Name: \qquad
Math 224 Exam 2
September 28, 2012

1. Consider the predator-prey system

$$
\begin{aligned}
& \frac{d R}{d t}=2 R-1.2 R F \\
& \frac{d F}{d t}=-F+0.9 R F
\end{aligned}
$$

(a) Suppose that the predators find a second food source in limited supply. How would you modify the system to take this into a account?
(b) Suppose that predators migrate into the area at a constant rate if there are at least ten times as many prey as predators in the area (that is, if $R>10 F$), and they move away at a (possibly different) constant rate if there are fewer than ten times as many predators. How would you modify the system to take this into account? Possibly useful notation:

$$
\mathbb{1}(x>0)=\left\{\begin{array}{ll}
1 & x>0 ; \\
0 & x \leq 0 ;
\end{array} \quad \text { and } \quad \mathbb{1}(x<0)= \begin{cases}1 & x<0 \\
0 & x \geq 0\end{cases}\right.
$$

2. Solve the system

$$
\begin{aligned}
& \frac{d x}{d t}=3 x+y \\
& \frac{d y}{d t}=-y
\end{aligned}
$$

with initial conditions $x(0)=1, y(0)=2$.
3. The following is a graph of four solution curves $(x(t), y(t))$ to an autonomous system of differential equations, together with the direction field of the system.

Below are four pairs of graphs of $x(t)$ and $y(t)$ versus t.
(a)

(b)

(c)

(d)

Match each of the pairs of graphs to a solution curve in the phase plane. Label which graph is x and which is y. Finally, describe the long-term behavior of solutions in all cases.
4. Find two nonzero solutions of the differential equation

$$
\frac{d^{2} y}{d t^{2}}+7 \frac{d y}{d t}+6 y=0
$$

which are not constant multiples of each other.
5. Suppose you used Euler's method to approximate the solution to the autonomous system

$$
\frac{d \mathbf{Y}}{d t}=\mathbf{F}(\mathbf{Y})
$$

with initial condition $\mathbf{Y}(0)=\mathbf{Y}_{0}$, and the resulting solution curve plotted on the phase plane looked like this:

(a) Explain how you can tell that the Euler's method approximation must not be a very good approximation of the true solution.
(b) What would you do to try to get a better approximation?
(c) What do you guess the true solution looks like, based on the approximation above?

