Use Theorem 2.23 from the book to prove the following.
Theorem 1. Let B_{1}, \ldots, B_{k} be linearly independent $n \times n$ matrices over \mathbb{R} such that $\operatorname{tr}\left(B_{i} B_{i}^{t}\right)=$ n for each i. Let $b_{i j}=\operatorname{tr}\left(B_{i} B_{j}^{t}\right)$. Let M be a random orthogonal matrix and let

$$
W=\left(\operatorname{tr}\left(B_{1} M\right), \operatorname{tr}\left(B_{2} M\right), \ldots, \operatorname{tr}\left(B_{k} M\right)\right) \in \mathbb{R}^{k}
$$

Let $Y=\left(Y_{1}, \ldots, Y_{k}\right)$ be a random vector whose components are standard normals, with covariance matrix $\frac{1}{n}\left(b_{i j}\right)_{i, j=1}^{k}$. Then

$$
\sup _{\|f\|_{L} \leq 1}|\mathbb{E} f(W)-\mathbb{E} f(Y)| \leq \frac{2 \sqrt{\lambda} k}{n-1}
$$

for $n \geq 3$, where λ is the largest eigenvalue of $\frac{1}{n}\left(b_{i j}\right)_{i, j=1}^{k}$ and $\|f\|_{L}$ is the Lipschitz norm of f.

