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The Density Matrix Formalism 
 
 
 
 

1.  INTRODUCTION 
 
 Only the simplest NMR pulse sequences can be properly 
described and understood with the help of the vector representation 
(or handwaving) alone.  All two-dimensional experiments require the 
density matrix formalism. Even some one-dimensional NMR 
sequences (see Part II.12) defy the vector treatment because this 
approach cannot account for the polarization transfer.  The goal of 
Part I is to show how the density matrix can be used to understand a 
specific NMR pulse sequence.  A "math reminder" is given in 
Appendix A for those who may need it.  After becoming familiar with 
the use of the density matrix as a tool, the reader may find enough 
motivation to go to Appendix B which deals with the quantum-
mechanical meaning of the density matrix.  
 
 

2.  THE DENSITY MATRIX 
 
 Before entering the formal treatment of the density matrix (see 
Appendix B) let us build an intuitive picture.  We begin with the 
simple system of two spin 1/2 nuclei, A and X, with its four energy 
levels E1 to E4 (Figure I.1) generally described in introductory NMR 
textbooks. We assume here (and throughout the book) a negative 
gyromagnetic ratio, � This explains the spin angular momentum 
orientation against the field in the lowest energy level E4.  Of course, 
in this state the magnetic moment is oriented with the field. 
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2     Density Matrix Treatment 
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Figure I.1.  Energy levels of an uncoupled (left) and coupled (right) 
heteronuclear AX system.  The first column contains the total 
magnetic quantum number, m.  Transition (precession) frequencies nA 
and nX and the coupling constant J are expressed in Hz.  

 
 The possible connections between the four quantum states 
represented by the "kets" 

+ + - + + - - -, , , ,  
are shown in Table I.1 (we assign the first symbol in the ket to nucleus 
A and the second, to nucleus X). 
 This is the general form of the density matrix for the system 
shown in Figure I.1.  It can be seen that the off-diagonal elements of 
the matrix connect pairs of different states.  These matrix elements are 
called "coherences" (for a formal definition see Appendix B) and are 
labeled according to the nature of the transitions between the 
corresponding states.  For instance, in the transition 

+ + Æ - +   
only the nucleus A is flipped.  The corresponding matrix element will 
represent a single quantum coherence implying an A transition and 
will be labeled 1QA.  We thus find two 1QA and two 1QX coherences 
(the matrix elements on the other side of the diagonal do not represent 
other coherences; they are mirror images of the ones indicated above 
the diagonal).  There is also one double-quantum coherence, 2QAX,  
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related to the transition 
+ + → − − . 

 The zero-quantum coherence ZQAX can be considered as 
representing a flip-flop transition E2ÆE3. The name of this coherence 
does not necessarily imply that the energy of the transition is zero. 
 The diagonal elements represent populations.  
 

 
 Table I.1.  Translation of the Classical Representation of 
 a Two-spin System into a Density Matrix Representation 
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 The density matrix contains complete information about the 
status of the ensemble of spins at a given time.  Populations and 
macroscopic magnetizations can be derived from the elements of the 
density matrix, as we will see later.  The reciprocal statement is not 
true: given the magnetization components and populations we do not 
have enough information to write all the elements of the density 
matrix.  The extra information contained in the density matrix enables 
us to understand the NMR sequences which cannot be fully described 
by vector treatment.  


