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Abstract

While there has been extensive interest in how intraspecific trait variation affects ecological pro-
cesses, outcomes are highly variable even when individuals are identical: some are lucky while
others are not. Trait variation is therefore only important if it adds substantially to the vari-
ability produced by luck. We ask when trait variation has a substantial effect on variability in
lifetime reproductive success (LRS), using two approaches: 1) we partition the variation in LRS
into contributions from luck and trait variation; 2) we ask what can be inferred about an in-
dividual’s traits, and with what certainty, given their observed LRS. In theoretical stage- and
size-structured models, and two empirical case studies, we find that luck usually dominates the
variance of LRS. Even when individuals differ substantially in ways that affect expected LRS,
unless the effects of luck are substantially reduced (e.g. low variability in reproductive lifespan
or in annual fecundity), most variance in lifetime outcomes is due to luck, implying that depar-
tures from “null” models omitting trait variation will be hard to detect. Luck also obscures the
relationship between realized LRS and individual traits. While trait variation may influence the
fate of populations, luck often governs the lives of individuals.
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Introduction

The last two decades have seen a surge in interest among ecologists in intraspecific variation
and its ecological consequences (e.g. Bolnick et al., 2011), including discussions about how trait
differences between individuals might promote or suppress species coexistence (Barabás and
D’Andrea, 2016; Bolnick et al., 2003; Clark, 2010; Hart et al., 2016; Lichstein et al., 2007), stabilize
population dynamics (Agashe, 2009; Imura et al., 2003), reduce demographic stochasticity (Fox
et al., 2006; Kendall and Fox, 2002), increase population growth rate (de Valpine, 2009; de Valpine
et al., 2014; Kendall et al., 2011), and promote productivity (Hughes et al., 2008). Common to
all of these discussions is the understanding that it is not trait variation per se that matters, but
its effect on individuals, populations, and communities. Demographic studies that collect data
on marked individuals over their lifetimes often find evidence for persistent individual differ-
ences in demographic rates such as expected clutch size and survival (e.g., Cam et al., 2012, 2016;
Chambert et al., 2013; Hamel et al., 2009; Plard et al., 2012, 2015a,b,c). But recent theory has
revealed that even if all individuals are identical (e.g., if all have the same age-specific expected
fecundity and risk of death), there is high variability in outcomes: some individuals are lucky
while others are not (Caswell, 2009, 2011; Snyder and Ellner, 2016; Steiner et al., 2010; Tuljapurkar
et al., 2009; van Daalen and Caswell, 2017)1. Persistent between-individual variation (“trait vari-
ation”) is therefore only important if it adds substantially to the variability in individual success
produced by simple luck. Some empirical case studies suggest that in fact the effects of luck can
greatly exceed those of trait variation (Bonnet and Postma, 2016; Orzack et al., 2011; Steiner et al.,
2010; Tuljapurkar et al., 2009). Is this inevitably the case?

In this paper we begin to address that question by asking when persistent trait variation has
a substantial effect on the among-individual variability in lifetime reproductive success (LRS).
While we plan to expand our investigation to other demographic quantities of interest, such
as population extinction risk, we begin with LRS for two reasons. First, LRS is a measure of
dynamics over a single generation, so we can investigate the effects of a given level of trait vari-
ation without having to model inheritance and predict how trait variation changes over multiple
generations (which can be tricky for traits affecting growth in a size-structured population (see
Chevin, 2015; Janeiro et al., 2017; Plard et al., 2012; Vindenes and Langangen, 2015).

Second, some have proposed using the variance of LRS to test for the presence of significant
trait variation: if the variance in LRS can be explained by a model without trait variation, then
trait variation can be neglected (Orzack et al., 2011; Steiner and Tuljapurkar, 2012; Steiner et al.,
2010; Tuljapurkar et al., 2009). For example, from Steiner et al. (2010): “We demonstrate that the
estimated multi-stage model [without individual differences] can serve as a ’null’ model, that is,
one that can explain observed life history patterns without appeal to latent individual traits fixed
at birth. Fixed differences should increase the variance in lifetime reproductive success (LRS) and
survival compared to the null model; we do not observe such an increase. Our results show that
the variation among individuals in their life histories can be explained solely by dynamic hetero-
geneity2.” Such findings go against our intuition that large differences in individual outcomes
should have a biological cause – some detectable difference between the individuals.

1The chance variation in outcomes for a single individual that we call “luck” has also been termed “individual
stochasticity” (Caswell, 2009) and “dynamic heterogeneity” (Tuljapurkar et al., 2009).

2Steiner et al. use “dynamic heterogeneity” to refer to luck, environmental variation, and any other source of
variation not related to persistent individual differences.
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When, and how much, does trait variation matter for variation among individuals in LRS? We
address this question in two ways. First we ask when we would expect the variance in LRS to be
substantially affected by trait variation. Then we ask if individuals with high LRS are generally
those with the best trait values, or if their success is largely a matter of luck: if an individual had
many offspring during its life, can we infer that it was a high-quality individual? We investi-
gate these questions first in analytically tractable simple models for a two-stage life cycle, either
iteroparous or semelparous. Our tragically finite life spans prevent us from considering the full
spectrum of more complicated life cycles, but as a partial check on the robustness of our con-
clusions from the two-stage models, we also consider the opposite extreme, continuous variation
in “stage”. For this we use a size-structured model patterned after typical integral projection
models (IPM) for populations in constant environments.

Finally, we use the insights from these analyses to interpret the results of two empirical
case studies, where there is substantial variation in traits affecting demographic rates. The first
case study is the black-legged kittiwake (Rissa tridactyla) in which adult survival and breeding
probability vary between individuals, based on demographic studies by E. Cam and collaborators
(e.g., Cam et al., 2002, 2012) and the age- and stage-structured model of Steiner et al. (2010). We
chose this case study because kittiwakes have been central to the ongoing controversy about how
much individual “quality” variation contributes to variation in LRS, and as a result we can take
advantage of previous modeling efforts based on extensive long-term field studies. The second
case study considers the shrub Artemisia tripartita and the perennial grass Pseudoroegneria spicata
in Idaho (USA) sagebrush steppe (Adler et al., 2010; Chu and Adler, 2015), using extensions of
the integral projection models previously developed for these species (Adler et al., 2010; Chu
and Adler, 2015). This case study was one of the original motivations for this paper and its
antecedent (Snyder and Ellner, 2016). The focal trait in these species is the strength of competition
from neighboring plants in the initial year of life. This “trait” is an attribute of the individual’s
location, rather than the individual, but the questions and methods are the same. Of the many
seeds that an adult plant typically produces over its lifetime, only a tiny fraction survive to
become an adult with high LRS. We wanted to know, which seedlings are the lucky ones? Is it
pure luck, or is it possible to pick the winners in advance? New seedlings that are too close to
a large established conspecific plant have very high mortality (as we will show below), so we
hypothesized that variation in the competition neighborhood of new seedlings would explain a
lot of the variation in lifetime reproductive success.

We were wrong. In our general stage- and size-structured models, and in both empirical
case studies, we find that luck, not trait variation, generally contributes most of the variability
in LRS unless other sources of variability are drastically restricted. For the plants in particular,
the importance of trait variation relative to luck turned out to be much, much smaller than
intuitive expectations. The high importance of luck implies that individuals’ trait values generally
cannot be inferred from their observed LRS. Given this disconnect between traits and LRS, we
conclude with a brief discussion of what these findings imply for selection and trait evolution.
Not surprisingly, one impact of trait-independent variability in LRS is to increase random drift
(potentially by quite a bit) but we also find that it increases the expected rate of trait change due
to selection.

We show in Supplemental Information section Selection that the luck-based correction term
for selection decreases as constant/population size, and we expect all population-level quantities
to have a similar scaling, since they involve averages over populations. Nonetheless, the scaling
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with population size may be slow in some situations, so that effects of luck will only average
out in very large populations. To the degree that luck has a substantial influence on population-
level quantities our results raise questions for trait-based ecology and microevolution. When
population-level outcomes like total number of offspring, or total number of prey captured,
are largely due to luck, a focus on within-species trait variation may not be very fruitful for
explaining ecological patterns.

Measures for the Importance of Trait Variation

Partitioning variation in LRS

We partition variation in lifetime reproductive success, R, into contributions from luck and contri-
butions from between-individual variation in a trait x, using the standard variance decomposition
formula from probability theory,

Var(R) = Ex(Var(R|x))︸ ︷︷ ︸
luck

+Varx(E(R|x))︸ ︷︷ ︸
trait variation

. (1)

The second term in eq. (1) is variance in LRS due to the “main effect” of trait value; the first
term is residual variation (“luck”) that is not explained by trait differences. The ratio between
the trait variation term and the total variation, Varx(E(R|x))/ Var(R), is analogous to heritability
in quantitative genetics: it is the fraction of total variation accounted for by the main effect of
the trait (in the ANOVA sense). We use this ratio in our analyses to summarize the relative
importance of trait variation versus luck.

Equation (1) is applied in different ways for our various models. For the general two-stage
models, the terms in (1) can be calculated or approximated analytically, as we explain in Ap-
pendix A. For the prototype size-structured IPM, we use methods in Ellner et al. (2016, Ch. 3)
to calculate E(R) and Var(R) as a function of individual trait and initial size; from those, both
terms on the right-hand side of (1) can be calculated (details are in Appendix B). Calculations
for the kittiwake and perennial plant models are detailed in the sections for those models. For
the perennial plants, we also decompose the luck term into contributions from different sources
of variability (e.g., first-year survival and growth versus later events, and (as in van Daalen and
Caswell, 2017) variation in lifespan versus variation in age-dependent fecundity).

Inferring traits from realized LRS

We can also explore the role of luck by asking how much we can infer about an individual’s
traits from their LRS and how precisely: are all of the individuals in the upper tail of the LRS
distribution necessarily individuals with above-average traits? Mathematically, we are interested
in studying Pr(x|R). Using Bayes’ theorem, we can express this as

Pr(x|R) = Pr(R|x)Pr(x)
Pr(R)

=
Pr(R|x)Pr(x)∫
Pr(R|x)Pr(x)dx

, (2)

where Pr(x) is the trait distribution, a component of each model.
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Two-stage Models

Models

To explore general properties, we analyze some simple models of an iteroparous and a semel-
parous life history with two discrete life stages, Juvenile and Adult. Notation is summarized in
Table 1. For both models, a juvenile has probability sJ of surviving to adulthood (reproductive
maturity). Given survival to maturity, time to maturity is immaterial for lifetime reproductive
success (because of this, the two-stage model with sJ = 1 is mathematically equivalent to a one-
stage model with regard to the distribution of LRS, so the two-stage model can also represent
an annual species or a perennial without an immature stage). Lifespan as an adult is a random
variable D, with mean L (which is ≥ 1 because survival to adulthood implies that an individual
attempts breeding at least once), and variance Var(D). We assume that stage matters but not age
or prior reproductive success, hence the distribution of annual reproductive success (“offspring
number”) is the same for each year of life as an adult, and independent of past reproduction.
Expected annual offspring number is denoted F, and Ci denotes the random realized offspring
number in the ith year of adulthood.

Iteroparous model: Each year of life as an adult, an individual produces a clutch with ex-
pected size F. Lifespan as an adult may be constant or random.

Semelparous model: Each year of adulthood, individuals die with probability d and repro-
duce with probability b. Reproduction is fatal; thus, conditional on reaching adulthood, life
ends in reproduction with probability b/(d + b) and ends in death without reproduction with
probability d/(d + b).

The parameters sJ , F, L, d, and b will be considered as traits that might vary among individ-
uals in the population. These are not traits in the usual sense (wing length, immunocompetence,
etc.). But it is the values and variation of these demographic parameters that determine the im-
pact of among-individual variation on LRS, so for our purposes these are the “traits” that really
matter.

When there is between-individual trait variation, we will be concerned with two distinct
variances for life-history attributes such as LRS: the population variance, and the variance given
the trait value. For example, if all adults have constant survival probability s, then adult lifespan
D has a geometric distribution with variance s(1− s)−2. We will write Var(D|s) to denote this
conditional variance given the trait value, and Var(D) to denote the population variance of adult
lifespan, which will depend on the distribution of s in the population.

Analysis of the Two-stage Models

Partitioning Var(LRS): Small Trait-variance Approximation

Eq. 1 breaks the variance of LRS into a contribution from luck, which we will call VL, and a
contribution from trait variation, which we will call VT. We are interested in learning how much
of the variance in LRS is contributed by trait variation: how large is VT/(VT + VL)?

To get the most from analytic results we assume that trait variation is small with respect to
the trait mean — i.e., the trait coefficient of variation (CV) is well below 1. That is, we consider
the demographic traits in our models to be functions of an underlying trait x with small variance,
x = x̄ + σZ where E(Z) = 0, Var(Z) = 1 and σ is treated as a small parameter. Our analytic
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approach is to Taylor-expand VT/(VT + VL) to leading order in trait variance, express the result
in terms of trait CV, and analyze how the leading-order term depends on life-history parameters.

It might seem that we are pre-determining the outcome by using a small-variance approxima-
tion. Indeed, in principle the contribution of trait variance to LRS variance can be anywhere from
0 to 100%, if we are free to choose the life cycle, trait variance, and all other model parameters
at will. Our already-announced conclusions about the importance of luck are statements about
our empirical case studies, and about our simple analytic models within empirically-based limits
on parameters. In recent decades we have learned that selection is often strong (Endler, 1986) –
some individuals in a population have much higher expected fitness than others – and the evo-
lutionary response can be fast (e.g. Hendry, 2017; Hendry and Kinnison, 1999; Thompson, 1998,
2013). But strong and fast are relative to the era when a 5% fitness differential would have been
called strong selection, and 7-14% change in honeyeater body mass over 300 years was called
“rapid evolution” in this journal (Diamond et al., 1989).

The Kingsolver et al. (2012) meta-analysis of studies on phenotypic selection provides a quan-
titative summary of the amount of standing trait-related fitness variation. They reported that val-
ues of the standardized linear selection gradient |β| (defined below) on individual fitness com-
ponents follow an exponential distribution with a median of ≈ 0.16 for cases where directional
selection was detected, and that stabilizing selection on individual traits was rarely detected. Se-
lection via differential mating success and fecundity was, on average, stronger than selection via
differential survival (Kingsolver et al., 2012, Table S1). The selection gradient is the regression co-
efficient for relative fitness (or relative fitness component, e.g. clutch size over mean clutch size)
as a function of the focal trait, controlling for effects of correlation with other traits; standardized
means that the coefficient is divided by the trait standard deviation, or equivalently that the trait
has been standardized to have variance 1. That is, if z is the trait standardized to have mean 0
and variance 1, and θ is expected fitness (or a fitness component) as function of the trait value,
for linear directional selection we have θ(z) = θ(0)(1 + βz) and hence CVθ = |β|. A CV of 20%
(i.e., |β| = 0.2) is at the 58th percentile of the Kingsolver et al. (2012) estimated distribution of |β|
values, and a CV of 30% is at the 73rd percentile. Thus, the empirical evidence suggests that our
small-CV approximation is reasonable for the majority of real-world examples. Moreover, our
numerical examples for the two-stage models do not use the small-CV assumption (see archived
code RpartitionItero.R, RpartitionSemel.R for the full expressions for VT/(VT + VL)).

It is important to realize that a “small” CV can still entail substantial trait variation. As an
illustration, a positive Gaussian distribution3 with 30% CV has a three-fold ratio between the 95th

and 5th percentiles, and even a 20% CV implies a nearly two-fold ratio between the 95th and 5th

percentiles.

Partitioning Var(LRS): Results

Our main result for the two-stage models is that, barring unreasonable levels of trait variation,
the variance of LRS is dominated by luck in most circumstances. Figs. 1 and 2 show results for
between-individual variation in expected annual offspring number F, for the iteroparous and
semelparous life histories, respectively, without assuming small trait variance. Figs. S2–S4 in the
Supplemental Information show results for variation in adult lifespan, survival to adulthood,

3Any Gaussian distribution includes negative values; what we mean is a Gaussian such that negative values are
extremely unlikely
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and the probability of reproducing before dying (for the semelparous life history). In all cases,
the contribution of trait variation is generally modest relative to the effect of luck on LRS.

We can get further insight from the small trait-variance approximation discussed above. The
analysis is presented in online Appendix A. For the iteroparous model we find that

VT

VT + VL

≈ VT(σ)

VL(σ = 0)
≈ sJ

CV2(Ci|F)/L + CV2(D|L) + (1− sJ)

[
CV2

sJ
+ CV2

L + CV2
F

+ 2CC2(sJ , L) + 2CC2(sJ , F) + 2CC2(L, F)
]

, (3)

where CC denotes the coefficient of covariation, defined by CC2(X, Y) = Cov(X, Y)/(E(X)E(Y))
and an overbar denotes the population average (see Table 1). For the semelparous model,

VT

VT + VL

≈

 1(
d

sJb
+

1− sJ

sJ

)(
1 + CV2(C|F)

)
+ CV2(Ci|F)

×
[

CV2
F + CV2

sJ
+

d
2

(d + b)2
(CV2

b + CV2
d )

+
2

sJ F
CC2(sj, F) + 2

d
sJb(b + d)

CC2(sj, b)− 2
sJ(b + d)

CC2(sj, d)

+ 2
d

b F(b + d)
CC2(F, b)− 2

F(b + d)
CC2(F, d)− 2

d
b(b + d)2

CC2(b, d)
]

.

(4)

Examining these equations, we see that trait variation can only make a large contribution to
LRS variance if it is not opposed too much by negative co-variation among different fitness
components (the CC2 terms). Large negative CC terms would be expected in the presence of life
history tradeoffs, for example if (in either model) high juvenile survival is achieved by maturation
at a small size that entails higher annual mortality as an adult, and lower expected fecundity at
each breeding attempt.

We can also see that the only way to make the relative contribution of trait variation sub-
stantial is to restrict the potential contributions of luck. For example, for both iteroparous and
semelparous life histories, the relative importance of trait variation increases as offspring number
becomes less variable (eqs. 3 and 4 decrease with CV2(C|F).) Similarly, the relative contribution
of trait variation increases as adult lifespan (and thus the number of reproductive bouts) becomes
less variable for iteroparous life histories (eq. 3 decreases with CV2(D|L)).

Organisms must also survive long enough to reproduce in order for trait variation to affect
LRS. For both iteroparous and semelparous life histories, the relative contribution of trait vari-
ation increases with survival to adulthood, sJ . Increasing sJ can also be viewed as a means of
damping the contributions of luck: VL(σ = 0) includes a term R2

0(1− sJ)/sJ , where R0 is the ex-
pected LRS, so VL becomes large as sJ becomes small. Along the same line, if expected offspring
number (F) and/or survival to adulthood (sJ) are the variable traits in a semelparous life history,
then trait variation is only important if individuals are likely to reproduce before dying (b > d).
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(However, the relative contribution of trait variation is non-monotonic in b and d if b or d are
varying.)

For iteroparous life histories, the effect of expected adult lifespan depends on how the coef-
ficient of variation of lifespan depends on expected lifespan: in eq. 3, the denominator contains
the term

(
CV2(C|F)/L + CV2(D|L)

)
, which depends on L in different ways depending on the

distribution of adult lifespan. For example, if adult lifespan is normally distributed with variance
σ2

L (not depending on L), the term in parentheses becomes CV2(C|F)/L + σ2
L/L2, and the relative

contribution of trait variation increases as L increases. On the other hand, if adults survive each
year with probability s (geometrically-distributed lifetime), then CV2(D|L) = 1− 1/L. The term
in parentheses becomes CV2(C|F)/L + 1− 1/L, and the relative contribution of trait variation
can increase or decrease with L, depending on the magnitude of CV2(C|F). However, whether
CV2(D) declines or increases with L is not determined by the shape of the survivorship curve.

We can consider annual life histories by choosing a fixed lifespan of 1 year and setting sJ = 1
in the iteroparous two-stage model. This leaves mean annual offspring number as the only
potentially varying trait. Fig. 1 shows that with a Poisson clutch size and fixed lifespan, trait
variation contributes more in perennial organisms than in annuals. With L = 1, sJ = 1, trait
variation contributes only 15% of the variance of LRS.

As we reduce opportunities for luck (by letting sJ approach 1, assuming constant clutch size,
and, in our iteroparous two-stage model, assuming constant lifespan conditional on trait value),
the contribution of trait variation will eventually exceed that of luck. However, even with high
trait variation (CV = 0.3, a roughly 3-fold ratio between the 95th and 5th percentiles of expected
annual fecundity), the contribution of trait variation is at most 25% of the total variance in LRS
unless survival to adulthood is 80% or better (top-left panel of fig. 1).

Predicting Traits from LRS: Method

We chose expected offspring number, F, as the focal trait (though any other could have been
chosen instead), and in our numerical examples we assumed that it had a Gaussian distribution.
If an individual lives to reproduce D times (adult lifespan D), then its LRS is the random variable
R = ∑D

i=1 Ci, where Ci is its output in the ith reproductive bout. The sum of a fixed number
of independent Poisson random variables also has a Poisson distribution. This means that if
offspring number is Poisson distributed with mean F (Ci ∼ Pois(F)), then the distribution of LRS
conditional on D is Poisson with mean DF (R ∼ Pois(DF)).

For a fixed adult lifespan L, the sum of reproductive outputs consists of precisely L terms,
so LRS is Poisson distributed with mean LF: Pr(R|F) = Pois(R|LF), where Pois(R|LF) is the
probability of outcome R for a Poisson distribution with mean LF. Thus,

Pr(F|LRS = R) =
Pr(R|F)Pr(F)

∑F Pr(R|F)Pr(F)
=

Pois(R|LF)Pr(F)
∑F Pois(R|LF)Pr(F)

. (5)

If adult lifespan is variable, then Pr(R|F) = ∑D Pois(R, FD)Pr(D). Thus,

Pr(F|LRS = R) =
Pr(F)∑D Pois(R, DF)Pr(D)

∑F Pr(F)∑D Pois(R, DF)Pr(D)
. (6)
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Inferring traits from LRS: Results

The strong influence of luck is also seen when we try to predict traits from observed LRS. For
a population with Gaussian between-individual variation in expected offspring number F, fig. 3
shows the conditional probability of the trait value given observed LRS. If all adults have exactly
the same lifetime, the contribution of luck is suppressed enough that there is a clear relationship
between LRS and trait: those with above-average lifetime productivity probably have above-
average expected offspring number, although even those in the 90th percentile of LRS are only
expected to have a value of F about one standard deviation above the population average. How-
ever, if adult lifetime is variable, this relationship is almost completely washed out. The most
likely trait value varies only weakly with LRS, and the uncertainty about this value is large. The
most likely trait value for those in the 90th percentile of LRS is less than half a standard deviation
above the population average, and there is a substantial probability that even these exceptionally
productive individuals had a trait value below the population average.

Prototype size-structured model

Is the surprisingly high importance of luck in the two-stage models an unintended side-effect of
assuming simple life cycles with just two discrete stages? To partially address that question we
jump to the opposite extreme, continuous size variation in an integral projection model (IPM)
similar to many in the recent literature. Because the results for this model align closely with
those for the two-stage models, we keep this section very brief; most of the information is in
online Appendix B.

Emulating published IPMs we used a log-transformed size measure (e.g., size is log(total leaf
area)), modeled survival as a logistic regression on size, growth as a linear regression on size, and
fecundity as zero below a critical size and then increasing linearly with increasing size. A single
individual trait (“quality”) potentially affects size at birth and size-dependent growth, survival,
and fecundity. We considered two baseline parameter sets (Table B1) giving relatively short
expected lifespan with high per-capita annual fecundity, versus longer life with lower annual
fecundity. Fig. B1 shows the demographic functions for the two parameter sets.

For each baseline set, the LRS variance decomposition and other life-cycle properties were
calculated for 250 random parameter sets generated by perturbing each baseline parameter. The
results (figs. B4 and B5) agree with the two-stage model analysis: for realistic levels of variation
in traits affecting fitness, trait-dependent variance in LRS can sometimes be a nontrivial fraction
of the total variance, but it is typically dominated by chance variation. This pattern again recon-
ciles the apparent conflict of empirical studies where trait-dependent variation in LRS has been
detectable (e.g, Cam et al., 2012; Chambert et al., 2013; Hamel et al., 2009; Plard et al., 2015a),
with theoretical analyses showing that models without trait variation could largely account for
observed variance in LRS (Orzack et al., 2011; Steiner and Tuljapurkar, 2012; Tuljapurkar et al.,
2009).

Empirical Case Studies

We now apply our approach to two empirical case studies. The first is an extension of the
previously published age- and breeding stage-structured model of kittiwakes (Rissa tridactyla),
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a long-lived seagull (Steiner et al., 2010). The second involves size- and competition-structured
integral projection models of two perennial plants, the shrub Artemisia tridentata and the perennial
grass, Pseudoroegneria spicata in Idaho (USA) sagebrush steppe (Adler et al., 2010), using the
models developed online Appendix C.

Kittiwakes

Partitioning Var(LRS)

We use the stage- and age-classified matrix model for female kittiwakes from Steiner et al. (2010).
Individuals are classified as immature, non-breeders, failed breeders (i.e., breeders that fledge no
chicks), breeders that fledge one chick, and breeders that fledge two or three chicks. The matrix
for transitions among these stages is age-dependent, with separate matrices estimated for ages 1,
2, 3, 4, and 5 or older.

Following Cam et al. (2002), we let adult survival and breeding probability positively co-vary
among individuals. We make the conservative assumption that survival and breeding probability
are both functions of an underlying “quality” variable x, so that survival and breeding probability
are perfectly correlated. According to eq. (3), perfect correlation should maximize the relative
importance of trait variation.

For the kittiwake model, the distribution of LRS depends on quality x and state z (a combi-
nation of age and reproductive stage). Using the methods of Ellner et al. (2016, Ch. 3), for any x
we can calculate E(R|z) and Var(R|z) as functions of z, thus obtaining E(R|x, z) and Var(R|x, z)
as functions of (x, z). We are interested in the accumulation of offspring from birth to death, and
all kittiwake chicks are born into the same state z0 =(immature, age 1). We can then compute the
terms in eq. 1 using

Var(R|x) = Var(R|x, z0) E(R|x) = E(R|x, z0). (7)

These calculations are carried out in online SI file KittiwakeVarPartitionTable.R.
Based on (Cam et al., 2002), we take the survival CV to be 0.2, with a breeding proba-

bility CV of 0.03. The table below shows that even assuming perfect correlation in survival
and breeding probability, luck has a very large influence on both LRS and lifespan: trait vari-
ation contributes only 38.9% of the variation in LRS and 33.7% of the variation in lifespan:

Var(LRS) Var(Lifespan)
Percentage from trait variation 38.9% 33.7%

Inferring traits from LRS

We calculated Pr(R|x) numerically by first extending the model to include cumulative offspring
production to date as an additional individual state variable; Snyder and Ellner (2016) call this a
“size-kids” model because individuals are cross-classified by current size and by how many kids
they have had so far during their life. We then calculate the state-at-death distribution for the
extended model (Ellner et al., 2016, Chapter 3), for a finely-spaced set of x values. Because R is the
number of kids “so far” at the moment of death, its distribution is implied by the state-at-death
distribution of the extended model (Ellner et al., 2016, Chapter 3).

The dominant role of luck in kittiwake LRS also makes it difficult to infer individual quality
from individual LRS (fig. 4). Most individuals never have offspring, so those in the 25th to
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75th percentile of LRS most likely have nearly average survival and breeding probability (i.e.,
the conditional probability distribution for quality given LRS is centered more or less at the
population average quality.) It is nearly impossible to be in the top 10% of LRS without having
above-average quality (the conditional probability distribution for x given high LRS is almost
entirely above the population mean of x). However, above-average quality is no guarantee of
reproductive success (i.e., for individuals with low LRS, the trait distribution conditional on LRS
extends well above the average trait value). In short, having exceptionally good survival rate
and breeding probability are necessary but not sufficient for having exceptional LRS: luck is also
required4.

Our two-stage model with iteroparity offers some insight into the results for kittiwakes. Al-
though kittiwake offspring number is not especially variable, adult lifespan is. Most individuals
reach age 5 or older (an average quality individual has a 95% probability of reaching at least age
5), at which point they have a constant survival probability per year (because ages 5 and older
are grouped in the model). The constant survival probability means that adult lifespan is geo-
metrically distributed, with CV = survival probability = 0.81 for an average quality individual.
This is considerably larger than the CVs for between-individual variation in survival or breeding
probability. Thus, much of luck’s sway can be attributed to the large variation in kittiwake adult
lifespans.

Perennial plants

Partitioning Var(LRS)

The perennial plant models (described in detail in online Appendix C) are empirically param-
eterized size-structured IPMs with a mean field approximation for neighborhood competition.
They are very similar to the previously published models for those species (Adler et al., 2010;
Chu and Adler, 2015), except that here seedlings are a separate life stage with all seedlings hav-
ing the same size (in the original data, they were mostly recorded as too small to measure). The
individual trait x in these models is W1, the intensity of neighborhood competition in the year
of birth (age 1), which depends on where the seedling is located. Competition W1 affects the
individual’s probability of survival to age 2, s(W1), and the intensity of competition at age 2 if
it survives, W2. Competition W2 and the individual’s size at age 2, Z (which is not affected by
W1) then determine the distribution of lifetime reproductive success R conditional on survival
to age 2. While it is possible (and likely) that traits besides competition at birth vary among
individuals and affect their expected LRS, we focus here on this one trait because, as explained
in the Introduction, our intuition suggested that it would be a critical factor in LRS variation.

For the analyses here, the key issue is how well the new seedling survival model predicts the
association between W1 and survival. We can test this by comparing the observed and predicted
distributions of W1 values among seedlings that survive to age 2; these are plotted in online SI
figs. C1 - C4. For Artemisia the mortality at higher W values may be slightly over-estimated,
though it is hard to be sure because the number of surviving recruits is so small; otherwise there
is a very close match between the observed and predicted distributions.

4Similar conclusions have been reached about human economic success (Frank, 2016).
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In Supplemental Information section Analysis of partitioning by W in the perennial plant IPMs
we derive the partitioning

Var(R) = EW1,Z[s(W1)Var(R∗|W1, Z)]︸ ︷︷ ︸
1©

+EW1,Z[s(W1)(1− s(W1))(E(R∗|W1, Z))2]︸ ︷︷ ︸
2©

+ EW1 [s(W1)
2 VarZ E(R∗|W1, Z)]︸ ︷︷ ︸

3©
+VarW1 [E(R|W1)]︸ ︷︷ ︸

4©
,

(8)

where R∗ is lifetime reproductive success conditional on surviving to age 2, and we explain how
each term can be calculated numerically. Term 4© is the trait variation term, the main effect of
W1 on LRS. It includes the immediate effect of W1 on survival to age 2 and the delayed effects of
W1 on neighborhood competition later in life, which occur because neighborhood composition
changes gradually over time and which affect survival and growth of older plants.

The other terms are different components of luck – variation in LRS unrelated to W1. Term 2©
is the contribution to LRS variance from survival or not to age 2. Term 1© is average variance in
LRS among survivors, above and beyond the variance due to differences in their W1 and Z values.
It is variance resulting from the fact that reproductive success is not a deterministic function of
Z and W1. Term 3© is the average variance in LRS due to variation in size at age 2 of survivors.
This can be considered as a trait variation term rather than luck, if Z is regarded as a second
individual-level trait in addition to W1.

Using the models to project the fate of a seedling cohort (figs. 5 and 6) shows that, as expected,
initial site quality W1 has a very large effect on a seedling’s chances of surviving to reach full
adult size. One reason for this is that site quality does not change very rapidly, so that the
initial high variability in annual survival rate persists for several years. The dashed blue lines
in figs. 5B and 6B highlight the wide range of annual survival rates at ages 2 and 3, among
individuals who have survived to that age. In contrast, initial site quality has little effect on the
growth or fecundity of survivors, in both species (figs. 5C, D and 6C, D).

Despite the large impact of W1 on survival, the contribution of variation in W1 to variation
in LRS is very small (Table 2). The two terms in the partition (8) that could be viewed as trait
variation (initial site quality 4©, and size at age 2 3©) are under 2% of the total variance in both
species. Survival (or not) to age 2 unrelated to site quality is a less inconsequential component
of the variance in LRS, but by far the largest component in both species is term 1©, the variation
in life trajectories from age 2 onwards that is unrelated to initial site quality or initial size.

Only a small part of this variation is due to variation in offspring number, either chance
variation or size-dependent variation. We repeated the calculation of the four terms under the
assumption that all individuals age 2 or above produce exactly the same number of recruits in
each year of life, obtaining the values in square brackets in Table 2. Variation in LRS is still
dominated by the variation from age 2 onwards unrelated to variation in W1, which (in these
calculations) is entirely due to variation in lifespan.

Again, the two-stage model with iteroparity helps us to understand this outcome. Adult
lifespan in the perennial plants is highly variable because individuals who make it past the
first few years have low and relatively stable annual mortality thereafter, leading to a geometric
lifetime distribution (figs. 5B and 6B). The perennial plants are essentially in the situation of the
middle panels of fig. 1. Unless adult lifespan is relatively constant, or the trait value is highly
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predictive of adult lifespan, trait-driven variance in LRS is dominated by the effect of adult
lifespan variability.

Inferring traits from LRS

The size-kids classification that we used for the kittiwakes becomes computationally infeasible
for the perennial plants because it would require a three-way classification (size, neighborhood
competition W, and offspring to date), producing a prohibitively large transition matrix. How-
ever, we found (figs. B2 and B3) that the focal trait (competition at birth, W1) mainly affects
survival, and conditional on survival, expected growth and annual fecundity are nearly inde-
pendent of W1. So as in other long-lived plants, high LRS is mostly a matter of surviving to
reproduce many times (Snyder and Ellner, 2016). We can therefore use lifespan as a surrogate
for LRS and ask: did the longest-lived individuals necessarily experience low competition as a
seedling? Moreover, because it is rarely possible to associate a new recruit with a specific parent,
this relationship is also the prediction that could be tested in long-term data by asking if large
and therefore old individuals necessarily experienced low crowding early in life. The calculations
are eq. (2) with x = W1 and lifespan L in place of R. The conditional probability Pr(L|W1 = w)
can be computed by simulating a cohort of recruits with initial neighborhood crowding w, and
recording the number that die at each age; Pr(W1) is the empirical estimate of the frequency
distribution of initial neighborhood competition; and Pr(L) can be computed by simulating a
cohort of recruits with W1 drawn from the distribution Pr(W1).

The distributions of W1 given lifespan L are shown in figs. 7 and 8. In both plant species,
as in kittwakes, trait value and eventual success are not tightly coupled. The most long-lived
individuals generally had better than average (i.e. smaller than average) initial crowding W1,
though not by much (roughly half a standard deviation below the mean crowding experienced
by all seedlings, panels B). Many individuals at the low end of the lifespan distribution had better
than median initial crowding W1, while a substantial fraction (≈ 20%) at the high end had worse
than median initial crowding (panels C). So for the perennial plants, despite the large effect of
initial crowding on survival to age 2, starting life in a good location is neither necessary nor
sufficient for becoming one of the large, lucky few who live long and reproduce often.

Selection

Given that variation in reproductive success is dominated by luck, one might begin to wonder
what the implications are for selection. The important thing to remember is that the processes
underlying selection (births and deaths) occur at the individual level, while evolutionary change
is observed at the population level – a change in allele or trait frequencies. For a large enough
population, variation in offspring number due to luck will average out over individuals with
similar trait values. Thus, at the population level, luck may average out, allowing trait variation
to shine through.

Following the approach of Rice (2008), we calculate the expected change in population average
trait value over one annual time step (E ∆x̄), accounting for the contributions of luck. We assume
that the trait x has a distribution with mean x̄ and a small variance, and that offspring have
the same trait as their parent (asexual reproduction with perfect heritability). In Supplemental
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Information section Quantifying selection when fitness is a random variable we show that

E ∆x̄ ≈ ŵ′(x̄)
A

Var(x)
(

1 +
1

A2N
Var(w|x)

)
, (9)

Var ∆x̄ ≈ Var(w|x)Var(x)
A2N

, (10)

where N is the population size, ŵ(x) is the expected yearly offspring number for an individual
with trait x, A = ŵ(x̄) + 1

2 ŵ′′(x̄)Var(x) is an approximation of the expected yearly offspring
number averaged over trait variation, and Var(w|x) is the variance of the yearly offspring number
around ŵ(x) (the equivalent, for w, of the “luck” term in eq. (1)).

The first term in eq. 9 is very similar to the usual expression for the change in mean trait
value (Iwasa et al., 1991, eq. (A6)): the change is the product of the relative expected fitness
gradient (ŵ′(x̄)/A) and the trait variance (Var(x)). ŵ′(x̄)Var(x) is the first-order approximation
to the among-individual variance in ŵ(x), so expected trait change is proportional to the variance
among individuals of expected fitness given their trait (the equivalent for w of the “trait variation”
term in eq. (1)). Luck in reproductive success, measured by Var(w|x), has an effect on expected
trait change that is inversely proportional to population size, because of the averaging of luck
across individuals with similar traits. Similarly, the “random drift” component of trait change,
eq. (10), is proportional to Var(w|x)/N and decreases as luck is averaged across more individuals.

Can luck play a role in selection when populations are not small? Constable et al. (2016)
have shown that luck may be important in weakly-coupled metapopulations with small local
populations. But there may be other ways. Eqs. (9) and (10) also apply to trait change from one
generation to the next, with w given by LRS. As an example, motivated by our two-stage and
empirical models, suppose that the chance variation in LRS is the result of a two-stage process:
individuals survive to maturity with probability sJ , and conditional on survival have (random)
LRS Z with mean 1/sJ so that population size is stable (i.e., LRS is R = BZ where B is a 0-1
random variable with Pr(B = 1) = sJ , and E Z = 1/sJ). We then have A ≈ 1, and using eq. (A7)
we have

Var(w|x)
N

=
1− sJ + CV2

Z
sJ N

. (11)

(If sJ or CVZ vary among individuals, this would hold as an approximation using typical values
of sJ and CVZ). The denominator in (11), sJ N, is an effective population size, the number that
potentially contribute to the next generation. Absent luck in adult LRS (e.g., if every adult
survives to breed once and has 1/sJ offspring), CVZ is zero and the numerator in (11) would
be 1− sJ < 1. In several of the examples in this paper, the distribution of Z is approximately
exponential. An exponential distribution has CVZ = 1, so the random variation in adult LRS
more than doubles the value of (11).5 However, with a fatter-tailed distribution of adult LRS,
CVZ can be arbitrarily large, so that effects of luck could persist at very large population sizes.
For example, a power-law distribution with finite variance (Pr(Z = z) = (1 + z)−k, z > 0, k > 3)
has CV2

Z = (k − 1)/(k − 3). The effects of luck in adult LRS on the mean and variance of trait
change are then inversely proportional to sJ N(k− 3)/(k− 1) which can be far smaller than the
population size N.

5If trait variation causes sJ or CVZ to vary among individuals, this would be a statement about an average individ-
ual.
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Discussion

We have found that lifetime reproductive success is often governed largely by luck. Individuals
within a population frequently differ from one another in ways that affect their expected success,
but actual outcomes are commonly so variable, with or without trait variation, that unless the
effects of luck are substantially restricted (e.g. by fixing reproductive lifespan), the additional
effects of trait variation between individuals are difficult to detect. This remains true regardless of
which property varies among individuals (expected offspring number, adult lifespan, survival to
adulthood, etc.), and regardless of life history type (iteroparous or semelparous) for our general
models and for all of our empirical case studies.

In addition to contributing most of the variability in LRS, luck also obscures the relationship
between LRS and individual traits. In our empirical examples (a long-lived seagull, a shrub, and a
perennial grass), having exceptionally good traits is not sufficient to guarantee exceptionally high
LRS. And in some cases, it isn’t even necessary. In theory the link can be tight, so that individuals
with very low LRS are nearly certain to have below-average traits (e.g., fig. 3A). But this situation
is only likely in real populations that do not have much reproductive skew. If the distribution
of LRS is skewed so that only a “lucky few” individuals dominate offspring production, any
genotype so unfit that an individual with that genotype has no chance of becoming one of the
lucky few will quickly be removed by natural selection. That is, natural selection will limit
trait variation to a point at which even those with the least-beneficial trait values may still have
offspring (apart from recent and therefore rare deleterious mutations), so that the link between
LRS and trait value is blurred. We therefore predict that a tight link between trait values and
LRS will rarely be observed in populations with substantial reproductive skew.

Variability due to luck has some intuitive sources. Luck tends to swamp the contributions of
trait variation as the number of offspring per reproductive bout becomes more variable (specifi-
cally, as the coefficient of variation increases) or, for iteroparous life histories, as the CV of adult
lifespan increases. In all of our empirical examples, variability in adult lifespan is a large source
of variability due to luck. Variability in LRS will also be due largely to luck if few individuals
survive long enough to reproduce, or if negative tradeoffs among fitness components constrain
individuals to have similar expected LRS, despite large variation in several traits that affect fit-
ness.

Because lifespan variation is often a key driver of variation in lifetime outcomes, it is impor-
tant to predict this variation accurately. However, lifespans predicted from demographic models
are often a long-term extrapolation from short-term data (year-to-year survival and growth), or
from a model in which all individuals beyond some age have the same demographic rates. Anal-
yses of individual stochasticity and its lifetime impacts (e.g., Caswell, 2009, 2011; Orzack et al.,
2011; Snyder and Ellner, 2016; Steiner and Tuljapurkar, 2012; Steiner et al., 2010; Tuljapurkar
et al., 2009, and this paper) depend on those extrapolations being accurate enough. This should
be tested empirically, whenever possible, by comparing observed and predicted lifespan distri-
butions (e.g. Steiner and Tuljapurkar, 2012, fig. 1B).

Our findings indicate that comparing observed variance in LRS with the variance expected
in the absence of trait variation will generally not be an effective approach for asking whether
trait variation is present in a population. Bonnet and Postma (2016) found that this “null model”
approach lacks statistical power in models based on empirical studies of snow vole demography.
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Our findings offer an explanation for theirs, and suggest that their conclusions are likely to hold
for many organisms, both perennials and annuals.

The methods presented here can be used to examine contributions to variation in other mea-
sures of individual success, such as lifespan. In our case studies, luck dominates variation in
lifespan also. We have shown that variation in survival and breeding probability contributes
only 34% to the variability in lifespan for our kittiwake case study, and for our perennial plant
models, little can be inferred about the “traits” (competition at birth) of long-lived individuals.

However, the effects of luck may average out for population measures of success. For ex-
ample, we show that the expected change in the population average trait value is equal to the
usual selection formula plus a correction term incorporating variance due to luck that vanishes
as the effective population size becomes large. However, we have only considered effects of trait
variation within a single generation. There may be cumulative impacts that accrue over multiple
generations even in the absence of evolutionary change in trait distributions. Furthermore, while
the correction term for luck vanishes as 1/ population size, the constant of proportionality may
be large in some cases. If luck does play an important role in some population-level measures
of success, then a focus on within-species trait variation may not have much power to explain
ecological patterns.

In short, while trait variation may influence the fate of populations, it is often the case that
luck governs the lives of individuals. In some respects this is good news. It means that null
models which ignore individual variation (and are thus spared the effort to quantify variation
and its effects) may be acceptably accurate for predicting the variance in individual outcomes
and thus the magnitude of demographic stochasticity, which is an important factor in extinction
risk and population variability. But it also means that we will rarely, if ever, be able to infer
that individual variation is present by rejecting the predictions of null models. To learn about
individuals, we need to make repeated direct observations, and analyze the data appropriately
(Cam et al., 2016), not reason backward from lifetime measures of success.
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Table 1: Summary of notation for the general two-stage models. Suggested mnemonics are
indicated by an underlined letter.

Notation Meaning or formula
R An individual’s (random) lifetime reproductive success: total number of off-

spring, regardless of when they are born.
VR Variance in R, including both luck and trait variation.
VT, VL Trait and Luck components of VR, with VR = VT + VL.
sJ Probability of survival from birth to adulthood.
Ci Realized offspring number(“clutch size”) by an individual in year i as an adult.

Typically assumed to be either constant or Poisson distributed.
F E[Ci], expected annual per-capita fecundity.
σC Standard deviation of offspring number.
D Adult realized lifespan (age at death, random) – number of years as a mature

individual, before death.
L E[D], expected adult lifespan.
σD Standard deviation of D.
s Adult annual survival probability (in models with age-independent adult sur-

vival).
b Semelparous model: adult annual probability of breeding (which is fatal).
d Semelparous model: adult annual probability of death without breeding.
• Average of parameter or trait • across the population (e.g., F is the population

average of F).
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Table 2: The four terms in the general partitioning for the perennial plant IPMs, eq. (8), calculated
for Artemisia tridentata and Pseudoroegneria spicata, expressed as a fraction of the total variance in
LRS.

Component of variation in LRS Artemisia Pseudoroegneria
Initial site quality W1, 4© 0.3% [0.7%] 0.5% [0.9%]
Survive to age 2?, 2© 12.1% [25.4%] 12.0% [19.6%]
Size at age 2, Z2, 3© 1.0% [1.25%] 1.4% [1.75%]
Average variance given W1, Z2, 1© 86.7% [72.6%] 86.1% [77.8%]

Note: The terms are listed here in temporal order: seedling (age 1), age 2, and beyond age 2. Values in square brackets
are the fractional term values that result from making annual reproduction independent of size and deterministic, so
that all individuals age 2 or above produce exactly the same number of new recruits each year.
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Figure 1: [Figure 1 caption here.]
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Figure 5: [Figure 5 caption here.]
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Figure 6: [Figure 6 caption here.]
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Figure 7: [Figure 7 caption here.]
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Online Appendix

A Analysis for the two-stage models

First we note some general small-variance approximations. Let f be any smooth function of x.
Taylor-expand

f (x) = f (x̄) + f ′(x̄)σZ +
1
2

f ′′(x̄)σ2Z2 + O(σ3). (A1)

Taking expectations of both sides of (A1),

E f (x) ≈ f (x̄) +
1
2

f ′′(x̄)σ2. (A2)

Taking the variance of both sides of (A1),

Var f (x) ≈ Var( f ′(x̄)σZ) + Var(
1
2

f ′′(x̄)σ2Z2) + 2 Cov( f ′(x̄)σZ,
1
2

f ′′(x̄)σ2Z2) (A3)

= f ′(x̄)2σ2 + O(σ4) + σ3 f ′(x̄) f ′′(x̄)Cov(Z, Z2)

≈ f ′(x̄)2σ2.

Note that if Z has a symmetric distribution Cov(Z, Z2) = Cov(−Z, (−Z)2) = −Cov(Z, Z2), so
Cov(Z, Z2) = 0 and the variance approximation will have O(σ4) error. Similarly,

Cov( f (x), g(x)) ≈ f ′(x̄)g′(x̄)σ2. (A4)

For any model, we can consider VT and VL to be functions of σ and calculate VT(σ)/(VL(σ) +
VT(σ)) to leading order in σ. Recall that VT is the variance with respect to x of expected LRS
as a function of x. Equation (A3) therefore tells us that VT(σ) = O(σ2). Meanwhile, VL is the
expectation with respect to x, of the variance in LRS given x. Equation (A2) therefore tells us that
VL(σ) = VL(0) + O(σ2). Therefore

VT(σ)

VL(σ) + VT(σ)
=

VT(σ)

VL(0)
+ O(σ4). (A5)

Another useful simplification is that (for example) F and F(x̄) differ by O(σ2), so to leading order
it is often the case that one of them can replace the other.

Iteroparous model

In this model, conditional on the values of the demographic traits, lifetime reproductive success
is R = BZ where B ∼ Bernoulli(sJ) and Z is the sum of D random variables with mean F and
variance Var(C). We therefore have E[Z] = E[D]F = LF, and thus the expected LRS given trait x
is

E(R|x) = sJ(x)L(x)F(x). (A6)
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We also have

Var(R) = E(B)2 Var(Z) + Var(B)E(Z)2 + Var(B)Var(Z) (A7)

= s2
J Var(Z) + sJ(1− sJ)(E(Z)2 + Var(Z))

= sJ Var(Z) + sJ(1− sJ)E(Z)2.

The standard formula for the sum of N iid random variables Ci, where N is random and inde-
pendent of the Ci is

Var(
N

∑
i=1

Ci) = E[N]Var(C) + (E[C]2)Var(N), (A8)

and thus Var(Z) = L Var(C) + F2 Var(D). Combining this with eq. A7, we arrive at

Var(R|x) = sJ(x)
(

L(x)Var(C|x) + F2(x)Var(D|x)
)
+ sJ(x)(1− sJ(x))L2(x)F2(x). (A9)

We want an expression for VT(σ)/VL(0) to order σ2. Because VT(σ) is O(σ2) we only need the
value of VL(0) to O(1), so we can use equation (A9) with F in place of F(x̄), and so on, getting

VL(0) = Var(LRS|x = x̄) ≈ s̄J

(
L Var(C|x̄) + F2 Var(D|x̄)

)
+ sJ(1− sJ)L2F2. (A10)

VT is the variance with respect to x of E(R|x) = sJ(x)L(x)F(x). From (A3), to leading order this
is σ2 times the squared derivative with respect to x of sJ LF,

VT(σ) ≈ (s′J L F + sJ L′F + sJ LF′)2σ2. (A11)

using the fact that to leading order F = F(x̄), and so on. The meaning of the VT approximation is
clearer if we express it in terms of trait variances and covariances. Assuming that small variation
in x produces small variation in F, L, and sJ , we can Taylor expand in these variables to get

VT(σ) = Var(sJ LF)

≈ (sJ L F)2
[

CV2(sJ) + CV2(L) + CV2(F) + 2CC2(sJ , L) + 2CC2(sJ , F) + 2CC2(L, F)
]

,

(A12)

where CV(X) is the coefficient of variation of X (CV2(X) = Var(X)/X̄2) and CC(X, Y) is the
coefficient of covariation of X and Y (CC2(X, Y) = Cov(X, Y)/(X̄Ȳ)). We therefore have

VT

VT + VL

≈ VT(σ)

VL(0)
≈

s2
J

sJ

(
CV2(C|F)

L
+ CV2(D|L)

)
+ sJ(1− sJ)

[
CV2(sJ) + CV2(L) + CV2(F)

+ 2CC2(sJ , L) + 2CC2(sJ , F) + 2CC2(L, F)
]

, (A13)

with the term in square brackets being of order σ2.
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Semelparous model

An individual’s lifetime reproductive success is R = BjBbC, where Bj ∼ Bernoulli(sJ) and Bb ∼
Bernoulli(b/(d + b)). The expected lifetime reproductive success given trait x is the probability
of surviving to adulthood (sJ(x)) times the probability of reproducing (b(x)/(d(x)+ b(x))), times
the expected clutch size (F(x)):

E(R|x) = sJ(x)b(x)
d(x) + b(x)

F(x). (A14)

Again, VT is the variance with respect to x of E(R|x). As before, we assume that variation
in x causes small variation in one or more of the model parameters. Taylor expanding to second
order in all of the parameters and taking the expectation to leading order, as in eq. A3, this is(

∂

∂sJ

sJbF
d + b

)2

Var(sJ) +

(
∂

∂b
sJbF
d + b

)2

Var(b) + . . . + 2

(
∂

∂sJ

sJbF
d + b

)(
∂

∂b
sJbF
d + b

)
Cov(sJ , b) + . . . .

(A15)
Taking the derivatives produces

VT(σ) ≈
(

sJb
d + b

)2

Var(F) +

(
b F

d + b

)2

Var(sJ) +
s2

J F2d
2

(d + b)4
Var(b) +

s2
J F2b

2

(d + b)4
Var(d) (A16)

+ 2
sJb

2
F

(d + b)2
Cov(sj, F) + 2

sJb F2d
(d + b)3

Cov(sj, b)− 2
sJb

2
F2

(d + b)3
Cov(sj, d)

+ 2
s2

J b F d

(d + b)3
Cov(F, b)− 2

s2
J b

2
F

(d + b)3
Cov(F, d)− 2

s2
J b F2d

(d + b)4
Cov(b, d).

Factoring out (sJb/(d + b))2, the expected LRS when all traits take their average value, we get

VT(σ) ≈
(

sJb F
d + b

)2(
CV2

F + CV2
sJ
+

d
2

(d + b)2
(CV2

b + CV2
d ) (A17)

+
2

sJ F
CC2(sj, F) + 2

d
sJb(b + d)

CC2(sj, b)− 2
sJ(b + d)

CC2(sj, d)

+ 2
d

b F(b + d)
CC2(F, b)− 2

F(b + d)
CC2(F, d)− 2

d
b(b + d)2

CC2(b, d)

)
.

The reproductive variance is

Var(R|x) = (E C)2 Var(BjBb) + Var(C)E(BjBb)
2 + Var(C)Var(BjBb) (A18)

= F2 Var(BjBb) + Var(C)
(

sJb
d + b

)2

+ Var(C)Var(BjBb),
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where

Var(BjBb) = E(Bj)
2 Var(Bb) + Var(Bj)E(Bb)

2 + Var(Bj)Var(Bb) (A19)

= s2
J

bd
(d + b)2 + sJ(1− sJ)

(
b

d + b

)2

+ sJ(1− sJ)
bd

(d + b)2

= sJ
bd

(d + b)2 + sJ(1− sJ)

(
b

d + b

)2

x,

where sJ , b, d, and F are all functions of x. The luck contribution is then, to first order,

VL(σ
2 = 0) = Var(LRS|x = x) (A20)

= F2

 sJbd
(d + b)2

+ sJ(1− sJ)

(
b

d + b

)2
+

(
bsJ

d + b

)2

Var(C|F)

+

(
sJbd

(d + b)2
+

b
2
sJ(1− sJ)

(d + b)2

)
Var(C|F)

=

(
sJb F
d + b

)2 [
d

sJb
+

1− sJ

sJ
+

Var(C|F)
F2

(
1 +

d
sJb

+
1− sJ

sJ

)]
.

The relative contribution of trait to variance in lifetime reproductive success is thus

VT

VT + VL

≈
CV2

F + CV2
sJ
+

d
2

(d + b)2
(CV2

b + CV2
d )(

d
sJb

+
1− sJ

sJ

)(
1 + CV2(C|F)

)
+ CV2(C|F)

(A21)

+

2
sJ F

CC2(sj, F) + 2 d
sJ b(b+d)

CC2(sj, b)− 2
sJ(b+d)

CC2(sj, d)(
d

sJb
+

1− sJ

sJ

)(
1 + CV2(C|F)

)
+ CV2(C|F)

+
2 d

b F(b+d)
CC2(F, b)− 2

F(b+d)
CC2(F, d)− 2 d

b(b+d)2 CC2(b, d)(
d

sJb
+

1− sJ

sJ

)(
1 + CV2(C|F)

)
+ CV2(C|F)

.
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B Size-structured model with individual quality variation

Here we present the detailed assumptions, numerical methods, and results for the “prototype”
size-structured IPM. The model’s basic structure is typical of many in the current literature,
but each demographic rate model has an additional term so that outcomes are affected by a
“quality” variable q that is assigned at birth and remains constant over the lifetime. We think of
size (denoted x) as a log-transformed size measure because linear demographic models, such as
the ones we specify below, have often been found to be appropriate for log-transformed size (log
mass, log basal area, etc.).6 In the model, size x typically ranges between -1 to 3; individuals are
born with size near 0 (with mean size possibly depending on q), and the growth model results
in an asymptotic “adult” size near 2 (with the exact value possibly depending on q).

For calculating the importance of luck, VL/VT, we will assume a population in which q has a
Gaussian distribution with mean 0 and variance 1. Model parameters with CV in their name then
represent a coefficient of variation, which is always chosen small enough that negative values of
demographic rates are rare enough.

The model’s main demographic rate functions are plotted in fig. B1 for two sets of parameter
values (Table B1) that give contrasting life histories: relatively short expected lifespan with high
per-capita annual fecundity (row 1) vs. longer life with lower annual fecundity (row 2).

• Survival probability is a logistic regression in size, logits(x) = s1(x − s0) + 2s1CVsq. The
coefficient on q implies that CVs is the approximate (to leading order in q) coefficient of
variation in survival (as a function of q) at the size s0 where s = 0.5 for an average-quality
individual (q = 0). A unavoidable consequence of the logistic regression model is that
between-individual variation in survival is small when average survival is near zero or 1.

• Fecundity: for our calculations we need to specify the size- and quality-dependent mean
and variance of per-capita annual offspring production, but not the specific distribution.
We assume that the mean is the maximum of 0 and bF(x − xc)(1 + qCVF). Then CVF is
the CV (across individuals) of size-dependent expected per-capita fecundity. The vari-
ance is assumed to be an allometric function of the size-dependent mean, Variance =
A(Mean)b, A, b > 0).

• Initial size of new offspring is Gaussian with mean qCVx,0, and variance σ2
x,0. If x is a log-

transformed size measure, then CVx,0 is approximately the CV of size on the arithmetic
scale when q has variance 1.

• Growth is modeled by linear regression. Size at time t + 1, conditional on being size x at
time t, is Gaussian with mean bGx + (1− bG)x̄ and variance σ2

G, where 0 < bG < 1 and
x̄ = 1 + qCVx̄. Here bG is the slope of the regression line, and the intercept term is written
in terms of the point x̄ at which the regression line intersects the 1:1 line. That intersection
point is the asymptotic size to which individuals would converge, in the absence of any ran-
dom variability in growth. Because q has variance 1 by assumption, CVx̄ is approximately
the between-individual CV of asymptotic size on the arithmetic scale.

6For this model only, we follow the notation for size-quality models in (Ellner et al., 2016, Chapter 6) in which
x is size and q is quality, to reduce the rate of errors when adapting code and formulas from that source. This far
outweighs the disadvantage of having x mean one thing in the main text and something different here.
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Depending on the CV parameters, individual quality q can affect any or all of: initial size,
expected size-dependent growth rate, size-dependent survival, and size-dependent fecundity.
Figures B2 and B3 show the resulting age-dependent vital rates across the range of individual
quality q at the two sets of baseline parameters in Table B1.

A complication in variance partitioning for this model is that the trait q can affect both initial
size and the subsequent dynamics of size. The basic partitioning is equation (1), which for this
model is

Var(R) = Eq(Var(R|q))︸ ︷︷ ︸
luck

+Varq(E(R|q))︸ ︷︷ ︸
trait variation

. (B1)

Similar to the perennial plant models, we need to expand each term to account for the fact that
R depends on initial size x0 which can be correlated with q. For trait variation,

E(R|q) =
∫

E(R|x0, q)c0(x0|q)dx0 (B2)

where c0(x0|q) is the conditional distribution of x0 given quality q. E(R|x0, q) can be computed
from a size-only model where all individuals have quality q, in the usual way. Let Pq be the
survival/growth kernel for quality q, Nq the corresponding fundamental operator (I − Pq)−1,
and βq(x) the expected per-capita fecundity as a function of size x; then E(R|x0, q) = βqNq and
so

E(R|q) = βqNqc0(x|q). (B3)

For the luck term, the methods of (Ellner et al., 2016, Section 3.2) can be used to compute
Var(R|x0, q) as a function of x0 for any q using a size-only IPM for individuals with constant
quality q. Then

Var(R|q) = Ex0(Var(R|x0, q)) + Varx0(E(R|x0, q)) (B4)

where the mean and variance above are computed with respect to the conditional distribution of
x0 given quality q.

In a midpoint rule implementation of the IPM, the two last equations will produce vectors of
E(R|q) and Var(R|q) values at the quality meshpoints, which can be used to compute the terms
in (B1) for any assumed distribution of q.

Results for the size-structured model

For each baseline parameter set, the LRS variance decomposition and other life-cycle properties
were calculated for 250 random parameter sets generated by independent Gaussian perturbations
to the log of each parameter, with mean 0 and standard deviation 0.2; this gives lognormal
parameter variation with a CV of approximately 20%. Figs. B4 and B5 show that lifespan is
(as we would expect by now) a key attribute in the variance partitioning. Mean and standard
deviation of lifespan are very tightly correlated (panel A); the dashed line is a regression line
through the origin of that plot.7 Both VT and VL tend to increase with longer expected lifespan
(panels B and C), in such a way that VT/(VT + VL) is fairly small and appears to approach an
asymptote with increasing mean lifespan, at which trait-dependent variation is ≈ 35% (fig. B4)
or 25% (fig. B5)of the total.

7Lifespan is defined to be the number of censuses at which an individual is alive. This implies that the minimum
possible lifespan is 1, so lifespan-1 is the number of years of non-guaranteed survival.
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Sensitivity analysis of VT/(VT + VL) with respect to model parameters (Table B2) also high-
lights the importance of lifespan variability. For both baseline parameter sets, the demographic
parameters with highest sensitivity were those determining the mean (and therefore the variance)
of lifespan (s0 and s1, the parameters of the logistic regression of survival on size, and the growth
regression slope bG, which determines how quickly individuals escape the high mortality rate of
small individuals). Similarly, the effect of quality on annual survival (CVs) had higher sensitivity
than the other CV parameters; for the second parameter set individual variation in size at birth
(CVx0) and asymptotic size (CVx̄) were also important, because high-quality individuals reach
the minimum size for reproduction several years sooner than low-quality individuals (fig. B3B).

The contribution of trait variation in figs. B4D and B5D depends on the amount of between-
individual fitness variation at the baseline parameter sets (see figs. B2D and B3D). As with the
two-stage models, empirical estimates of selection strength (Kingsolver et al., 2012) are a useful
benchmark. In both parameter sets, the trait-dependent variation in annual fecundity and the
trait-dependent variation in survival (specified by the values of CVF and CVs) are both above
the estimated median value of the selection gradient on individual traits (|β|, Kingsolver et al.,
2012, Table S2). The resulting selection gradients |β| for (survival×fecundity) are ≈ 0.45 in
both parameter sets, roughly twice the estimated mode of |β| values for total fitness measures
in natural populations where directional selection was detected (Kingsolver et al., 2012, Table
S2). Our baseline parameter sets thus produce above-average but not exceptionally high levels of
between-individual fitness variation, relative to natural populations.

The resulting values of VT/(VT + VL) (figs. B4 and B5) thus confirm the conclusion from
our two-stage models: for realistic levels of among-individual variation in traits affecting fitness,
trait-dependent variance in LRS can sometimes be a nontrivial component of the total variance,
but it will typically be dominated by variance due to luck.
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Table B1: Baseline parameter vectors for the size-quality model.

s0 s1 bG σx1 σx0 bF xc A b CVs CVF CVx̄ CVx0

0.50 1.00 0.60 0.20 0.10 0.75 1.00 1.00 1.00 0.25 0.25 0.05 0.10
-2.00 0.50 0.70 0.20 0.10 0.50 1.50 0.50 1.00 0.25 0.20 0.10 0.20

Note: s0 is the size at which survival = 0.5 (which can be negative, because we assume a log-transformed size measure);
s1 is the slope of logit survival as a function of size; bG is the slope of the linear regression of size at t + 1 on size at t
and σx1 is the conditional standard deviation of size at t + 1; σ2

x0 is the standard deviation of initial size; bF is the slope
of the fecundity function above xc, the minimum size at which reproduction occurs; A and b are parameters of the
variance-mean relationship for annual offspring production; the CV parameters determine the coefficient of variation
in demographic rates, as explained in the text.

Table B2: Parameter sensitivity analysis for the two baseline parameter vectors in Table B1.

Parameter Set 1 Set 2
s0 -0.13 -0.16
s1 0.45 0.57
bG -0.77 -0.75
σx1 -0.01 0.04
σx0 0.00 0.00
bF 0.05 0.01
xc -0.05 -0.07
A 0.02 -0.05
b -0.03 0.05

CVs 0.41 0.22
CVF 0.05 0.06
CVx̄ 0.09 0.15
CVx0 0.03 0.13

Note: the tabulated values are standardized regression coefficients calculated by the src function in the sensitivity

R package. Because the randomly perturbed parameter sets were generated with standard deviation ≈ 20% of
the baseline value, the standardized coefficients are proportional to elasticities (specifically, they give the estimated
absolute change in the response for a 20% change in the parameter). The coefficients were calculated by the function
src in the sensitivity R package (CRAN.R-project.org/package=sensitivity). Calculations are performed in
SizeQualityElasticityAnalysis.R
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Figure B1: [Figure B1 caption here.]
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Figure B2: [Figure B2 caption here.]
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Figure B3: [Figure B3 caption here.]
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Figure B4: [Figure B4 caption here.]
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Figure B5: [Figure B5 caption here.]
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C Perennial plant single-species IPMs

Here we develop relatively simple integral projection models (IPM) for the four most common
species in the Idaho sagebrush steppe community studied by Adler et al. (2010), in which in-
dividuals are cross-classified by size and by competitive pressure, W. These are used in the
main text with the individual trait being the competitive pressure at age 1, W1. Like a genotype,
this trait is assigned at birth and has long-lasting effects, because an individual’s competitive
neighborhood changes gradually over time.

Structurally these models are a standard size×quality IPM, except that seedlings are modeled
separately because they differ from older plants in two ways: seedlings have higher mortality (all
else being equal), and the subsequent size of surviving individuals is affected by W in older
individuals but not in seedlings. Scripts for the calculations are in the folder SingleSppIpm in
the online SI.

The four dominant species are the shrub, Artemisia tripartita (ARTR), and the C3 perennial
bunchgrasses Pseudoroegneria spicata (PSSP), Hesperostipa comata (HECO), and Poa secunda (POSE).
These species accounted for over 70% of basal cover (grasses) and 60% of canopy cover (shrubs
and forbs) during the period of data collection, 1926-1957. See (Adler et al., 2010) for details on
the study area and methods of data collection and data processing. Models with all of the com-
ponents needed for our analysis are developed only for ARTR and PSSP, for reasons explained
below, but we consider the other species as well to provide additional support for the model
structure.

Previous studies of this system (Adler et al., 2010; Chu and Adler, 2015) have found that
between-species competition among the dominant species is much weaker than within-species
competition, in many cases not significantly different from zero. Removal experiments (Adler
et al. in review) have confirmed the resulting prediction that removals of competing species
would have little effect on the remaining species. For our purposes here, including between-
species competition would mean that survival and growth would have slightly different W co-
variates, because the coefficients determining the between-species impacts are different for sur-
vival and growth. The model would then be much more cumbersome to work with, for little
gain in accuracy. We therefore consider models with only within-species competition, using the
nonparametric competition kernels fitted by Teller et al. (2016). In an initial analysis that in-
cluded between-species competition (not described here), we found that the estimated within-
and between-species components of total competition pressure were nearly independent (corre-
lation coefficient |r| < 0.15 for both survival and growth in PSSP, |r| ≤ 0.05 for survival and
growth in the other three species). Between-species competition can therefore be viewed as a
small amount of random “noise” added to the much larger effect of within-species competition.

Seedlings are only partially identified in the original quadrat maps, so for all analyses here,
likely seedlings are identified by size and age. However, individuals recorded as age=1 in a
quadrat that was not observed the previous year are actually of unknown age. Such individuals,
if they are small, might be seedlings or they might be older individuals that shrank to a seedling-
like size. So for all analyses of seedlings only, or of older individuals only, we removed from
the data set all such “doubtful” individuals: small (size ≤ 0.25 cm2) and recorded as age=1 in
a quadrat that was not observed the previous year. With doubtful individuals removed, any
remaining individual who is small (size ≤ 0.25 cm2) and recorded as age=1 are classified as
seedlings, and all others are classified as older. This assumes that any individuals larger than
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0.25 cm2 is older, regardless of their recorded age. The function to trim out doubtful individuals
and identify likely seedlings is in TrimQuadrats.R.

Seedlings are different

To test whether seedlings are demographically different, we fitted survival models that included
a factor variable flagging likely seedlings. A significantly nonzero coefficient for this variable
implies that seedlings behave differently, all else being equal. Specifically, we fitted the model

gam(survives ~ logarea + W + Group + seedling + seedling:Group

+ s(year,bs="re") + s(year,by=logarea,bs="re")

+ s(year,by=W,bs="re"), family=binomial)

where W is within-species competition. The model includes random year effects on the intercept,
the slope in size, and slope in W.

For all four species, the coefficient on seedling was significantly negative, with p < 0.01.
Several of the of the seedling:Group interaction coefficients were also significant, though most
were not. Script file: CompareSeedlings.R.

Seedling growth also needs a separate model. Close to 100% of seedlings and likely seedlings
are recorded as “too small to measure” and assigned area 0.25cm2, so the subsequent size of
survivors at age 2 is necessarily independent of initial size. In addition, we will see below that
survivor size at age 2 is also independent of W at age 1, whereas the growth of older individuals
is affected by W. Putting these facts together, a reasonable model for seedlings is that

1. They are born with a random value of local crowding W (drawn from the empirical distri-
bution of W for seedlings), which determines their probability of surviving to age 2.

2. Those who survive are assigned a random size, drawn from the empirical distribution of
sizes for seedlings that survive to age 2.

3. W is modeled as a Markov Chain (see below). W at age 1 therefore determines the distri-
bution of W at age 2.

The fact that seedlings are different is a re-discovery of what Chu and Adler (2014) found:
in many species age matters, as well as size. Chu and Adler (2014) fitted models with 1/age

as a covariate, and possibly also an interaction between size and 1/age. In most cases, AIC
comparisons favored age-dependence in addition to size-dependence.

For the Idaho species, addition of age to a model with size- and year-dependent survival adds
< 2% to the amount of deviance explained (with or without an age:size interaction). A model
with covariates seedling and seedling:logarea picks up much of the additional deviance ex-
plained (38% in ARTR, 59-75% in the others (this is done in script Fit Survival Seedlings.R).
To avoid a three-way classification by age, size, and W, we simplify the age structure to seedlings
vs. older plants.

Modeling seedling survival

Survival of seedlings was modeled with logistic regression,
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Seedlings Age 2 and up
Species a0 bW a0 bz bW
ARTR -1.76 -1.86 0.75 0.57 -1.55
HECO -0.24 -1.67 1.86 1.26 -2.08
POSE -0.33 -2.20 1.70 1.01 -3.76
PSSP -1.05 -1.26 1.98 1.43 -2.22

Table C1: Parameters for logistic regression models of survival. For seedlings, logit s = a0 +
bWW. For older plants, logit s = a0 + bzz + bWW. Source files: Fit Survival Seedlings.R,

Fit Survival Older.R

gam(survives ~ W + s(Group,bs="re") + s(year,bs="re") + s(year,by=W,bs="re"),

family=binomial)

This model includes a Group random effect, random year effects on the intercept and slope
with respect to W. Recall that seedling size is not included in the model, because nearly all
seedlings were recorded as too small to measure. For a minimal-luck model, we drop the random
variation in slope and intercept and use the fitted mean intercept and slope (Table C1). Nonlinear
responses to W were tested by fitting the same model with an s(W) term; there was no evidence
of a deviation from the logistic regression.

A test of the seedling survival model is how well it predicts the distribution of W values
at age 1 for seedlings that survive to age 2 (Figures C1 – C4). Indeed, getting this right is the
main thing that the survival model needs to do in the context of our analyses. For ARTR the
mortality at higher W values may be slightly over-estimated, though it is hard to be sure because
the number of surviving recruits is so small; otherwise there is a very good match between the
observed and predicted initial W distributions for seedlings that survive to age 2.

Modeling older plant survival

For non-seedlings we adopted the logistic regression model used in previous studies of this
system, with random year effects on the intercept, slope with respect to size, and competition
coefficient (slope with respect to W).

gam(survives ~ logarea + W + s(Group,bs="re") + s(year,bs="re")

+ s(year,bs="re",by=logarea) + s(year,bs="re",by=W), family=binomial)

The estimated coefficients for the minimal-luck model (omitting year effects) are in Table C1.
As with seedlings, we compared the logistic regression model to a nonlinear model with a

spline response to W. Again, there was no evidence against the linear response to W, and the
predictions of the linear and nonlinear models were almost perfectly correlated (r > 0.99 for all
species).

We also compared the logistic regression model to one with a nonlinear response to initial size
(i.e., an s(logarea) term in the linear predictor). For ARTR there was evidence of nonlinearity
(∆AIC ≈ 13 in favor of the spline model) but the nonlinearity was weak and the predictions of
the linear and nonlinear models were very similar (correlation r = 0.98); for the other species, the
predictions from the linear and nonlinear models were nearly identical (r > 0.995). We therefore
again retained the linear model.
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Species f d σ

ARTR 0.65 1.61 1.31
HECO 0.76 -0.20 0.80
POSE 0.45 -0.07 0.70
PSSP 0.58 -0.16 0.76

Table C2: Parameters of the Gaussian mixture model for the size at age 2 of surviving seedlings,
f × N(log(0.25), 0.22) + (1− f )× N(d, σ2). Source file Fit Growth Seedlings.R

Modeling seedling growth

The data sets record the same size for almost all seedlings, so the only question is whether W
affects the subsequent size of surviving seedlings. The answer appears to be “no”. For survivors,
there is no correlation between W at age 1 and size at age 2 (script Fit Growth Seedlings.R,
using the Kendall library to compute Kendall’s rank-correlation coefficient τ between W at age
1 and size at age 2:

ARTR tau = -0.0632, 2-sided pvalue =0.65623

HECO tau = 0.0478, 2-sided pvalue =0.35902

POSE tau = -0.0272, 2-sided pvalue =0.55299

PSSP tau = 0.027, 2-sided pvalue =0.61293

Similarly, fitting seedling growth with

gam(logarea.t1 ~ W + s(year,bs="re"))

the coefficient of W was not significant for any species (p > 0.35).
These results about seedling survival and growth lead to a model where seedlings are clas-

sified only by W, which determines their survival probability. Their size at age 2 is a random
draw independent of W, and their W at age 2 is a random draw from the Markov Chain for W(t)
described below, conditional on their initial W.

A majority of age-2 individuals are still recorded as “too small to measure” (area = 0.25cm2).
For the IPM we need a smoothed version of the size distribution at age 2. A mixture of two Gaus-
sians, representing “too small” and other individuals, gives a reasonably good fit (fig. C5). The
“too small” component has mean= log(0.25), standard deviation= 0.2, by fiat. The distribution
parameters are the fraction in the left peak, and the mean and standard deviation of the second
peak. These were estimated by maximum likelihood (source file Fit Growth Seedlings.R) and
the estimates are in Table C2.

Modeling older plant growth

As a first exploratory step, we used gam fits to check for nonlinearity in the responses to initial
size and to W. The linear and nonlinear models produced nearly identical predictions (see
fig. C6). For ARTR the linear model slightly under-predicts the growth of the largest and smallest
individuals, and in the other species the linear and nonlinear models make nearly identical
predictions.

We therefore adopted the linear model used in previous studies of this system, a linear mixed-
effects model with size-dependent variance. However, we modeled growth variability using a

44



Student-t distribution with estimated d f parameter. The limit d f → ∞ gives a Gaussian dis-
tribution; finite d f gives fatter tails. As it turns out, small values of d f are estimated for all
species.

Fitting was done in a Bayesian framework, because this is the only available option for a
model with random year-effects and t-distributed growth variability. We used JAGS (via the
rjags library). The full model (with random Group effects, and random year effects on the
intercept, z-slope, and competition coefficient) mixed very slowly. Group effects proved to be
the cause. With very vague priors on group effects and on the overall intercept, MCMC chains
could drift to regions where the variance parameter for Group effects is very large, and the mean
Group effect is far from zero but compensated by an equal but opposite intercept coefficient.
Once a chain gets there, getting back to the actual region of highest likelihood is difficult because
it requires a simultaneous jump (in the right directions) by all Group means and the intercept
coefficient.

This problem was removed by putting an informative prior on Group effects. In the lmer

fits, estimated Group effects were mostly non-significant, and always small (mostly < 0.2 in
magnitude and all < 0.5). The prior we used for Group effects was Gaussian with standard
deviation 0.5. With 3 chains, 5000 burn-in iterations and 25000 sampled iterations with 10-fold
thinning, this gave sufficiently fast mixing (Gelman-Rubin scale reduction factor of 1.05 or lower
for all parameters) in all species but PSSP. For PSSP the multivariate scale reduction factor was
1.2, so we re-ran with 50000 iterations and 20-fold thinning, which brought the factor down to
1.13.

The “minimal-luck” model ignores Group effects and year-to-year variation in growth param-
eters:

E[zt+1] = a0 + a1zt + bWW
zt+1 −E[zt+1] ∼ t(τ(zt), d f )

τ(z) = τ0ecz
(C1)

As parameterized in JAGS, the Student-t distribution with k degrees of freedom and precision τ
and has density

t(x|τ, k) =
Γ
(

k+1
2

)
Γ
(

k
2

) √
τ

kπ

(
1 +

τx2

k

)−(k+1)/2

. (C2)

Unfortunately, it is not the case that τ is the inverse of the variance, as it is for the Gaussian
distribution in JAGS.

Table C3 below gives the parameter estimates for all species (mean of the MCMC samples
after burn-in). The a0 coefficient is the sum of the estimated intercept and the estimated Group
effects; this is equivalent to centering the Group effects at zero, so that a0 represents a “typical”
Group. The fitted model also includes random year effects on all a and b coefficients. The
“minimal luck” model ignores these components of luck, except that the growth variability in the
“minimal luck” model is the variability that remains after Group and year effects are accounted
for in the fitted model.

In Table C3, bW is the estimate of the mean coefficient on W, and 〈bW(t)〉 is the average of the
year-specific estimates. The former is a rather complicated object. Year-specific bW is specified as
a Gaussian (whose mean db and precision τb are parameters to be estimated), but that distribution
is truncated onto an interval (−L, 0) so its actual mean is not equal to db. The values for bW in the
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a0 a1 bW < bW(t) > τ c d f
ARTR 0.4930 0.9231 -0.0722 -0.0697 1.2196 0.4227 2.2393
HECO 0.2403 0.8969 -0.2898 -0.2779 3.5924 0.1413 3.2284
POSE 0.3868 0.7195 -0.5622 -0.5363 1.4732 0.0861 10.0740
PSSP 0.2405 0.8921 -0.3300 -0.3383 1.8594 0.2529 4.8425

Table C3: Estimated parameters for “minimal luck” non-seedling growth model with only in-
traspecific competition, fitted with JAGS. Source files Fit Growth JAGS.R,jags growth.txt,

and JAGS tables v3.R.

Tables were calculated by computing the actual mean of the truncated Gaussian distribution for
each (db, τb) pair in the 3 MCMC chains that were run, and averaging those values. The adjacent
column 〈bW(t)〉 is the average of the ≈ 20 year-specific estimates of bW ; its similarity to the bW
estimate is reassuring.

Recruitment

Previous analyses of these data have modeled recruitment at the quadrat level, rather than the
level of individual plants, because the census data do not let us identify which parent plant
produced which recruits. But our analyses here require a model for individual fecundity, so
we take a different approach. Although previous analyses have identified year-to-year variability
and density-dependence as important factors in recruitment, we omit both of those to construct a
simple “minimal luck” model in which seed production is a deterministic function of individual
size, and the only random variation in recruitment (“luck” in our analyses) is random survival
(or not) of seeds to become recruits the next year. A model that omits most “luck” in recruitment
is adequate for our purposes here, because even when we do this, the conclusion (as reported in
the main text) is that effects of trait (i.e., initial W) variation is overwhelmed by luck.

Measurements of number of inflorescences per plant in PSSP (P. Adler, unpublished data) sug-
gest that inflorescence number is proportional to the square root of plant area (ez/2 for z=log
area). We assume that expected seed production is proportional to inflorescence number. If seed
production is large, with a small fraction of seeds surviving to become measured recruits, the
number of recruits (conditional on the number of seeds produced) should have a Poisson dis-
tribution. We therefore assumed that recruit production by a size-z individual is Poisson with
mean m(z) = Cez/2. The constant C cannot be estimated from our data. For all calculations with
the models, we therefore chose C to make the population stable (λ = 1 in the overall IPM).

Modeling changes in W

Our analyses also require a model for how the “trait” W changes over time. For two of the species
(ARTR, PSSP) it was possible to construct a simple first-order model consistent with the data; for
the other two, the dynamics are more complicated and may require a higher-order model (i.e.,
W(t) depends on W(t − 2) and possibly early values, not just on W(t − 1)). A higher-order
model for W ups the dimension of the resulting IPM, which is then computationally intractable.
We therefore consider only ARTR and PSSP here and in the main text.

The models for W dynamics were fitted to the estimated W values for all individuals who
were observed at a time t and a subsequent time t+ 1, regardless of age (known or unknown). We
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Species aW bW aσ bσ d f W0

ARTR -0.0734 0.9545 0.5380 0.0217 2.5663 0.0025
PSSP -0.3125 0.8624 0.4563 0.0427 4.5233 0.0025

Table C4: Parameters for AR(1) models of log-transformed W fitted with gamlss. Source file:
ModelingW.R

.

have seen that some seedlings land in locations with exceptionally high W, but these individuals
are not included in the data on W dynamics because they don’t survive to be censused a second
time.

The distributions of W are strongly right-skewed, but after log-transformation to reduce the
skew, the dynamics are fitted well by a first-order autoregressive process with Student-t residuals
and nonconstant variance. The models were fitted by linear regression of log(W0 + W(t + 1))
on log(W0 + W(t)) using the gamlss package; W0 = 0.0025 (corresponding to 1% of a new
recruit) was added to avoid zero values. Diagnostic plots for the fitted models (as provided by
plot.gamlss) suggested that the models fitted well (specifically, the actual distribution of scaled
residuals was close to a t distribution with the fitted d f ). Fitted parameters (in Table C4) are the
intercept aW and slope bW for the conditional mean, intercept aσ and slope bσ for the standard
deviation as a linear function of log(W0 + W(t + 1)), and the degrees of freedom d f for the t
distribution.

Constructing the IPM iteration matrix

Functions that implement the demographic models and construct the IPM iteration matrices are
in the script drivers/Rpartition/empirical/IdahoIPMFunctions.R.

Individuals age 2 and up are described by a standard size-quality IPM, with W as the in-
dividual quality variable. Using mx mesh points for size, and mW mesh points for W, the two-
dimensional state vector has length mx*mW in the sequence produced by expand.grid applied to
the size and W mesh points: all sizes with the first value of W, then all sizes with the second
value of W, and so on. Survival and growth of individuals age 2 and up is therefore represented
by an iteration matrix P2 with mx*mW rows and the same number of columns. For numerical accu-
racy, the IPM is implemented with log(W0 + W) rather than W as the state variable, and all vital
rate functions in the IPM back-transform to W values before applying the fitted demographic
models.

To add seedlings to the model, we prepend to the state vector mW mesh points representing
seedlings. The iteration matrix for the full IPM including seedlings is then structured like a
Lefkovitch matrix with two age classes, age= 1 and age> 1,

K =

(
0 F2
P1 P2

)
. (C3)

The upper-left 0 matrix is mW by mW. This block of K would represent transitions within the
seedling class, but in our model there are none because age-2 individuals are treated as (small)
adults.

Submatrix P1 is survival from seedling to older. It has mx*mW rows and mW columns. The jth

column is the seedling survival at the jth meshpoint for W, multiplied by the state distribution
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conditional on survival. The state distribution conditional on survival is the product of the
size distribution at age 2 (which is the same for all columns) with the distribution of W(t + 1)
conditional on the starting value of W.

Submatrix F2 is fecundity of older individuals, proportional to square-root of area and inde-
pendent of W (for lack of data). It has mW rows (seedlings at all W values) and mx*mW columns.
Columns j = 1 to mx are the W distribution of seedlings, multiplied by the fecundity at the jth size
meshpoint. The remaining mx* (mW-1) columns of F2 are mW-1 copies of this block of columns,
for the remaining W values of older plants.

The constant of proportionality for fecundity multiplies all elements in F2. We choose its
value so that the iteration matrix has R0 = 1 and therefore a dominant eigenvalue of 1. To
find the value, we first compute F2 with the constant set equal to 1. The resulting initial R0 is
the dominant eigenvalue of the seedlings-to-seedlings next-generation operator F2(I − P2)−1P1.
(This is also what one gets from the standard next generation operator R = F(I − P)−1 with
K = P + F, using the fact that the eigenvalues of a block-triangular matrix are the eigenvalues of
the diagonal blocks.) We then re-set the constant of proportionality to 1/R0 (equivalently, divide
F2 by the initial R0). This results an F2 such that R0 = 1, as desired.
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Figure C1: [Figure C1 caption here.]
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HECO: Likely seedlings
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Figure C2: [Figure C2 caption here.]
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POSE: Likely seedlings
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Figure C3: [Figure C3 caption here.]
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PSSP: Likely seedlings
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Figure C4: [Figure C4 caption here.]
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Figure C5: [Figure C5 caption here.]
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Figure C6: [Figure C6 caption here.]
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Figure C7: [Figure C7 caption here.]
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D Analysis of partitioning by W in the perennial plant IPMs

Preliminaries

We use the following notation:

• W1: competition at birth (age 1).

• W2: competition at age 2 (assuming you survive that long).

• Z: size at age 2 (assuming the plant survives to age 2). The model assumes that Z is
independent of W1 and W2.

• B: Bernoulli random variable that is 1 with probability s(W1), the probability of surviving
to age 2 given competition W1.

• R∗: lifetime reproductive success, conditional on surviving to year 2.

• R = BR∗: lifetime reproductive success.

The probability density function of the random variable X is fX(x) (we use upper case letters
for random variables and lower case for possible values of a random variables); fX|Y(x|y) is
the conditional density function of X given that Y = y. Density functions can include Dirac δ
functions representing discrete outcomes.

We can imagine that at birth individuals are assigned values of Z and W1 (independent draws
from their respective distributions), assigned a value of W2 from the conditional distribution of
W2 given W1, and assigned an R∗ value from the conditional distribution of R∗ given W2 and Z.
Thus Z and R∗ “exist” for all individuals, but they are relevant only if B = 1.

It is important to note that conditional on W1, B and R∗ are independent. Given W1 = w1, B
is Bernoulli with parameter s(W1), and R∗ is drawn from the distribution

fR∗|W1
(r∗|w1) =

∫∫
fR∗|(Z,W2)(R∗|Z = z, W2 = W2) fZ(z) fW2|W1

(W2|w) dW2 dz.

Partitioning

The overall partitioning is

Var(R) = EW1(Var(R|W1)) + VarW1(E(R|W1)). (S1)

If we take W1 as the sole trait and regard every subsequent difference between individuals as
luck, then (S1) partitions variance in LRS into luck (the first term) and trait variation (the second
term).

However, we can further decompose the luck term in (S1) into several different aspects of
luck. Tunneling down one level,

Var(R|W1) = Var(BR∗|W1) = EZ(Var(BR∗|W1, Z)) + VarZ(E(BR∗|W1, Z)). (S2)

56



Because B and R∗ are independent conditional on W1, the terms in the right-hand side of (S2)
can both be separated into first-year survival (B) and subsequent reproduction (R∗) components.
In the first term in (S2) we have

Var(BR∗|W1, Z)

= (E B|W1)
2 Var(R∗|W1, Z) + Var(B|W1)(E R∗|W1, Z)2 + Var(B|W1)Var(R∗|W1, Z)

= s2(W1)Var(R∗|W1, Z)) + s(W1)(1− s(W1))(E(R∗|W1, Z))2 + s(W1)(1− s(W1))Var(R∗|W1, Z)

= s(W1)Var(R∗|W1, Z) + s(W1)(1− s(W1))(E(R∗|W1, Z))2.
(S3)

In the second term in (S2),

E(BR∗|W1, Z) = E(B|W1, Z)E(R∗|W1, Z) = s(W1)E(R∗|W1, Z),

so VarZ E(BR∗|W1, Z) = s(W1)
2 VarZ E(R∗|W1, Z).

(S4)

Putting it all together (substituting (S3) and (S4) into (S2) and then (S2) into (S1)),

Var(R) = EW1,Z[s(W1)Var(R∗|W1, Z)]︸ ︷︷ ︸
1©

+EW1,Z[s(W1)(1− s(W1))(E(R∗|W1, Z))2]︸ ︷︷ ︸
2©

+ EW1 [s(W1)
2 VarZ E(R∗|W1, Z)]︸ ︷︷ ︸

3©
+VarW1 [E(R|W1)]︸ ︷︷ ︸

4©
.

(S5)

The interpretation of these terms is explained in the main text, after equation 8.

A Simple Example

As a check on the calculations we consider a simple example where Var(R) can be simulated and
compared to the sum of the terms in the partitioning. Happily, the results are consistent with the
hypothesis that our math is correct. The example is as follows:

• W1 = 1 or 2 with equal probability.

• Survival to age 2 occurs with probability sj if W1 = j, with s1 > s2.

• Size age 2 is Z = 5 or 10, with g = Prob(Z = 10) as a parameter.

• W2, the value of W1 at age 2, equals W1 or W1 − 1 with equal probability.

• Conditional on survival to age 2, lifetime reproductive success R∗ is Poisson(Z−W2)

• We let pij = p(W1)
i p(Z)

j denote the probability that W1 = i, Z = j.

1. Term 1© is ∑
i,j

pijsi Var(R∗|W1 = i, Z = j). Given that W1 = i, W2 is i or i − 1 with equal

probability, so R∗ is Poisson(j− i) or Poisson(j− i + 1) with equal probability. We can use
the following special case of the variance decomposition: if X = AX1 + (1− A)X2 where
A, X1, X2 are independent random variables and A is Bernoulli with success probability a,
then

Var X = a Var X1 + (1− a)Var X2 + a(1− a)(E X1 −E X2)
2.
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The case at hand is the conditional distribution R∗ ∼ APois(j− i) + (1− A)Pois(j− i + 1)
with a = 0.5 so we have

Var(R∗|W1 = i, Z = j) = 0.5(j− i) + 0.5(j− i + 1) + 0.25 = j− i + 0.75

and so
Term 1© = ∑

i,j
pijsi(j− i + 0.75).

2. In term 2©, R∗ ∼ Pois(Z −W2) and W2 equals W1 or W1 − 1 with equal probability inde-
pendent of Z, so

E(R∗|W1, Z) =
1
2
[(Z−W1) + (Z− (W1 − 1))] = Z−W1 + 0.5. (S6)

The integrand in 2© (the quantity in square brackets) is therefore s(W1)(1− s(W1))(Z −
W1 + 0.5)2, so its expectation with respect to the distribution of Z and W1 is

Term 2© = ∑
i,j

pijsi(1− si)(j− i + 0.5)2.

3. For term 3©, using (S6) we have

VarZ[E(R∗|W1, Z)] = VarZ[Z−W1 + 0.5] = VarZ(Z) = 25g(1− g).

Thus
Term 3© = EW1 [s(W1)

225g(1− g)] = 0.5(s2
1 + s2

2)× 25g(1− g).

4. For term 4©, because B and R∗ are conditionally independent given W1, we have E(BR∗|W1) =
E(B|W1)E(R∗|W1). Since B is Bernoulli, E(B|W1 = i) = s(i). Given that W1 = i, W2
equals i or i− 1 with equal probability so R∗ ∼ Pois(Z−W2) has mean E(Z)− (i− 0.5) =
5.5 + 5g− i. We therefore have

E(R|W1 = i) = E(B|W1 = i)E(R∗|W1 = i) = s(i)(5.5 + 5g− i). (S7)

Thus, E(R|W1) has two possible values with equal probability, the right-hand side of (S7)
with i = 1 or i = 2. Call these r1 and r2. So E(R|W1) is distributed as r2 + [(r1 −
r2)Bernoulli(0.5)], and its variance is

Term 4© = 0.25(r1 − r2)
2 = 0.25(s1(4.5 + 5g)− s2(3.5 + 5g))2.

Figure S1 confirms that estimates of Var(R) from simulating the model are very close to the sum
of the terms in the partition, computed by a mix of simulation (terms 1 and 2) and analytic
calculation (terms 3 and 4). So it works!
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Figure S1: [Figure S1 caption here.]

Computing the terms for the perennial plant IPMs

Computing the terms in eq. (S5) takes some care because W1 happens at age 1 and Z happens
at age 2. For greater clarity, what has been called Z will be called Z2 in this section. We also
switch the order of z and w in conditional expectations (size first, “quality” W second) to match
our R scripts for these models and the material on size-quality models in Ellner et al. (2016). The
calculations are done in Rpartition/empirical/PartitionByW.R.

We use the setup described in Supplemental Information section Constructing the IPM iteration
matrix. There are mx mesh points in vector yx for size, and mW mesh points in vector yW for W.
The state vector for age 2 and above has length mx*mW in the sequence produced by expand.grid

applied to the size and W mesh points. To this is pre-pended mW mesh points for seedlings,
classified only by W. The IPM is implemented with log(W0 + W) rather than W as the state the
variable. All demographic rate functions in the R code back-transform to W before applying the
fitted demographic models. The iteration matrix for the full IPM is

K =

(
0 F2
P1 P2

)
= P + F. (S8)

(Matrix P is K with F2 zeroed out, F is K with P1 and P2 zeroed out). The upper-left 0 matrix
is size mW by mW. Block P1 (mx*mW by mW) is the survival-growth matrix for seedlings; P2 (mx*mW
by mx*mW) is the survival-growth matrix for age-2 and older individuals; F2 (mW by mx*mW) is the
fecundity of age-2 and older individuals, and yx,yW are the meshpoints for size and competition.

A few other things we need here:

1. Let fZ(z) denote the probability density of Z2, and fW(w) denote the probability density of
W1. These are the initial state distributions. Let pZ(i), pW(j) denote the discrete probability
distributions of Z2 and of W1 on the meshpoints, scaled so their sum is 1. In the IPM code,
we make the vectors

pZ = c2_x1(yx,pars); pZ = pZ/sum(pZ); # size

pW = c1_w1(yW,pars); pW = pW/sum(pW); # competition
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2. Let sW(j) denote survival probability of seedlings at the jth W meshpoint. In the code, this
is a vector

sW = s_seed(yW,pars)

3. Methods from Chapter 3 of Ellner et al. (2016), applied to P2, can give E(R∗|Z2 = z, W2 = w)
and E(R∗2|Z2 = z, W2 = w) as functions of z and w, because these are about the LRS of a
2-year-old with “initial” state (Z2 = z, W2 = w). We assume that these have been calculated
and stored in matrices RStar22 and RstarSqr22, respectively of dimension mx by mW. The
22 indicates that the expected values are conditional on values of Z2 and W2.

4. Let q(w′, w) denote the transition density for W, and Q the corresponding midpoint rule
transition matrix for W. In terms of the code IdahoIPMFunctions.R code,

Q[i,j] = hW*g_w1w(yW[i],yW[j],pars)

Term 4© is the easiest. Let N2 = (I − P2)−1 denote the fundamental operator for age 2+ indi-
viduals. Let b be a vector of state-dependent per-capita fecundity for age 2 or older individuals
(length of b =mx*mW). bN2 is therefore the E(R∗) as a function of state at age 2. So in the IPM
code, let ei be a vector of length mW consisting of all zeros except for 1 in the ith location. Then
bN2P1ei is the expected value of R = BR∗ for an individual with W1 equal to the ith W mesh-
point, because multiplication by P1 accounts for age-1 mortality and the distribution of W2 for
survivors. Consequently,

E(R|W1) = bN2P1. (S9)

Both sides of this equation are functions of W1; in the code, a vector of length mW giving E(R|W1)
for W1 at the meshpoints. Let’s call this vector ERW1. Then

4© = sum(pW*(ERW1^2)) - sum(pW*ERW1)^2 (S10)

Note that sum(pW*ERW1) is R0, so (as a sanity check) it has to equal R0 computed the usual way
from the P and F matrices. In our code, per-capita fecundity is scaled so that R0 = 1.

For terms 1©− 3© we need the conditional mean and variance of R∗ given Z2 and W1. So
the quantities we need are E(R∗|Z2 = z, W1 = w) and E(R∗2|Z2 = z, W1 = 2) for all (w, z)
meshpoints. We can get the mean using

E(R∗|Z2 = z, W1 = w) =
∫

E(R∗|Z2 = z, W2 = w′)q(w′, w)dw′. (S11)

For the meshpoints, this says that Rstar21[i,j] = ∑k Rstar22[i,k]Q[k,j] This is compactly
written as

Rstar21 = Rstar22 %*% Q (S12)

Sanity check: the dimensions of these are (mx by mW) = (mx by mW) × (mW by mW), which works.
Exactly the same thing works for E(R∗2|Z2 = z, W1 = w):

RstarSqr21 = RstarSqr22 %*% Q and then
VarRstar21 = RstarSqr21 - (Rstar21^2)

(S13)
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Here VarRstar21 is the matrix of values of Var(R∗|Z2 = z, W1 = w). With this, and values of the
conditional mean of R∗ in Rstar21, we’re ready to go.

Term 1© is
∫∫

fW(w) fz(z)s(w)Var((R∗|Z2 = z, W1 = w)dwdz. In the IPM code this is the sum
of the matrix whose i, j entry is pZ[i]*pW[j]*sW[j]*VarRstar21[i,j].

Term 2© is, similarly, the sum of the matrix whose i, j entry is
{pZ[i]*pW[j]*sW[j]*(1-sW[j])*(Rstar21[i,j]^2)}.

Term 3© is just a bit more complicated. VarZ E(R∗|Z2, W1) means take the values Rstar21[1:mx,j]
corresponding to one value of W1, and compute their variance under the distribution of Z2. That
is, for j = 1, 2, . . . , mW do

VarZvals[j] = sum(pZ*(Rstar21[1:mx,j]^2)) - sum(pZ*Rstar21[1:mx,j])^2.

Then term 3© is

sum(pW*(sW^2)*VarZvals)

and we’re done.

E Quantifying selection when fitness is a random variable

This derivation is modeled after Rice (2008). Notation:

• E x and x̂: expected value of x

• x: mean of x over a population

• wj: the (random) number of offspring of individual j

• zj: size of individual j

• xj: phenotype of individual j

• N: population size

Assume that all offspring have the same phenotype as their parent. The expected mean
phenotype next generation is

E x̄(t + 1) = E

(
∑N

j=1 wjxj

∑N
j=1 wj

)
= E

(
1
N ∑N

j=1 wjxj
1
N ∑N

j=1 wj

)
. (S14)

Write the number of offspring of individual j as the expected number of offspring for phenotype
xj plus a potentially large noise term εj. We assume that the random component of fitness, εj, is
independent of the trait and identically distributed across individuals. We then Taylor expand
ŵ(xj) about the mean phenotype, x̄:

wj = ŵ(xj) + εj ≈ ŵ(x̄) + ŵ′(x̄)(xj − x̄) +
1
2

ŵ′′(x̄)(xj − x̄)2 + εj. (S15)
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The numerator in eq. S14 is

1
N ∑

j
xjwj =

1
N ∑

j
(xj − x̄)ŵ(xj) +

1
N

x̄ ∑
j

ŵ(xj) +
1
N ∑

j
xjεj (S16)

≈ 1
N ∑

j
(xj − x̄)

(
ŵ(x̄) + ŵ′(x̄)(xj − x̄) +

1
2

ŵ′′(x̄)(xj − x̄)2
)

+
1
N

x̄ ∑
j

(
ŵ(x̄) + ŵ′(x̄)(xj − x̄) +

1
2

ŵ′′(x̄)(xj − x̄)2
)
+

1
N ∑

j
xjεj.

We assume that the trait x has a distribution with mean x̄ and variance Var(x). This causes
eq. S16 to become

1
N ∑

j
xjwj ≈ ŵ′(x̄)Var(x) + x̄

[
ŵ(x̄) +

1
2

ŵ′′(x̄)Var(x)
]
+ xε. (S17)

Meanwhile, the denominator is

1
N ∑

j
wj ≈ ŵ(x̄) +

1
N ∑

j

(
ŵ′(x̄)(xj − x̄) +

1
2

ŵ′′(x̄)(xj − x̄)2 + εj

)
(S18)

= ŵ(x̄) +
1
2

ŵ′′(x̄)Var(x) + ε. (S19)

Set A = ŵ(x̄) + 1
2 ŵ′′(x̄)Var(x). We then have

1
N ∑N

j=1 wjxj
1
N ∑N

j=1 wj
≈ ŵ′(x̄)Var(x) + x̄A + xε

A + ε
. (S20)

The approximation in (S20) comes from assuming that trait variation is small. However fitness
variation εj is O(1) — we do not assume that the random variation in fitness around its expected
value (given the trait) is small. However, ε is the mean of N independent random variables with
(by definition) zero mean, and therefore is O(N−1/2) with mean 0. Similarly xε is O(N−1/2) with
expected value E(1/N)∑j xjεj = (1/N)∑j xj E εj = 0.

For large N we can therefore take ε̄ as a small parameter in (S20) to get

1
N ∑N

j=1 wjxj
1
N ∑N

j=1 wj
≈ ŵ′(x̄)Var(x) + x̄A + xε

A

(
1− ε

A
+

ε2

A2

)
. (S21)

Combining equations (S14) and (S21) and taking expectations of both sides, we have that to
O(N−1)

E x̄(t + 1) =
ŵ′(x̄)Var(x) + x̄A

A

(
1 +

1
A2 E(ε2)

)
− 1

A2 E(xε ε). (S22)

Moreover

E(ε2) = E

(
1

N2 ∑
j

εj ∑
k

εk

)
= E

(
1

N2 ∑
j

ε2
j

)
=

1
N2 ∑

j
E ε2

j =
1
N

Var(ε) =
1
N

Var(w|x) (S23)
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and

E(xε ε) = E

(
1

N2 ∑
j

xjεj ∑
k

εk

)
= E

(
1

N2 ∑
j

xjε
2
j

)
=

1
N2 ∑

j
xj E ε2

j (S24)

=
1

N2 ∑
j

xj Var(ε) =
1
N

x̄ Var(ε) =
1
N

x̄ Var(w|x),

where Var(w|x) = Var(ε) is the random variation in fitness around its expected value given the
trait. Substituting the last two equations into (S22) we have

E x̄(t + 1) ≈ ŵ′(x̄)Var(x) + x̄A
A

(
1 +

1
A2

1
N

Var(w|x)
)
− 1

A2
1
N

x̄ Var(w|x), (S25)

which can be re-written as

E ∆x̄ ≈ ŵ′(x̄)
A

Var(x)
(

1 +
1

A2N
Var(w|x)

)
. (S26)

Note that the first term is the usual measure of selection for small trait variance and the second
is a correction that accounts for the fact that fitness is a random variable.

We can also use (S21) to approximate the “random drift” component of selection that results
from random variation in wj unrelated to trait differences. Specifically, we want to approximate
the variance of ∆x̄ conditional on the initial state of the population, meaning that we treat the
xj as given constants, while the εj are random with variance Var(w). So only terms involving
ε contribute variance to (S21). The leading-order random terms are those with ε and xε on
their own (while cross-terms of these with another random term are higher order in N−1/2). So
defining c = ŵ′(x̄)Var(x)/A, the variance of ∆x̄ is therefore approximately the variance of

xε

A
− ε

A
(x̄ + c) =

xε− ε(x̄ + c)
A

. (S27)

Note that
xε− ε(x̄ + c) =

1
N ∑

j
xjεj −

1
N ∑

j
(x̄ + c)εj =

1
N ∑

j
(xj − x̄− c)εj. (S28)

The terms in the last sum are independent random variables with variance (xj− x̄− c)2 Var(ε) =
(xj − x̄− c)2 Var(w|x). The variance of (S28) is therefore (Var(w|x)/N2) times ∑j(xj − x̄− c)2 =

N(Var x + c2). We are assuming that Var x is small, so c2 is negligible compared to Var x. We
therefore get that

Var ∆x̄ ≈ Var(w|x)Var x
A2N

. (S29)

As a sanity-check on the calculations, note that the approximation correctly predicts that Var ∆x̄ =
0 if either Var(w|x) = 0 or Var x = 0. In the former situation drift is absent because fitnesses are
nonrandom, so the trait change is a deterministic function of the current trait distribution. In the
latter situation, all individuals are identical in trait value, so regardless of who has the kids, the
trait mean in the next generation will equal the current trait mean.
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Figure S2: [Figure S2 caption here.]
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Figure legends

Figure 1: Relative contribution of trait variation, VT/(VT + VL) in the iteroparous two-stage
model with F = 2 and trait variation CVF = 0.3. Lifespan L is constant, geometrically distributed,
or Gaussian distributed with a CV of 0.3. These calculations do not rely on the small trait-variance
approximation. Surfaces are plotted for survival to adulthood sJ ≤ 0.9. Figure generated by
RpartitionItero.R.

Figure 2: As in fig. 1 for the semelparous two-stage model with F = 2, d = 0.5, CVF = 0.3.
These calculations do not rely on the small trait-variance approximation. Surfaces are plotted for
survival to adulthood sJ ≤ 0.95. Figure generated by RpartitionSemel.R.

Figure 3: Distribution of mean annual offspring number F conditional on lifetime reproductive
success (LRS) for the two-stage model with F as the varying trait. Contour lines show probability
densities. When lifetime is fixed, adults live 10 years; when lifetime is variable, there is an annual
adult survival probability of 0.9. Variable trait F has mean 5 and CV 0.2. Figure generated by
TwoStageWinnerTraits2Plots.R.
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Figure 4: Trait distribution conditional on lifetime reproductive success (LRS) for the Kittiwake
model. Contour lines show probability densities. The trait is an underlying quality index x af-
fecting both survival and breeding probability. Survival for stages 2–5 is the logit transform of
ba + x, where ba is an age-specific intercept, and quality index x is the same for all ages. Quality
index is assumed to have a Gaussian distribution with mean 0 and CV estimated from the in-
terquartile ranges of survival plotted in fig. 1 of Cam et al. (2002). The same trait also determines
adult breeding probability. For adult birds (age≥ 5), the probabilities of transitioning from any
state into one of the breeder states (failed attempt, one chick, 2-3 chicks) are all multiplied by a
factor φx, where the value of φ is chosen so that the resulting adult breeding probability in the
stationary age-breeding state distribution has among-individual CV corresponding to the aver-
age interquartile ranges of breeding probability for ages 5-12 plotted in Figure 1 of Cam et al.
(2002) assuming a Gaussian distribution. The LRS axis on the figure runs from the 5th to the
95th percentile of individual LRS in the model, including effects of trait variation. Source file:
empirical/KittiwakeWinnerTraitsFecSurv3.R

Figure 5: Comparison of survival and growth trajectories for Artemisia(ARTR) individuals with
different values of initial crowding W1. The plotted curves in each panel go from the 5th to the
95th percentiles of the distribution of W1, with smaller values being advantageous. A) Prob-
ability of survival from birth (age 1) to age a. B) Probability of survival from age a to age
a + 1. “Annual mortality plateau” is 1 minus the asymptote of the annual survival curves
(which was estimated by computing annual survival rates out age 100). C) Mean size, condi-
tional on survival. D) Mean per-capita number of recruits, conditional on survival. Source file:
empirical/IdahoIPMLifeCycleStats.R

Figure 6: As in fig. 5, for Pseudoroegneria (PSSP). Source file:
empirical/IdahoIPMLifeCycleStats.R

Figure 7: A) Conditional distribution of initial crowding W1, as a function of realized lifespan
L for Artemisia tridentata. Contour lines show probability densities. B) Conditional mean of W1
given L expressed as a z-score (i.e., the difference between the conditional and unconditional
means of W1, divided by the unconditional standard deviation); thus a value of z = −1 indicates
a value of W1 that is one standard deviation below the mean, in the distribution of W1 for all
seedlings. C) Conditional probability that initial crowding W1 was above (i.e., worse than) the me-
dian value of W1 for all seedlings. Figure generated by empirical/IdahoWinnerTraits2Plots.R

Figure 8: As in figure 7, for Pseudoroegneria spicata. Figure generated by
empirical/IdahoWinnerTraits2Plots.R
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Figure 9: Plots of the size- and quality-dependence of A) survival, B) mean per-capita fecundity,
C),D) mean growth rate, in the prototype size-structured model, for the two parameter sets in
Table B1 (Set 1:black, Set2:gray). Size can be negative because we assume a log-transformed size
measure. Solid line in each panel is the rate function for quality q = 0, dashed lines are for
q = ±1, which is ±1 standard deviations of the assumed quality distribution in the population.
In C) and D) the point where the solid line intersects the 1:1 line (dot-dash, red online) is the
asymptotic individual size in the absence of random variability in growth dynamics. Figure
generated by SizeQualityFunctionsPlot.R scripts that it sources.

Figure 10: Plots of age-dependent A) survival, B) mean size, and C) mean fecundity for the size-
quality IPM with the parameters in the first row of Table B1. Curves run from the 5th to the
95th percentiles of quality q, with the mean (and median) value q = 0 plotted as the heavy black
line. Panel D) shows R0 as a function of q. Figure generated by SizeQualityFunctions.R and
SizeQualityVarPartition.R.

Figure 11: Same as the previous figure, for the parameters in the second row of Table B1. Figure
generated by SizeQualityFunctions.R and SizeQualityVarPartition.R.

Figure 12: Plots showing how terms in the variance partition for the prototype size-structured
model are affected by mean lifespan, for the parameters in the top row of Table B1 (rela-
tively short expected lifespan with high per-capita annual fecundity). Figure generated by
SizeQualityFunctions.R and SizeQualityVarPartition.R.

Figure 13: Same as the previous figure, for the parameters in the second row of Table B1
(longer life with lower annual fecundity). Figure generated by SizeQualityFunctions.R and
SizeQualityVarPartition.R.

Figure 14: Distribution of log(W) at age 1 for different classes of individuals in ARTR: all likely
seedlings, likely seedlings that survive to age 2, and individuals that are not likely seedlings. The
bottom-right panel is the prediction for seedlings that survive to age 2, generated by drawing
a bootstrap sample of size 500,000 from the likely seedlings, applying the fitted survival model
to each bootstrapped observation (with a coin toss for live or die), and plotting the W values
of “survivors.” The fitted survival model includes random year and Group effects, and random
slopes on W. Source file: Fit survival seedlings.R

Figure 15: As in the previous Figure, for HECO.

Figure 16: As in the previous Figure, for POSE.

Figure 17: As in the previous Figure, for PSSP.
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Figure 18: Distribution of size (log area) for seedlings that survive to age 2. The solid black
line is a kernel density estimate calculated from the observed sizes, with a bandwidth of
0.2. The dashed (blue) line is the fitted mixture of two Gaussian distributions. Source file:
Fit Growth Seedlings.R
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Figure 19: Comparisons of predicted subsequent size of older individuals from the linear mixed-
effects models used in the IPM, a model that adds a quadratic effect of initial size, and a model
that adds spline responses to initial size and to W fitted using gam. Each curve shows aver-
age size (logarea) at time t + 1 for the 0-10%,11-20%, etc. quantiles of initial size, for the data
(solid black circles) and for sizes predicted by the three models (open circles). Source file:
Fit Growth Older GAM.R

Figure 20: Plot of W(t + 1) versus W(t) for ARTR and PSSP, on log-transformed scale with
offset parameter W0 = 0.0025 corresponding to one new recruit at a distance where its impact is
reduced by 99%. Solid black line is the fitted linear regression; dashed red lines are the 5th and
95th percentiles of the fitted Student-t distribution of residuals with nonconstant variance. The
dashed blue line is the 1:1 line. Source file: ModelingW.R

Figure 21: Comparison of simulated Var R with the sum of terms in the decomposition, for
the simple example. Circles are the results for 100 randomly generated parameter sets (sim-
ulating 500000 individuals at each parameter set), and the line is the 1:1 line. Source file:
SimplePartitionSimulate.R
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Figure 22: Relative contribution of trait variation, VT/(VT + VL) in the iteroparous two-stage
model with L = 20 and trait variation CV(L) = 0.3. Lifespan is constant, geometrically dis-
tributed, or Gaussian distributed with a CV of 0.3. These calculations do not rely on the small
trait-variance approximation. Figure generated by RpartitionItero.R. Surfaces are plotted for
survival to adulthood sJ ≤ 0.9.

Figure 23: Relative contribution of trait variation, VT/(VT + VL) in the iteroparous two-stage
model with sJ = 0.8 and trait variation CV(sJ) = 0.3. Lifespan is constant, geometrically dis-
tributed, or Gaussian distributed with a CV of 0.3. These calculations do not rely on the small
trait-variance approximation. Figure generated by RpartitionItero.R.

Figure 24: Relative contribution of trait variation, VT/(VT + VL) in the semelparous two-stage
model with b = 0.8 and trait variation CV(b) = 0.3. The probability of dying without reproduc-
ing, d, is 0.5. Surfaces are plotted for survival to adulthood sJ ≤ 0.9. These calculations do not
rely on the small trait-variance approximation. Figure generated by RpartitionSemel.R.

77


