copyright?

The instinctive answer is: obviously. However, some
commentators would disagree or at least equivocate.!”
They might argue that unless each line of the original pro-
gram has been translated individually, there is no infringe-
ment. The rationale is apparently that at any level of
specificity higher than that of individual lines of code, the
program consists of ideas, not expression. It should be evi-

173. OTA Stupy, supra note 9, at 81.

174. See, e.g., Back to Basics, supra note 9, at 7; Infringement of Copyright, supra note
9; Protectionism, supra note 19, at 79; Note, Copyright Infringement of Computer Pro-
grams: A Modification of the Substantial Similarity Test, 68 MinN. L. Rev. 1264, 1294-99
[hereinafter A Modification].

1987] SILICON EPICS AND BINARY BARDS 1543

dent to anyone who has read this far that the rationale is
fallacious. To make the point absolutely clear, it will be
helpful to consider, as, for example, the IWhelan court found
it necessary to consider,!7> how programs are written.

4. ‘The Process of Wriung a Program

Without trying to compartmentalize too rigidly the
steps or their order, the process is likely to encompass n
some sense or other the following phases:'7¢

Product definition, in which a general idea of what the
product should be able to do to meet customer require-
ments and to be competitive is developed.

Generalized design, in which the general idea for perform-
ance objectives is translated into a plan as to how the pro-
gram will be written. At this stage, the overall job the
program is to perform may be divided into discrete compo-
nents to make the job more manageable.

Intermediate design, in which the sections defined in the
high-level design are elaborated in more detall, resulting 1n
definition of the major structures of the program; ie., ident-
fication of distinct modules, identification of control block
structures, and identification of the specific informaton that
will be passed among components of the program.

Detailed design, in which the design is broken down into
codcable units (subroutines, control blocks, macros, and the
like). By this point, the logic or plan of the program should
be so detailed that the starting point for every unit can be
defined with such particularity that, if the size of the project
warranted it, each could be assigned in parallel to individual
programmers with reasonable confidence that the pieces
would fit together as a whole once written. The detailed de-
sign may take the forin of pseudocode or flow charts that
fully define what the code will accomplish in human-reada-

175. Whelan Assoc. v. Jaslow Dental Laboratory, Inc., 797 F.2d 1222, 1129-31
(3d Cir. 1986).

176. T actual pracuce, the process of wittang programs s both Tess ngud and
less linear than a serial description ol the stages of development may sugpest.
Two or more of the described phases may be collapsed into one, for example, o1
carlicr phases may be revisited as the writing occurs. The text description follow-
ing this footnote is adapted from PoMeTzGer, supra note 8 ar G Hicr, W
TurNner & L. CasHwELL, SYsTEM DEVELOPMENT MEITHODOLOGY (rev, e TO78y
Discussion of the extensive testing and documentation acuvity which acconipames
the described development phases has been omitied for purposes of clariy.

1544 UCLA LAW REVIEW [Vol. 34:1493

ble words or symbols. The detailed design documents con-
stitute a complete articulation of the program in English
words or graphic symbols.

Coding, in which the English or graphic descriptions
contained in the detailed design documents are translated

into programming language. This part of the process of

program development can often be routinely entrusted to a
beginning programmer.'”?” From the foregoing it can be
seen that the detailed design of the program, being the
equivalent of a paragraph-level outline of a novel, is the
complete expression of the program of which the ultimate,
coded text is a translation. In any other work of authorship,
copying the elements of the ultimate text that constitute its
detailed design would constitute infringement. According to
Professor Nimmer, CONTU concluded that there is no rea-
son for a different treatment of computer programs.!7s

There are practical, evidentiary considerations that
compel this conclusion as well. Among them, in our Feder-
ated/Consolidated example, is the problem of proving that
the Consolidated program is a translation of the Federated
program. Remember that the source code listings of the two
programs look about as much alike, and are about as deci-
pherable to the untutored lay observer, as a Farsi translation
set beside a Mandarin Chinese translation of Hainlet’s solil-
oquy. Absent an admission of copying by Consolidated,
proof of substantial similarity can be made to a non-expert
trier of fact unfamiliar with either language only by showing
that though the programs look dissimilar there are actually
substantial similarities in some or all of the following: de-
tailed structure, flow, logic, design, naming conventions,
and comments.

5. Policy Considerations

It is sometimes argued that the copyright law is for the
benefit of the public, not the author, and that a more modest
scope of protection would redound to the public good by
encouraging the rapid proliferation of equivalent pro-

177. R. GUNTHER, MANAGEMENT METHODOLOGY FOR SOFTWARE PRODUCT ENGI-
NEERING 49 (1978); see also Whelan, 797 F.2d at 1231.

178. Nimmer Declaration, supra note 3, at pt. 25 (see infra Appendix). The Hhe-
lan court reached the same conclusion. 797 F.2d at 1238.

1987] SILICON EPICS AND BINARY BARDS 1545

grams.'? This argument overlooks three important factors.
First, the Founding Fathers concluded that the public would
be best served by granting exclusive rights to copyright own-
ers.'8° Second, the public has in fact benefited immensely
from the incentive that the copyright laws provide. Permit-
ting free translation would eliminate the competiuve lead
time that is a major incentive for investment in new pro-

179. Jaslow Petition, supra note 30, at 13; A Modification, supra note 174, at 1291;
Note, Defining the Scope of Copyright Protection for Computer Software, 38 Stan. L. Rev.
497, 498, 518 (1986); ¢f. Note, Copyright Protection of Computer Program Object Code,
96 Harv. [.. Rev. 1723, 1739-42 (1983) (citing, inter alia, Twentieth Century Mu-
sic Corp. v. Aiken, 422 U.S. 151, 156 (1975)). One such fine of rcasoning pro-
ceeds from the premise that the purpose of the copyright grant is to promote the
dissemination of ideas and that the texts of computer programs, being unintel-
ligible to most people, do not comport with that purpose. See Samuelson, CONTU
Reuvisited: The Case Against Copyright Protection for Computer Programs in Machine- Reada-
ble Form, 1984 DukEe L.J. 663, 705-53 (1984). That line of reasoning relies on an
unwarranted leap of faith. First, it is simply false that the text of a computer pro-
gram is unintelligible. The fact that it requires a level of competence to read a
program with appreciation merely puts programs in the company of foreign lan-
guage texts and other specialized literaware. It does not negate a dissemination of
ideas. Second, the argument confuses the end with the means. The purpose of
the Copyright Act is to “promote the progress of science and the usetul arts.”
U.S. ConsT. art. I, § 8. One means to serve that purpose is indeed by promoting
the free dissemination of ideas. That was not, however, the means Congress
adopted pursuant to the constitutional mandate.

The framers decided that the constitutional purpose will be promoted by al-
lowing authors 1o control, in appropriate cases, public access to the expressions in
which ideas are embodied. This reflects a judgment that disseminanion of idceas, as
well as other elements of “progress” in science and the useful arts, will be ad-
vanced by enubling authors, as a class, to pursue their self-interest. The Llaw sim-
ply does not compel dissemination in every case. This is reflected, for examnple, in
the 1976 Act's statcinent that registration is not a prerequisite 1o copytight protec-
ton. Copyright ataches as soon as a work is fixed in a tangible medium of ex-
pression, whether or not the work is ever registered or ever published. Thus, lor
example, the author [.D. Salinger is able 1o assert copyright protection in his pri-
vate letters. See Salinger v. Random House, Inc, 811 F.2d 90 (2d Cir. 1987). Even
before the 1976 Act, the requirement of deposit of works 1o be registered was not
designed primarily to insure a complete collection of all copyrighted works open
to the public. Deposited copies could be, and were, returned, distributed, or de-
stroyed under the direction of the Library of Congress. See Washingtoman Pub-
lishing Co. v. Pearson, 306 U.S. 30, 38-39 (1939). Morecover, the registration

to the pu

process itself does not require that the registered work be avail
Copyright Office procedures permit deposit of less than all (the hrse 25 pages and
the last 25 pages) of a program sought 1o be registered, Copyright Ofhice Circular
R61, May 1983, at 1, and also provide for rehef from the deposit requirement
altogether, so that after registration such works are not availuble for inspection by
the public. Copyright Office Circular R7d, August, 1982, at 2. In sum, views
bascd on the assumption that the purpose of the copynighug an only be saus-
fied by free public availability of the copyrighted work, although they may be cred-
itable at first blush, do not have a firm foundaton.
180, See VLS. Const. art. 1, § 8, ¢l 8, supra note L.

1546 UCLA LAW REVIEW [Vol. 34:1493

grams.'®! Finally, allowing infringers to profit from transla-
tions of the copyrighted work will encourage authors to
write non-translatable programs.'$2 These factors assure
that the public good would be disadvantaged by depriving
program authors of exclusive rights to translate or adapt
their works.

Thus, in software infringement cases, application of
traditional rules of copyright law rather than invention of
special rules for computer programs is the most socially de-
sirable approach. We now turn to the question whether ap-
plication of traditional copyright rules is what the law
requires.

