Probability Problems for Homework 13

1. Prove that if \mathbb{P} is a probability on S and $E \subseteq F \subseteq S$, then $\mathbb{P}(E) \leq \mathbb{P}(F)$.
2. Prove by induction that for E_{1}, \ldots, E_{n} subsets of S and \mathbb{P} a probability on S,

$$
\mathbb{P}\left(\bigcup_{j=1}^{n} E_{j}\right)=\sum_{r=1}^{n}(-1)^{r+1}\left[\sum_{i_{1}<i_{2}<\cdots<i_{r}} \mathbb{P}\left(E_{i_{1}} \cap \cdots \cap E_{i_{r}}\right)\right] .
$$

3. (a) Prove that if S is finite and \mathbb{P} is a probability on S such that $\mathbb{P}(\{s\})$ is the same for all $s \in S$, then $\mathbb{P}(\{s\})=\frac{1}{|P|}$ for all $s \in S$.
(b) For a fair die, what is the probability that an even number is rolled?
(c) Prove that if S is infinite, there is no probability \mathbb{P} on S such that $\mathbb{P}(\{s\})$ is the same and non-zero for all $s \in S$.
4. The royal family has two children, one of whom is the king. What is the probability that the other is the king's brother?
5. A lab test for the presence of a certain disease is 95% effective in both directions; that is, the probability of a false positive is .05 and the probability of missing the disease when it's present is also 05 . Suppose that 1% of the population has the disease. If a random person tests positive, what is the probability that he or she actually has the disease?
