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9.  PO TREATMENT OF 2DHETCOR: TWO SPINS (CH) 
 
 We consider again the sequence in Figure I.2 applied to a 
system of two weakly coupled spin 1/2 nuclei A and X.  The density 
matrix at equilibrium (see II.5) is: 
 

   (0) '[ 1] '[1 ]D p z q z= − −  
where 
   p' = p/2N 
   q' = q/2N 
   N = number of states = 4 
 

p and q have the same meaning as in (I.3) and (I.4). 
 
                   90(0) '[ 1] '[1 ]xXD p z q y⎯⎯⎯→− +  (II.27) 

D(1) 
 
We apply the "refocusing routine" treatment to the segment  

/ 2 180 / 2e et xA t− −  
As shown in Section II.8 this routine has the same effect as the 180xA 
pulse followed by an evolution te during which only the shift X is 
active.  The coupling AX is refocused by the 180xA pulse. 
 

180(1) '[ 1] '[1 ]xAD p z q y⎯⎯⎯→ +  
           ( ) '[ 1] 'cos [1 ] 'sin [1 ]et shift X

X e X ep z q W t y q W t x⎯⎯⎯⎯→ + −  (II.28) 
D(4) 

 
A coupled evolution ∆1 follows, which can be handled according to 
the rules of Section II.7 with 

                           1 1

1 1

' cos cos
' sin sin

X

X

c C J
s S J

π
π

= Ω ∆ = ∆
= Ω ∆ = ∆

 

shift A(4) sameD ⎯⎯⎯→  
shift X '[ 1] 'cos ( '[1 ] '[1 ]) 'sin ( '[1 ] '[1 ])X e X ep z q t c y s x q t c x s y⎯⎯⎯→ + Ω − − Ω +

'[ 1] 'cos ( ' [1 ] ' [ ] ' [1 ] ' [ ])J
X ep z q t c C y c S zx s C x s S zy⎯⎯→ + Ω − − −  

' sin ( ' [1 ] ' [ ] ' [1 ] ' [ ])X eq t c C x c S zy s C y s S z− Ω + + − x  
D(5) 
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Since   ∆1 = 1/2J  and  pJ∆1 = π/2,  C = 0  and  S = 1 
 

(5) '[ 1] 'cos ( '[ ] '[ ])X eD p z q t c zx s zy= + Ω − −  
                                (II.29) ' sin ( '[ ] '[ ])X eq t s zx c z− Ω − + y
 
 Using the  trigonometric relations for the sum of two angles 
[see (A29) and (A30)] we can rewrite D(5): 
 

1 1(5) '[ 1] '[ ](cos cos sin sin )X e X X e XD p z q zx t t= + Ω Ω ∆ − Ω Ω ∆  
                         1 1'[ ](cos sin sin cos )X e X X e Xq zy t t− Ω Ω ∆ + Ω Ω ∆
      (II.30) 1 1'[ 1] '[ ]cos ( ) '[ ]sin ( )X e X ep z q zx t q zy t= − Ω + ∆ − Ω + ∆
 
 We calculate now the effects of the pulses three and four (in the 
PO formalism it is simpler to handle them separately): 
 

90
1 1(5) '[ 1] '[ ]cos ( ) '[ ]sin ( )xX

X e X eD p z q zx t q zz t⎯⎯⎯→ − Ω + ∆ − Ω + ∆  
D(6) 

90
1 1'[ 1] '[ ]cos ( ) '[ ]sin ( )xA

X e X ep y q yx t q yz t⎯⎯⎯→− + Ω + ∆ + Ω + ∆  
                                                                   D(7) (II.31) 
 
 Since no other r.f. pulse follows we can concentrate on those 
terms which represent observable magnetization components.  We 
observe nucleus A, therefore we are interested in the product operators 
[x1] and [y1] which give MxA and MyA.  We are also interested in [yz] 
and [xz] which can evolve into [x1], [y1] during a coupled evolution.  
All product operators other than the four mentioned above are 
nonobservable terms (NOT).  We can rewrite D(7) as: 
                    (II.32) 1(7) '[ 1] '[ ]sin ( ) NOTX eD p y q yz t= − + Ω + ∆ +
 
The second term is important for the 2D experiment because it is 
proton modulated (it contains the frequency WX).  It is also enhanced  
by polarization transfer (i.e., multiplied by q' rather than p'). 
 The coupled evolution D2 is necessary to render the second term 
observable.  If the decoupled detection started at t(7), the [yz] term 
would evolve into a combination of [yz] and [xz], none of which is  
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observable.  The observable terms [x1] and [y1] can derive from  [yz] 
only in a coupled evolution. 
 

shift A
1(7) '( [ 1] [ 1]) 'sin ( )( [ ]- [ ])X eD p c y s x q t c yz s xz⎯⎯⎯→− − + Ω + ∆  

shift X same '( [ 1] [ ] [ 1] [ ])J p cC y cS xz sC x sS yz⎯⎯⎯→ ⎯⎯→− − − −  

1'sin ( )( [ ]- [ 1]- [ ]- [ 1])+NOTX eq t cC yz cS x sC xz sS y+ Ω + ∆  (II.33) 
D(8) 

where  

                             2

2 2

cos cos
sin sin

A

A

c C
s S

2J
J
π
π

= Ω ∆ = ∆
= Ω ∆ = ∆

  (II.34) 

 
 During the decoupled evolution that follows after t(8), the 
product operators [x1], [y1] will evolve into combinations of [x1], [y1] 
while the product operators [xz], [yz] evolve into combinations of 
[xz],[yz], i.e., they will remain nonobservable.  We can therefore retain 
only [x1], [y1] in the explicit expression of D(8): 
 

1(8) '( [ 1] [ 1]) 'sin ( )(- [ 1]- [ 1])X eD p cC y sC x q t cS x sS y= − − + Ω + ∆  
 + NOT       (II.35)  
 

 In order to maximize the proton modulated term, one selects for 
D2 the value 1/2J which leads to S = 1 and C = 0.  This value of D2 
represents an optimum in the particular case of the AX system.  It will 
be shown in Section II.10 that for AX2 and AX3 (e.g., the methylene 
and methyl cases) a shorter D2 is to be used.  For D2 = l/2J: 
 

1 2 2(8) 'sin ( )(cos [ 1] sin [ 1])+NOTX e A AD q t x y= − Ω + ∆ Ω ∆ + Ω ∆  
         (II.36) 
 

 The simplest way to describe the decoupled evolution td (from 
the point of view of the observable A) is a rotation of the transverse 
magnetization MTA about the z axis.  At t(8) we have (see Appendix J): 
 

MxA(8) = (MoA/p')(coefficient of [x1]) −
 

           = (q'/p')MoAsinΩX(te+∆1)cosΩA∆2 
 

MyA(8) = (q'/p')MoAsinΩX(te+∆1)sinΩA∆2 
 

MTA(8) = MxA(8)+iMyA(8) = (q'/p')MoAsinΩX(te+∆1) exp(iΩA∆2) (II.37) 
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The ratio '/ ' /X Aq p γ γ=  represents the enhancement factor through 
polarization transfer. 
 By handling the decoupled evolution as a magnetization 
rotation we get 
 
  (9) (8)exp( )TA TA A dM M i= Ω t

+ ∆
 

                (II.38) 1 2( '/ ') sin ( )exp[ ( )]oA X e A dq p M t i t= Ω + ∆ Ω
 
 This is in agreement with the result obtained in Part I through  
DM calculations.  The calculations requested by the PO approach are 
somewhat less complicated than those of the DM approach.  The real 
advantage will be seen when we apply (see Section II.10) the PO 
formalism  to an AX2 and AX3 case (e.g., the 2DHETCOR of a CH2 or 
CH3). 
 
 

10.  PO TREATMENT OF 2DHETCOR: CH2 AND CH3 
 
 We extend the calculations carried out in section II.9 to an AX2 
or AX3 system (e.g., a methylene or a methyl).  The density matrix at 
equilibrium is: 

   (II.39) 2

3

(0) '[ 11] '([1 1] [11 ]) for AX
(0) '[ 111] '([1 11] [11 1] [111 ]) for AX

D p z q z z
D p z q z z z

= − − +
= − − + +

 
Instead of following the two cases separately, we use the "multiplet 
formalism" introduced in Appendix L.  The reader should get ac-
quainted with this formalism before proceeding further. 
 
                                 (0) ( '/ ){ 1} '{1 }D p n z q z= − −  (II.40) 
 
valid for any AXn system. 
 
                            90(0) ( '/ ){ 1} '{1 }xXD p n z q y⎯⎯⎯→− +  (II.41) 

 

D(1) 
 
As we did in section II.9,  we treat the segment  / 2 180 / 2e et xA t− −  
 


