
A Calculating the coevolved dispersal distances

The calculations for the baseline model (monoculture evolution in the presence of moderate
environmental variation) were presented in Snyder (2006). Here I show how to calculate the
coevolved dispersal distances.

To find the coevolved dispersal distances, we find the evolutionarily stable (ESS) annual
dispersal distance as a function of the perennial dispersal distance, then find the ESS peren-
nial dispersal distance as a function of the annual dispersal distance. At the intersection of
these two curves, neither species will be driven to adjust its dispersal strategy in response
to the other’s strategy, for each species is on its evolutionarily stable curve: this point is an
evolutionarily stable coalition. Finally, we need to verify that evolutionary dynamics cause
the system to converge to this point: i.e., that the intersection is not only evolutionarily
stable but convergently stable, in the sense of Geritz et al. (1998).

To find, e.g., the ESS annual dispersal distance as a function of the perennial dispersal
distance, consider an annual invader in the presence of annual and perennial residents. The
invader is a mutant with dispersal distance a little larger or smaller that of the annual
resident. If the invader has a positive long-run growth rate, it will replace the former resident
and become subject to invasion attempts by new mutants. The process stops when the best
strategy the annual invader could adopt is that of the annual resident — i.e., invader growth
is maximized when the invader dispersal distance equals the resident dispersal distance.
Signifying the invader long run growth rate by ri(da, dp, di), where da is the resident annual
distance, dp is the resident perennial distance, and di is the invader distance, the ESS annual
dispersal distance d∗a is given by the condition

∂ri(da, dp, di)

∂di

∣∣∣∣
di=da=d∗a

= 0. (1)

Note that d∗a depends on dp, the perennial distance.
We see that finding the ESS dispersal distance requires us to find an expression for

the long-run invader growth rate ri. Invader growth is affected by competition from the
residents, which will in turn be determined by the spatiotemporal distribution of the resident
populations. Let us first find an expression for ri in terms of the resident populations and
then find expressions for the population distributions.

Before dispersal, the local population of species j at time t + 1 is equal to the local
growth rate λj(x, t) times the local population at time t: nj(x, t + 1) = λj(x, t)nj(x, t). To
characterize the regional dynamics, we take the spatial average of both sides: 〈nj〉x(t+ 1) =
〈λjnj〉x(t), where 〈·〉x denotes a spatial average. Expressing the dynamics in this form is not
very useful because the righthand side is not a function of 〈nj〉x. However, we can rewrite
the average of λj times nj as the product of their averages plus their covariance, allowing us
to factor out 〈nj〉x. Thus,

〈nj〉x(t+ 1) = 〈λj〉x(t)〈nj〉x(t) + Cov(λj, nj)x(t)

= [〈λj〉x + Cov(λj, nj/〈nj〉x)x] 〈nj〉x(t). (2)

The quantity in square brackets is the regional growth rate — the factor by which the
spatially averaged population grows or shrinks in a year. We denote the regional growth
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rate by λ̃j and rewrite it as 〈λj〉x + Cov(λj, νj)x, where νj(x, t) = nj(x, t)/〈nj〉x is referred
to as the relative population density (Chesson, 2000).

The regional growth rate fluctuates in time, and so the long-run growth of the population
is given by the time average of the logarithm of the regional growth rate: rj = 〈ln λ̃j〉t (Lewon-
tin and Cohen, 1969). If we assume that fluctuations in fecundity and population are small
(O(σ)∗) relative to their means, then Cov(λj, νj)x is O(σ2) and we can Taylor expand the
logarithm to O(σ2) to obtain

rj ≈

〈
lnλ

(0)
j +

1

λ
(0)
j

(
〈λj〉x − λ

(0)
j + Cov(λj, νj)x

)
−

1

2λj(0)
2

(
〈λj〉x − λ

(0)
j

)2
〉

t

, (3)

where λ
(0)
j is the growth rate of species j in the absence of spatial or temporal variation.

Happily, we need only deal with a single term of this expression. Our ESS condition,
eq. 1, is a function of the invader long-run growth rate, ri. The invader is presumed to be of
such low density that it does not contribute to competition, and thus λi does not depend on
the invader population distribution or dispersal distance. (This assumption can be violated
if the invader rapidly forms clusters in areas far from other sources of competition. Here,
however, the invader will cluster in the same locations as the same-species resident, whose
contribution to competition will dwarf that of the invader’s.) The only term that depends
on invader dispersal is 1

λ
(0)
i

〈Cov(λi, νi)x〉t. Thus, the ESS dispersal condition reduces to

∂〈Cov(λi, νi)x〉t(di, da, dp)

∂di

∣∣∣∣
di=da=d∗a

= 0. (4)

We now need an approximate expression for 〈Cov(λi, νi)x〉t, valid when fluctuations in
fecundity and population density are small. Let us write

Fj(x, t) = 〈Fj〉x(t)(1 + ǫj(x, t)), (5)

where ǫj(x, t) is O(σ) and has spatial mean zero. Furthermore, assume that there is no
spatially synchronized component to the variation in fecundity: 〈Fj〉x does not vary with
time and is equal to 〈Fj〉x,t, the spatiotemporal average. Thus,

Fj(x, t) = 〈Fj〉x,t(1 + ǫj(x, t)). (6)

By similar reasoning, let

nj(x, t) = 〈nj〉x(t)(1 + uj(x, t)) = 〈nj〉x,t(1 + uj(x, t)), (7)

where uj(x, t) is O(σ) and has zero spatial and temporal mean. We want an O(σ2) expression
for Cov(λi, νi) (recall that our original expansion of ri was O(σ2)), which requires us to find
O(σ) expressions for νi(x, t) and λi(x, t).

∗The technical definition of O(σn) is that if g(x) is O(σn), then g(x) decreases with σ and

∣∣∣∣
g(x)

σn

∣∣∣∣ can

be made less than or equal to some positive constant K for σ small enough. On a more practical note, σ is
some measure of smallness that we use for bookkeeping purposes.
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The relative population density νi(x, t) is simply 1+ui(x, t), which is already O(σ). What
about λi(x, t)? Assuming an annual invader, the local invader growth rate is given by

λi(x, t) =
giFi(x, t)

γi1(Ui1 ∗ g1n1)(x, t) + γi2(Ui2 ∗ n2)(x, t)
+ si(1 − gi), (8)

where the notation f ∗ g denotes a convolution:
∫ ∞

−∞
f(x − y)g(y) dy. Substituting our

expressions for Fj and nj into the expression for λi and Taylor expanding to O(σ), we find
that

λi(x, t) ≈
gi〈Fi〉x,t

γi1g1〈n1〉x,t + γi2〈n2〉x,t
(1 + ǫi(x, t) −Di1(Ui1 ∗ u1)(x, t) −Di2(Ui2 ∗ u2)(x, t))

(9)
where

Di1 =
γi1g1〈n1〉x,t

γi1g1〈n1〉x,t + γi2〈n2〉x,t
, Di2 =

γi2〈n2〉x,t
γi1g1〈n1〉x,t + γi2〈n2〉x,t

. (10)

Thus,

〈Cov(λi, νi)x〉t =
gi〈Fi〉x,t

γi1g1〈n1〉x,t + γi2〈n2〉x,t
Cov (ǫi(x, t) −Di1(Ui1 ∗ u1) −Di2(Ui2 ∗ u2), ui)x,t .

(11)
We can simplify both the covariance and the convolutions by taking the spatiotemporal

Fourier transform of this expression. The Wiener-Khinchin theorem states that the Fourier
transform of Cov(f, g)x,t is given by

F [Cov(f, g)x,t] = lim
N→∞

f̃ ∗(N)(q, ω)g̃(N)(q, ω)

N2
, (12)

where superscript * denotes the complex conjugate and g̃(N)(q, ω) equals the Fourier trans-

form of g(x, t) in the limit asN approaches infinity: g̃(N)(q, ω) =
∑N/2

x,t=−N/2 g(x, t) exp(−i(qx+

ωt)). Furthermore, the Fourier transform of a convolution is the product of the transforms

of the factors: F [f ∗ g] = f̃ g̃. Thus, the Fourier transform of eq. 11 is given by

F [〈Cov(λi, νi)x〉t] = F [Cov(λi, νi)x,t] = lim
N→∞

1

N2

gi〈Fi〉x,t
γi1g1〈n1〉x,t + γi2〈n2〉x,t

×
[
ǫ̃
∗(N)
i (q, ω) −Di1Ũi1(q)ũ

∗(N)
1 (q, ω) −Di2Ũi2(q)ũ

∗(N)
2 (q, ω)

]
ũ

(N)
i (q, ω). (13)

(Honestly, this is an improvement.)
When we come to evaluate our ESS condition, eq. 4, we will find 〈Cov(λi, νi)x〉t by taking

the inverse Fourier transform of eq. 13, numerically integrating

1

(2π)2

∫ ∞

−∞

F [Cov(λi, νi)x,t] dq dω. (14)

(There would normally be a factor of exp(i(qx+ωt)) in the integrand, where x and t are the
spatial and temporal lags of the covariance, but we wish to find the covariance at zero lag,
so the exponential equals 1.)
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We have now found an O(σ2) condition for the ESS (eq. 4), which depends on Cov(λi, νi),
and we have found an O(σ2) expression for this covariance (eqs. 13 and 14). We aren’t fin-
ished, because we ultimately need to express our ESS condition entirely in terms of environ-
mental conditions, whereas Cov(λi, νi) depends on the Fourier transforms of the population
densities: ũi(q, ω), ũ1(q, ω), and ũ2(q, ω). Our next step is to express the population densities
as functions of the environment.

We will begin with ũ1(q, ω). We can obtain an equation for the annual relative population
density, ν1(x, t), by dividing both sides of the dynamical equation for n1 (eq. 3) by 〈n1〉x(t+1)

and substituting λ̃1(t)〈n1〉x(t) for 〈n1〉x(t+ 1) on the righthand side:

ν1(x, t+ 1) =
1

λ̃1(t)

∫ ∞

−∞

k1(x− y)
g1F1(y, t)ν1(y, t)

C1(y, t)
dy +

1

λ̃1(t)
s1(1 − g1)ν1(x, t). (15)

To O(σ), however, λ̃1(t) can be replaced by λ
(0)
1 , which equals 1. (The annual resident is at

equilibrium in the absence of environmental variation.) Substituting eqs. 6 and 7 for F and
n, we Taylor expand to O(σ) to find

u1(x, t+ 1) =
g1〈F1〉x,t

γ11g1〈n1〉x,t + γ12〈n2〉x,t

× (k1 ∗ [ǫ1 + u1 −D11U11 ∗ u1 −D12U12 ∗ u2]) (x, t) + s1(1 − g1)u1(x, t), (16)

where

D11 =
γ11g1〈n1〉x,t

γ11g1〈n1〉x,t + γ12〈n2〉x,t
, D12 =

γ12〈n2〉x,t
γ11g1〈n1〉x,t + γ12〈n2〉x,t

. (17)

Taking a spatial Fourier transform, we find

ũ1(q, t+ 1) =
g1〈F1〉x,t

γ11g1〈n1〉x,t + γ12〈n2〉x,t

× k̃1(q)
[
ǫ̃1(q, t) + ũ1(q, t) −D11Ũ11(q)ũ1(q, t) −D12Ũ12(q)ũ2(q, t)

]
+ s1(1 − g1)ũ1(q, t),

= Au11(q)ũ1(q, t) + Au12(q)ũ2(q, t) + Aǫ11(q)ǫ̃1(q, t) + Aǫ12(q)ǫ̃2(q, t), (18)

where

Au11(q) = c1k̃1(q)
(
1 −D11Ũ11(q)

)
+ s1(1 − g1) Au12(q) = −c1k̃1(q)D12Ũ12(q) (19)

Aǫ11(q) = c1k̃1(q) Aǫ12(q) = 0 (20)

and

c1 =
g1〈F1〉x,t

γ11g1〈n1〉x,t + γ12〈n2〉x,t
= 1 − s1(1 − g1). (21)

By the same process, we find

ũ2(q, t+ 1) = Au21(q)ũ1(q, t) + Au22(q)ũ2(q, t) + Aǫ21(q)ǫ̃1(q, t) + Aǫ22(q)ǫ̃2(q, t), (22)
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where

Au21(q) = −(1 − s2)k̃2(q)D21Ũ21(q) Au22(q) = (1 − s2)k̃2(q)
(
1 −D22Ũ22(q)

)
+ s2 (23)

Aǫ21(q) = 0 Aǫ22(q) = (1 − s2)k̃2(q). (24)

Creating a vector of population fluctuations ũ(q, t) = (ũ1, ũ2)
T (q, t) and a vector of

environmental fluctuations ǫ̃(q, t) = (ǫ̃1, ǫ̃2)
T (q, t), we can express the dynamics in compact

form:
ũ(q, t+ 1) = Au(q)ũ(q, t) + Aǫ(q)ǫ̃(q, t). (25)

We can write ũ(q, t) in terms of a series of past environmental conditions:

ũ(q, t) =
t−1∑

j=0

At−1−j
u (q)Aǫ(q)ǫ̃(q, j) =

∞∑

j=0

M(q, t− j)ǫ̃(q, j), (26)

where

M(q, n) =

{
An−1
u (q)Aǫ(q) n > 0

0 n ≤ 0
. (27)

The second expression for ũ(q, t) is a time convolution of M(q, t− j) with ǫ̃(q, t). By taking
the temporal Fourier transform, we can turn this convolution into a product: ũ(q, ω) =

M̃(q, ω)ǫ̃(q, ω), where ũ(q, ω) and ǫ̃(q, ω) are the spatiotemporal Fourier transforms of u(x, t)

and ǫ(x, t) and M̃ is the temporal Fourier transform of M(q, t):

M̃(q, ω) =
∞∑

t=−∞

M(q, t)e−iωt =
∞∑

t=1

At−1
u (q)Aǫ(q)e

−iωt. (28)

For any matrix A whose eigenvalues have modulus less than 1,
∑∞

j=0 Aj = (I−A)−1, where
I is the identity matrix. We only consider fluctuations about stable population equilibria, so
the eigenvalues of Au(q) all have moduli less than 1, and the series converges. Performing
the sum and multiplying through by exp(iω), we get

ũ(q, ω) =
(
eiωI − Au(q)

)−1
Aǫ(q)ǫ̃(q, ω). (29)

The transfer function (eiωI − Au(q))
−1

Aǫ(q) is a 2 × 2 matrix. We can write the ijth
component in polar form as Rij(q, ω) exp(iφij(q, ω), so that, for example,

ũ1(q, ω) = R11(q, ω)eiφ11(q,ω)ǫ̃1(q, ω) +R12(q, ω)eiφ12(q,ω)ǫ̃2(q, ω), (30)

whereRij(q, ω) equals the squareroot of the square of the real part of
[
(eiωI − Au(q))

−1
Aǫ(q)

]
ij

plus the square of the imaginary part, while φij(q, ω) equals the inverse tangent of the imag-
inary part divided by the real part.

We have our ESS condition (eq. 4). We have expressed the ESS condition in terms of
the resident and invader population distributions (eq. 13, with eq. 14). We have expressions
for the resident population distributions (eq. 29). All that remains is to find an expression
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for the invader population distribution. We follow the same procedure as for the residents,
writing

νi(x, t+ 1) =
1

λ̃i(t)

∫ ∞

−∞

ki(x− y)
giFi(y, t)νi(y, t)

Ci(y, t)
dy +

1

λ̃i(t)
si(1 − gi)νi(x, t). (31)

We again substitute the growth rate in the absence of variation, λ
(0)
i , for λ̃i; however because

the invader is not at equilibrium, λ
(0)
i does not equal 1. Except for this change, the analysis

remains the same. We substitute eqs. 6 and 7 for F and n, Taylor expand to O(σ), and take
the spatial Fourier transform to find

ũi(q, t+ 1) = bui
(q)ũi(q, t) + bu1(q)ũ1(q, t) + bu2(q)ũ2(q, t) + bǫi ǫ̃i(q, t), (32)

where

bui
(q) =c1k̃i(q) − c2 bǫi(q) =c1k̃i(q) (33)

bu1(q) = −Di1Ũi1(q)bǫi(q) bu2(q) = −Di2Ũi2(q)bǫi(q), (34)

c1 =
1

λ
(0)
i

gi〈Fi〉x,t
γi1g1〈n1〉x,t + γi2〈n2〉x,t

c2 =
1

λ
(0)
i

si(1 − gi) (35)

λ
(0)
i =

gi〈Fi〉x,t
γi1g1〈n1〉x,t + γi2〈n2〉x,t

+ si(1 − gi), (36)

and

Di1 =
γi1g1〈n1〉x,t

γi1g1〈n1〉x,t + γi2〈n2〉x,t
Di2 =

γi2〈n2〉x,t
γi1g1〈n1〉x,t + γi2〈n2〉x,t

. (37)

In parallel with the development for the resident dynamics, we can now write

ũi(q, t) =
t−1∑

j=0

bt−1−j
ui

(q)bǫi(q)
[
ǫ̃i(q, t) −Di1Ũi1(q)ũ1(q, t) −Di2Ũi2(q)ũ2(q, t)

]
. (38)

Again in parallel with the resident dynamics, we rewrite each term as a convolution, take
the temporal Fourier transform, and find

ũi(q, ω) = G(q, ω)eiψ(q,ω)
[
ǫ̃i(q, ω) −Di1Ũi1(q)ũ1(q, ω) −Di2Ũi2(q)ũ2(q, ω)

]
, (39)

where

G(q, ω) =
bǫi(q)

1 + b2ui
(q) − 2bui

(q) cos(ω)
(40)

ψ(q, ω) = tan−1

(
− sin(ω)

cos(ω) − bui
(q)

)
, (41)
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and tan−1 has a range of −π to π. Using eq. 30 and the equivalent for species 2 to substitute
for ũ1(q, ω) and ũ2(q, ω), we can express the invader distribution solely in terms of the
environments experienced by the two residents and the invader:

ũi(q, ω) = G(q, ω)eiψ(q,ω)
[
ǫ̃i(q, ω) −

(
Di1Ũi1(q)R11(q, ω)eiφ11(q,ω) +Di2Ũi2(q)R21(q, ω)eiφ21(q,ω)

)
ǫ̃1(q, ω)

−
(
Di1Ũi1(q)R12(q, ω)eiφ12(q,ω) +Di2Ũi2(q)R22(q, ω)eiφ22(q,ω)

)
ǫ̃2(q, ω)

]
. (42)

We now have O(σ) expressions for the Fourier transforms of the resident and invader
populations in terms of their environments. Substituting these into our expression for the
Fourier transform of Cov(λi, νi) (eq. 13), we can at last express Cov(λi, νi)x,t entirely in terms
of the environments experienced by the residents and the invader:

F [Cov(λi, νi)x,t] = lim
N→∞

1

N2

gi〈Fi〉x,t
γi1g1〈n1〉x,t + γi2〈n2〉x,t

[
ǫ̃
∗(N)
i (q, ω)

(
Di1Ũi1(q)R11(q, ω)eiφ11(q,ω) +Di2Ũi2(q)R21(q, ω)eiφ21(q,ω)

)
ǫ̃
∗(N)
1 (q, ω)

−
(
Di1Ũi1(q)R12(q, ω)eiφ12(q,ω) +Di2Ũi2(q)R22(q, ω)eiφ22(q,ω)

)
ǫ̃
∗(N)
2 (q, ω)

]

×G(q, ω)eiψ(q,ω)
[
ǫ̃
(N)
i (q, ω) −

(
Di1Ũi1(q)R11(q, ω)eiφ11(q,ω) +Di2Ũi2(q)R21(q, ω)eiφ21(q,ω)

)
ǫ̃
(N)
1 (q, ω)

−
(
Di1Ũi1(q)R12(q, ω)eiφ12(q,ω) +Di2Ũi2(q)R22(q, ω)eiφ22(q,ω)

)
ǫ̃
(N)
2 (q, ω)

]
(43)

As it stands, we would need to know precisely how the environment varied in space
and time in order to calculate the ǫ̃∗(N)s and evaluate this expression. With a bit of clev-
erness, however, we can write the above in terms of the autocovariance of the environ-
ment: we don’t care precisely how the environment varies, just how it is correlated in
space and time. Eq. 43 contains many terms of the form [stuff] × limN→∞ ǫ̃

∗(N)
j ǫ̃

(N)
k /N2.

We obtain limN→∞ ǫ̃
∗(N)
j ǫ̃

(N)
k /N2 from the Fourier transform of the covariance of ǫj and ǫk,

which is proportional to the covariance of fecundities Fj and Fk: Cov(ǫj, ǫk)x,t(x
′, t′) =

Cov(Fj, Fk)x,t(x
′, t′)/(〈Fj〉x,t〈Fk〉x,t) = cos(θ)V exp(−|x′|/ξ) exp(−|t′|/τ) (from eq. 1). Thus,

lim
N→∞

ǫ̃
∗(N)
j ǫ̃

(N)
k /N2 = F [Cov(ǫj, ǫk)x,t] = cos(θ)V

∞∑

x=−∞

∞∑

t=−∞

e−|x|/ξe−|t|/τei(qx+ωt)

= cos(θ)V

(
1 − e−2/τ

1 − 2e−1/τ cos(ω) + e−2/τ

) (
1 − e−2/ξ

1 − 2e−1/ξ cos(q) + e−2/ξ

)
. (44)
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