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The empirical spectral measure

Let U be distributed according to uniform (Haar) measure on
the group U (N) of N × N unitary matrices.

Fix m ∈ {1, . . . ,N}.

Then Um has (random) eigenvalues {eiθj}Nj=1.

We consider the empirical spectral measure of Um:

µm,N :=
1
N

N∑
j=1

δeiθj .



The empirical spectral measure

Let U be distributed according to uniform (Haar) measure on
the group U (N) of N × N unitary matrices.

Fix m ∈ {1, . . . ,N}.

Then Um has (random) eigenvalues {eiθj}Nj=1.

We consider the empirical spectral measure of Um:

µm,N :=
1
N

N∑
j=1

δeiθj .



The empirical spectral measure

Let U be distributed according to uniform (Haar) measure on
the group U (N) of N × N unitary matrices.

Fix m ∈ {1, . . . ,N}.

Then Um has (random) eigenvalues {eiθj}Nj=1.

We consider the empirical spectral measure of Um:

µm,N :=
1
N

N∑
j=1

δeiθj .



The empirical spectral measure

Let U be distributed according to uniform (Haar) measure on
the group U (N) of N × N unitary matrices.

Fix m ∈ {1, . . . ,N}.

Then Um has (random) eigenvalues {eiθj}Nj=1.

We consider the empirical spectral measure of Um:

µm,N :=
1
N

N∑
j=1

δeiθj .



The eigenvalues of Um for m = 1,5,20,45,80, for U a
realization of a random 80× 80 unitary matrix.



Main results

Theorem (E.M./M. Meckes)
Let ν denote the uniform probability measure on the circle and

Wp(µ, ν) := inf
{(∫

|x − y |p dπ(x , y)
) 1

p

∣∣∣∣ π(A× C) = µ(A)
π(C× A) = ν(A)

}
.

Then

I E
[
Wp(µm,N , ν)

]
≤

Cp
q

m[log( N
m )+1]

N .

I For 1 ≤ p ≤ 2,

P

[
Wp(µm,N , ν) ≥

C
q

m[log( N
m )+1]

N + t

]
≤ exp

[
−N2t2

24m

]
.

I For p > 2,

P

[
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Cp
q
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N + t

]
≤ exp

[
−N1+ 2
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24m

]
.



Main results

Theorem (E.M./M. Meckes)
Let ν denote the uniform probability measure on the circle and

Wp(µ, ν) := inf
{(∫

|x − y |p dπ(x , y)
) 1

p

∣∣∣∣ π(A× C) = µ(A)
π(C× A) = ν(A)

}
.

Then

I E
[
Wp(µm,N , ν)

]
≤

Cp
q

m[log( N
m )+1]

N .

I For 1 ≤ p ≤ 2,

P

[
Wp(µm,N , ν) ≥

C
q

m[log( N
m )+1]

N + t

]
≤ exp

[
−N2t2

24m

]
.

I For p > 2,

P

[
Wp(µm,N , ν) ≥

Cp
q

m[log( N
m )+1]

N + t

]
≤ exp

[
−N1+ 2

p t2

24m

]
.



Main results

Theorem (E.M./M. Meckes)
Let ν denote the uniform probability measure on the circle and

Wp(µ, ν) := inf
{(∫

|x − y |p dπ(x , y)
) 1

p

∣∣∣∣ π(A× C) = µ(A)
π(C× A) = ν(A)

}
.

Then

I E
[
Wp(µm,N , ν)

]
≤

Cp
q

m[log( N
m )+1]

N .

I For 1 ≤ p ≤ 2,

P

[
Wp(µm,N , ν) ≥

C
q

m[log( N
m )+1]

N + t

]
≤ exp

[
−N2t2

24m

]
.

I For p > 2,

P

[
Wp(µm,N , ν) ≥

Cp
q

m[log( N
m )+1]

N + t

]
≤ exp

[
−N1+ 2

p t2

24m

]
.



Main results

Theorem (E.M./M. Meckes)
Let ν denote the uniform probability measure on the circle and

Wp(µ, ν) := inf
{(∫

|x − y |p dπ(x , y)
) 1

p

∣∣∣∣ π(A× C) = µ(A)
π(C× A) = ν(A)

}
.

Then

I E
[
Wp(µm,N , ν)

]
≤

Cp
q

m[log( N
m )+1]

N .

I For 1 ≤ p ≤ 2,

P

[
Wp(µm,N , ν) ≥

C
q

m[log( N
m )+1]

N + t

]
≤ exp

[
−N2t2

24m

]
.

I For p > 2,

P

[
Wp(µm,N , ν) ≥

Cp
q

m[log( N
m )+1]

N + t

]
≤ exp

[
−N1+ 2

p t2

24m

]
.



Almost sure convergence

Corollary
For each N, let UN be distributed according to uniform measure
on U (N) and let mN ∈ {1, . . . ,N}. There is a C such that, with
probability 1,

Wp(µmN ,N , ν) ≤
Cp
√

mN log(N)

N
1
2 + 1

max(2,p)

eventually.



A miraculous representation of the eigenvalue
counting function

Fact: The set {eiθj}Nj=1 of eigenvalues of U (uniform in U (N)) is
a determinantal point process.

Theorem (Hough/Krishnapur/Peres/Virág 2006)
Let X be a determinantal point process in Λ satisfying some
niceness conditions. For D ⊆ Λ, let ND be the number of points
of X in D. Then

ND
d
=
∑

k

ξk ,

where {ξk} are independent Bernoulli random variables with
means given explicitly in terms of the kernel of X .
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A miraculous representation of the eigenvalue
counting function

That is, if Nθ is the number of eigenangles of U between 0 and
θ, then

Nθ
d
=

N∑
j=1

ξj

for a collection {ξj}Nj=1 of independent Bernoulli random
variables.



A miraculous representation of the eigenvalue
counting function

Theorem (Rains 2003)
Let m ≤ N be fixed. Then

[U (N)]m
e.v .d .

=
⊕

0≤j<m

U
(⌈

N − j
m

⌉)
,

where e.v .d .
= denotes equality of eigenvalue distributions.

So: if Nm,N(θ) denotes the number of eigenangles of Um in
[0, θ), then

Nm,N(θ)
d
=

N∑
j=1

ξj ,

for {ξj}Nj=1 independent Bernoulli random variables.
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Consequences of the miracle

I From Bernstein’s inequality and the representation of Nm,N(θ) as∑N
j=1 ξj ,

P
[∣∣Nm,N(θ)− ENm,N(θ)

∣∣ > t
]
≤ 2 exp

[
−min

{
t2

4σ2 ,
t
2

}]
,

where σ2 = VarNm,N(θ).

I ENm,N(θ) = Nθ
2π (by rotation invariance).

I Var
[
N1,N(θ)

]
≤ log(N) + 1 (e.g., via explicit computation with the

kernel of the determinantal point process), and so

Var
(
Nm,N(θ)

)
=
∑

0≤j<m

Var
(
N

1,
l

N−j
m

m(θ)

)
≤ m

(
log
(

N
m

)
+ 1
)
.
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Bounding EWp(µm,N , ν)

The previous slide leads easily to the estimate

P
[∣∣∣∣θj −

2πj
N

∣∣∣∣ > 4πt
N

]
≤ 4 exp

−min

 t2

m
(

log
(

N
m

)
+ 1
) , t

 ,

for each j ∈ {1, . . . ,N}.

If νN := 1
N
∑N

j=1 δexp
“

i 2πj
N

”, then Wp(νN , ν) ≤ π
N and

EW p
p (µm,N , νN) ≤ 1

N

N∑
j=1

E
∣∣∣∣θj −

2πj
N

∣∣∣∣p

≤ 8Γ(p + 1)

4π
√

m
[
log
(

N
m

)
+ 1
]

N


p

.
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Concentration of Wp(µm,N , ν)

The Idea: Consider the function Fp(U) = Wp (µUm , ν), where
µUm is the empirical spectral measure of Um.

I By Rains’ theorem, it is distributionally the same as
Fp(U1, . . . ,Um) =

(
1
m
∑m

j=1 µUj , ν
)

.

I Fp(U1, . . . ,Um) is Lipschitz (w.r.t. the L2 sum of the

Euclidean metrics) with Lipschitz constant N−
1

max(p,2) .

I If we had a general concentration phenomenon on⊕
0≤j<m U

(⌈
N−j
m

⌉)
, concentration of Wp (µUm , ν) would

follow.
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The sharp LSI on U (N)

Lemma
If

I θ is uniform in
[
0, 2π

N

]
I V is uniform in SU (N),
I θ and V are independent,

then eiθV is distributed uniformly in U (N).

Proof.
Let K be uniform in {1, . . . ,N}, X uniform in (0,1) and V

uniform in SU (N). Look at

e
2πiX

N e
2πiK

N V .
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The sharp LSI on U (N)

Facts 1 & 2: Both
[
0, π

√
2√

N

]
and SU (N) satisfy log-Sobolev

inequalities with constant 2
N .

Fact 3: Log-Sobolev inequalities tensorize.

=⇒
[
0, π

√
2√

N

]
× SU (N) satisfies an LSI with constant 2

N .

Fact 4: The function

F :
[
0, π

√
2√

N

]
× SU (N) → U (N)

(t ,V ) 7→ e
√

2it√
N V

is
√

3-Lipschitz and pushes forward the product of uniform
measures on

[
0, π

√
2√

N

]
and SU (N) to uniform measure on

U (N).
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The sharp LSI on U (N)

=⇒ U (N) satisifes a log-Sobolev inequality with contant 6
N .

One more application of tensorization gives that⊕
0≤j<m U

(⌈
N−j
m

⌉)
satisfies a log-Sobolev inequality with

constant 6
⌈

N
m

⌉
.

Via the Herbst argument, this leads to:

P
[
F (U1, . . . ,Um) ≥ EF (U1, . . . ,Um) + t

]
≤ exp

[
− Nt2

12L2

]
,

where F is L-Lipschitz.
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