
Appendix S1: Derivation of the optimality condition

Here I derive expressions for the resident and invader seed density distributions and

use these to derive an expression for 〈Cov(λi, νi)x〉t.

First, we convert eq. 1, the equation for the dynamics of n(x, t), into an equation

for the relative population density ν(x, t) = n(x, t)/〈n〉x(t). I distinguish between the

resident and the invader populations by using subscripts r and i, respectively, or j if the

equation holds true for either population. Dividing eq. 1 by 〈nj〉x(t + 1) and replacing

〈nj〉x(t + 1) with λ̃j(t)〈nj〉x(t) on the right hand side, we obtain

νj(x, t+ 1) = kj ∗

(
λ1j

λ̃j
νj

)
(x, t) +

(
λ2j

λ̃j
νj

)
(x, t), (A1)

where ∗ represents convolution (i.e., (f ∗ g)(x) ≡
∑

∞

y=−∞
f(x− y)g(y)).

Assume that fecundity, and therefore variation in population density and local growth

rate, is of small amplitude so that we can write F (x, t), nj(x, t), and λj(x, t) in terms of

their spatiotemporal averages plus perturbations of O(σ)1. Assume also that the devia-

tions of spatial averages from spatiotemporal averages are O(σ). We first write F (x, t),

nj(x, t), and λkj(x, t) in terms of perturbations away from their spatial averages:

F (x, t) = 〈F 〉x(t)(1 + ε(x, t)) (A2)

nj(x, t) = 〈nr〉x(t)(1 + uj(x, t)) (A3)

λkj(x, t) = 〈λkj〉x(t)(1 + ζkj(x, t)), k = 1, 2, (A4)

where 〈·〉x denotes an average over space and the perturbations ε, uj, and ζkj are O(σ) and

all have spatial and temporal averages equal to zero. We then write the spatial averages

in terms of perturbations away from the spatiotemporal averages:

〈F 〉x(t) = 〈F 〉x,t(1 + Ω(t)) (A5)

〈nj〉x(t) = 〈nj〉x,t(1 + ηj(t)) (A6)

〈λkj〉x(t) = 〈λkj〉x,t(1 + hkj(t)), k = 1, 2, (A7)

1By g(x) = O(σ), I mean that

∣∣∣∣
g(x)

σ

∣∣∣∣ can be made less than or equal to some positive constant K for

σ small enough.



where 〈·〉x,t denotes an average over time and space and Ωj, ηj, and hkj are O(σ) and

have temporal averages equal to zero. To O(σ), then,

F (x, t) = 〈F 〉x,t(1 + ε(x, t) + Ω(t)) (A8)

nj(x, t) = 〈nj〉x,t(1 + uj(x, t) + ηj(t)) (A9)

λkj(x, t) = 〈λkj〉x,t(1 + ζkj(x, t) + hkj(t)), k = 1, 2. (A10)

Note that λj(x, t) = λ1r(x, t) + λ2r(x, t) and so ζj(x, t) = ζ1r(x, t) + ζ2r(x, t) and hj(t) =

h1r(t) + h2r(t).

To O(σ), the relative population density νj(x, t) equals 1 + uj(x, t). Using eq. A10 to

substitute for λ1r and λ2r, we can rewrite eq. A1 as

1 + uj(x, t + 1) =
〈λ1j〉x,t

λ̃j(t)
(1 + kj ∗ (uj + ζ1j)(x, t) + h1j(t)) (A11)

+
〈λ2j〉x,t

λ̃j(t)
(1 + ζ2j(x, t) + uj(x, t) + h2j(t)) +O(σ2).

As noted in the main body, λ̃j(t) = 〈λj〉x(t) + Cov(λj, νj)x(t). Because ε, uj, and ζj
are O(σ), the covariance is O(σ2), and so to O(σ), we can replace λ̃j(t) by 〈λj〉x(t) =

〈λj〉x,t(1 + hj(t)). This gives us

1 + uj(x, t+ 1) =
〈λ1j〉x,t
〈λj〉x,t

(1 + kj ∗ (uj + ζ1j)(x, t) + h1j(t) − hj(t)) (A12)

+
〈λ2j〉x,t
〈λj〉x,t

(1 + uj(x, t) + ζ2j(x, t) + h2j(t) − hj(t)) +O(σ2).

Noting that
〈λ1j〉x,t
〈λj〉x,t

+
〈λ2j〉x,t
〈λj〉x,t

= 1 and 〈λ1j〉x,th1j(t) + 〈λ2j〉x,t)h2j(t) = 〈λj〉x,thj(t), all of

the purely temporal dependence on the righthand side cancels out, as indeed it must, and

we are left with

uj(x, t+ 1) =
〈λ1j〉x,t
〈λj〉x,t

kj ∗ (uj + ζ1j)(x, t) +
〈λ2j〉x,t
〈λj〉x,t

(uj + ζ2j)(x, t) +O(σ2). (A13)

Only the dispersal kernel distinguishes the invaders from the residents, and so both

populations have the same local growth rate components: λ1j = λ1, λ2j = λ2. Because

the invader is rare, only the residents have a competitive effect and so

λ1(x, t) =
F (x, t)G

C(x, t)
=

F (x, t)G

G(U ∗ nr)(x, t)
. (A14)



Assuming that
∑

z U(z) = 1 and using eqs. A8 and A9,

λ1(x, t) =
〈F 〉x,t
〈nr〉x,t

(1 + ε(x, t) + Ω(t) − (U ∗ ur)(x, t) − η(t)) +O(σ2) (A15)

so that

〈λ1〉x,t =
〈F 〉x,t
〈nr〉x,t

(A16)

ζ1(x, t) = ε(x, t) − (U ∗ ur)(x, t). (A17)

Similarly,

λ2(x, t) = s(1 −G) (A18)

so that

〈λ2〉x,t = s(1 −G) (A19)

ζ2(x, t) = 0. (A20)

The average values of λr and λ2 depend on the average resident population density, 〈nr〉x,t.

We can use eqs. A8 and A9 to Taylor expand eq. 1, the equation for the population

dynamics. Taking a spatiotemporal average, all of the O(σ) terms vanish, so that to

O(σ),

〈nr〉x,t =

(
〈F 〉x,t
〈nr〉x,t

+ s(1 −G)

)
〈nr〉x,t, (A21)

yielding

〈nr〉x,t =
〈F 〉x,t

1 − s(1 −G)
. (A22)

Thus,

〈λ1〉x,t = 1 − s(1 −G) (A23)

〈λ2〉x,t = s(1 −G) (A24)

and

〈λ〉x,t ≡ 〈λ1〉x,t + 〈λ2〉x,t = 1. (A25)

To O(σ), therefore, the dynamics of species j are governed by

uj(x, t+ 1) = 〈λ1〉x,tkj ∗ (uj + ε− U ∗ ur)(x, t) + 〈λ2〉x,tuj(x, t), (A26)

where 〈λ1〉x,t and 〈λ2〉x,t are given by eqs. A23 and A24.

At this point it is useful to take the discrete spatial Fourier transform, where for an

infinite domain, the spatial transform is given by

f̃(q, t) = lim
N→∞

N/2∑

x=−N/2

f(x, t)e−iqx, (A27)



where q = s(2π/N), s ∈ {−N/2,−N/2 + 1, . . . , N/2}, and the inverse transform is given

by

f(x, t) = lim
N→∞

1

N

N/2∑

s=−N/2

f̃(q, t)eiqx =
1

2π

∫ π

−π

f̃(q, t)eiqx dq. (A28)

Similarly, the temporal transform is given by

f̃(x, ω) =

∞∑

t=−∞

f(x, t)e−iωt, f(x, t) =
1

2π

∫ π

−π

f̃(x, ω)eiωt dω. (A29)

The spatiotemporal transform is achieved by taking both a spatial and a temporal trans-

form. The Fourier transform of a convolution is the product of the Fourier transforms of

the convolved functions ( ˜(f ∗ g)(q) = f̃(q)g̃(q)), and so, taking a spatial Fourier transform

of the resident dynamics,

ũr(q, t+ 1) =
[
〈λ1〉x,tk̃r(q)(1 − Ũ(q)) + 〈λ2〉x,t

]
ũr(q, t) + 〈λ1〉x,tk̃r(q)ε̃(q, t). (A30)

The population in year t, ũr(q, t), depends on the previous year’s population which de-

pends in turn on populations still further back in time. Assuming that ũr(q, t) reaches a

stationary distribution independent of its initial condition, ũr(q, t = 0), we can write

ũr(q, t) =

t−1∑

j=0

Bt−1−j
u (q)Bεr(q)ε̃(q, t = j), (A31)

where

Bu(q) = 〈λ1〉x,tk̃r(q)(1 − Ũ(q)) + 〈λ2〉x,t (A32)

Bεr(q) = 〈λ1〉x,tk̃r(q). (A33)

Eq. A31 can be expressed as a discrete convolution in time:

ũr(q, t) =
∞∑

j=0

M̃(q, t− j)ε̃(q, j), (A34)

where

M̃(q, n) =

{
Bn−1
u (q)Bεr(q) n > 0

0 n ≤ 0
. (A35)

Taking the temporal Fourier transform, we reach the pleasingly simple form

ũr(q, ω) = M̃(q, ω)ε̃(q, ω), (A36)



where

M̃(q, ω) =
∞∑

s=−∞

M̃(q, s)e−iωs =
∞∑

s=1

Bs−1
u (q)Bεr(q)e

−iωs (A37)

=
Bεr(q)(e

−iω − Bu(q))

1 +B2
u(q) − 2Bu(q) cosω

.

Switching to polar notation, we can rewrite M̃(q, ω) as R(q, ω)eiφ(q,ω), where

R(q, ω) = [Re(M̃(q, ω))2 + Im(M̃(q, ω))2]1/2 =
Bεr(q)√

1 +B2
u(q) − 2Bu(q) cosω

(A38)

φ(q, ω) = tan−1

(
Im(M̃(q, ω))

Re(M̃(q, ω))

)
= tan−1

(
− sinω

cosω − Bu(q)

)
(A39)

and where we extend the range of tan−1 to [−π, π) by declaring φ to be in the third

quadrant (−π ≤ φ < −π/2) if both numerator and denominator of tan−1’s argument

are negative, the fourth quadrant (−π/2 ≤ φ < 0) if the numerator is negative and the

denominator positive, the first quadrant (0 ≤ φ < π/2) if both the numerator and the

denominator are positive, and the second quadrant (π/2 ≤ φ < π) if the numerator is

positive and the denominator negative.

We can follow the same procedure with the invader dynamics (eq. A26 with j = i)

finding

ũi(q, t+ 1) = Bui
(q)ũi(q, t) +Bεi(q)ε̃(q, t) +Bur

(q)ũr(q, t), (A40)

where

Bui
(q) = 〈λ1〉x,tk̃i(q) + 〈λ2〉x,t (A41)

Bεi(q) = 〈λ1〉x,tk̃i(q) (A42)

Bur
(q) = −〈λ1〉x,tk̃i(q)Ũ(q) (A43)

so that

ũi(q, t) =

t−1∑

j=0

Bt−1−j
ui

(q) [Bεi(q)ε̃(q, t = j) +Bur
(q)ũr(q, t = j)] . (A44)

Taking the temporal Fourier transform, we arrive at

ũi(q, ω) = M̃εi(q, ω)ε̃(q, ω) + M̃ur
(q, ω)R(q, ω)eiφ(q,ω)ε̃(q, ω), (A45)

where

M̃εi(q, ω) =
Bεi(q) (e−iω − Bui

(q))

1 +B2
ui

(q) − 2Bui
(q) cosω

(A46)



M̃ur
(q, ω) =

Bur
(q) (e−iω − Bui

(q))

1 +B2
ui

(q) − 2Bui
(q) cosω

=
Bur

(q)

Bεi(q)
M̃εi(q, ω) (A47)

and where I have substituted R(q, ω) exp(iφ(q, ω))ε̃(q, ω) for ũr(q, ω). We can rewrite

M̃εi(q, ω) in polar notation:

M̃εi(q, ω) = G(q, ω)eiψ(q,ω), (A48)

where

G(q, ω) =
Bεi(q)√

1 +B2
ui

(q) − 2Bui
(q) cosω

(A49)

ψ(q, ω) = tan−1

(
− sinω

cosω − Bui
(q)

)
(A50)

and the range of tan−1 is again extended to [−π, π). Thus,

ũi(q, ω) = G(q, ω)eiψ(q,ω)

[
1 +

Bur
(q)

Bεi(q)
R(q, ω)eiφ(q,ω)

]
ε̃(q, ω). (A51)

Turning to the covariance,

〈Cov(λi, νi)x〉t = 〈λi〉x,t〈Cov(1+ ζi, 1+ ui)x〉t = 〈λi〉x,t〈〈ζi, ui〉x〉t = 〈λi〉x,t〈ζiui〉x,t, (A52)

where we have used the fact that the spatial averages of ζi and ui are zero. A multi-

dimensional corollary of the Wiener-Khinchin theorem [Nisbet & Gurney(1982), App.

F] states that if 〈f〉x,t = 〈g〉x,t = 0, 〈fg〉x,t equals the inverse Fourier transform of

limN→∞
f̃ (N)∗(q, ω)g̃(N)(q, ω)/N2, where f̃ (N)(q, ω) is the spatiotemporal Fourier transform

of f taken with the sums running from the −N/2 to N/2 and superscript ∗ denotes the

complex conjugate. Thus,

〈Cov(λi, νi)x〉t = lim
N→∞

1

N2

〈λi〉x,t
(2π)2

∫ π

−π

∫ π

−π

ζ̃i(q, ω)ũi(q, ω) dq dω. (A53)

Using eq. A17 to substitute for ζi and eq. A51 to substitute for ui, noting thatBur
(q)/Bεi(q) =

−Ũ(q),

〈Cov(λi, νi)x〉t = lim
N→∞

〈λi〉x,t
(2πN)2

∫ π

−π

∫ π

−π

[(
1 − Ũ (N)(q)R(q, ω)e−iφ(q,ω)

)
ε̃(N)∗(q, ω)

]

·
[
G(q, ω)eiψ(q,ω)

(
1 − Ũ (N)(q)R(q, ω)eiφ(q,ω)

)
ε̃(N)(q, ω)

]
dq dω,

(A54)

where R(q, ω) is real by definition and Ũ (N) is real assuming that the competition kernel

is symmetric. Only the even portion of the integrand survives, so that

〈Cov(λi, νi)x〉t = lim
N→∞

〈λi〉x,t
(2π)2

∫ π

−π

∫ π

−π

G(q, ω) cosψ(q, ω) (A55)

·
[
1 + Ũ2(q)R2(q, ω)− 2Ũ(q)R(q, ω) cosφ(q, ω)

] |ε̃|2(q, ω)

N2
dqdω



and

∂

∂αi
〈Cov(λi, νi)x〉t = lim

N→∞

〈λi〉x,t
(2π)2

∫ π

−π

∫ π

−π

(
G(q, ω)

∂αi
cosψ(q, ω) −G(q, ω) sin(q, ω)

∂ψ(q, ω)

∂αi

)

·
[
1 + Ũ2(q)R2(q, ω) − 2Ũ(q)R(q, ω) cosφ(q, ω)

] |ε̃|2(q, ω)

N2
dqdω.

(A56)

In the main text, I have identified the term associated with ∂G/∂αi as the smearing effect

of dispersal, and the term associated with ∂ψ/∂αi I have identified as the delay reduction

effect of dispersal.

We have assumed that the autocorrelation of F decays exponentially in space and time

(eq. 5), so that Cov(ε, ε)x,t =
Var(F )

〈F 〉2x,t
exp

(
−|x|

ξ

)
exp

(
−|t|

τ

)
. The Wiener-Khinchin

theorem then implies

lim
N→∞

|ε̃|2(q, ω)

N2
=

∞∑

x,t=−∞

Var(F )

〈F 〉2x,t
exp

(
−|x|

ξ

)
exp

(
−|t|

τ

)
e−i(qx+ωt) (A57)

=
Var(F )

〈F 〉2x,t

(
1 − exp(−2/τ)

1 − 2 exp(−1/τ) cos(ω) + exp(−2/τ)

)

·

(
1 − exp(−2/ξ)

1 − 2 exp(−1/ξ) cos(q) + exp(−2/ξ)

)
.
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