Name: Solutions

Math 224 Exam 6 December 5, 2012

1. For x, y > 0, consider the system

$$\frac{dx}{dt} = \frac{1}{y}$$
$$\frac{dy}{dt} = \frac{a}{x},$$

where a is a real parameter.

(a) Show that the system is Hamiltonian and identify the Hamiltonian function.

Let
$$f(x,y) = \frac{1}{y}$$
, $g(x,y) = \frac{9}{x}$. Then $\frac{9}{5x} = \frac{99}{5y} = 0$, so the system is Hamiltonian. Horeover, $f(x,y) = \int \frac{1}{y} dy = \log(y) + \phi(x)$

$$= \frac{\partial H}{\partial x}(x,y) = -\phi'(x), \text{ and we need } -\frac{\partial H}{\partial x}(x,y) = \frac{\alpha}{x}$$

$$= \frac{\partial H}{\partial x}(x,y) = -\alpha \log x + c$$

The Hamiltonian of the system can be taken to be $H(x,y) = \log y - a \log x$ $= \log \left[\frac{4}{x^2} \right].$

H(x,y)=C, then

$$\frac{4}{\sqrt{x}}=e^{c}$$
 (also constant)

2. Consider the forced harmonic oscillator

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 17y = 0; y(0) = 1, y'(0) = 0.$$

(a) Is the system overdamped or underdamped?

15 Characteristic polynomial:
$$3^2 + 23 + 17$$
 \Rightarrow eigenvalues: $-2 \pm \sqrt{4 - 4(17)}$
 $= -1 \pm 4i$

The system is <u>inderdamped</u>.

(b) Suppose you hit the oscillator with a hammer at time t=3. Modify the equation above to reflect this and then solve it.

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 17y = k S_3(t)$$
 for some k

$$= \frac{1}{3} \times \frac{$$

(c) How would your answer change if you hit the oscillator twice as hard?

The final term would be multiplied by 2 (k is replaced by 2k).

3. Find the general solution to

$$sx[y] - y(0) + 9x[y] = \frac{e^{-2s}}{s}$$

=)
$$\chi[y] = \frac{y(0)}{s+9} + \frac{e^{-2s}}{s(s+9)}$$

$$\frac{1}{S(s+q)} = \frac{A}{S} + \frac{B}{S+q} \Rightarrow A = \frac{1}{q}, B = -\frac{1}{q}$$

=)
$$\chi [y] = \frac{y(0)}{5+9} + \frac{e^{-2s}}{9s} - \frac{e^{-2s}}{9(sm)}$$

=)
$$y(t) = y(0) e^{9t} + 4 u_2(t) - 4 u_2(t) e^{-9(t-2)}$$

 $\frac{dy}{dt} + 9y = u_2(t).$

$$\mathcal{L}[y] = \int_0^\infty y(t)e^{-st} dt$$

$$\mathcal{L}[y'] = s\mathcal{L}[y] - y(0)$$

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - sy(0) - y'(0)$$

y(t)	$Y(s) = \mathcal{L}[y]$
1	$\frac{1}{s}$
e^{at}	$\frac{1}{s-a}$
$\sin \omega t$	$\frac{\omega}{s^2+\omega^2}$
$\cos \omega t$	$\frac{s}{s^2+\omega^2}$
$u_a(t)$	$\frac{e^{-sa}}{s}$
δ_a	e^{-as}
$u_a(t)f(t-a)$	$e^{-as}F(s)$
$e^{at}f(t)$	F(s-a)
tf(t)	$-\frac{dY}{ds}$