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The empirical spectral measure

Let U be distributed according to uniform (Haar) measure on
the group U (N) of N x N unitary matrices.

Fixme {1,...,N}.
Then U™ has (random) eigenvalues {e"ef}j’\;.

We consider the empirical spectral measure of U™:

1 N
HEmN = N Z(Se/ej.
Jj=1



m=45

The eigenvalues of U™ for m = 1,5, 20,45, 80, for U a
realization of a random 80 x 80 unitary matrix.
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Main results

Theorem (E.M./M. Meckes)
Let v denote the uniform probability measure on the circle and

) =t {1 - yP et )3 | TAXD) = HA L

Then
> E [Wp(umn,v)] < %.

» For1 <p<2,

P Wp(//JmJV’y) > % +t

> Fo:rp> 2,

P WP(Mm,Nay) > % +t

N2t2
< exp [-122].

14 2
Sexp[ N(J;f]




Almost sure convergence

Corollary
For each N, let Uy be distributed according to uniform measure

onU(N) and letmy € {1,...,N}. There is a C such that, with
probability 1,

Cp\/mylog(N)

1 1
N2 + max(2,p)

Wp(NmN,Na V) <

eventually.
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A miraculous representation of the eigenvalue
counting function

Fact: The set {€}}Y, of eigenvalues of U (uniform in U (N)) is
a determinantal point process.

Theorem (Hough/Krishnapur/Peres/Virag 2006)

Let X be a determinantal point process in \ satisfying some
niceness conditions. For D C A, let Np be the number of points

of X in D. Then ;
No =D &,
k

where {{} are independent Bernoulli random variables with
means given explicitly in terms of the kernel of X.



A miraculous representation of the eigenvalue
counting function

That is, if Ny is the number of eigenangles of U between 0 and
6, then

N
Ny 230G
j=1

for a collection {¢; j"; of independent Bernoulli random
variables.
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A miraculous representation of the eigenvalue
counting function

Theorem (Rains 2003)
Let m < N be fixed. Then

pe” = @ v(|*]),

0<j<m
where %% denotes equality of eigenvalue distributions.

So: if Nm n(6) denotes the number of eigenangles of U™ in
[0,0), then

NmN ng

for {fj}jl\i1 independent Bernoulli random variables.
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Consequences of the miracle
» From Bernstein’s inequality and the representation of AV, n(6) as

Y&,

[t
P [[Nmn(0) — ENpn(8)] > t] < 2exp [ min {402, 2H ’

where o2 = Var N, n(6).
> ENpmn(0) = 52 (by rotation invariance).

» Var [Ny n(6)] < log(N) + 1 (e.g., via explicit computation with the
kernel of the determinantal point process), and so

Var (Nm n(0 ZVar( /m,w(0)>§m(log<rl\rll>+1>.

0<j<m
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The previous slide leads easily to the estimate
4rt

o P e

foreachje {1,...,N}.

27
%N




Bounding EW,(1em.n. )

The previous slide leads easily to the estimate

o P e

foreachjc {1,...,N}.

2rf
%N
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Bounding EW,(1em.n. )

The previous slide leads easily to the estimate

o P e

foreachjc {1,...,N}.

2rf

N

0 —

Ity =5 N, 5exp(12ﬂ,) then Wp(vn,v) < § and

1 o 2nj|P
EWp (1imn> vN) < NIZ_;E - N

47r\/m [Iog <%) + 1]

N

I

<8M(p+1)
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Concentration of Wy(umn, )

The Idea: Consider the function Fp(U) = Wp (1ym, v), where
wym is the empirical spectral measure of U™.

» By Rains’ theorem, it is distributionally the same as
F(U17"7 ) < 211/J'U7 )
> Fp(Us,. .., Un) is Lipschitz (w.r.t. the L, sum of the

1
Euclidean metrics) with Lipschitz constant N max(¢2)

» If we had a general concentration phenomenon on
DPo<jcmU ({qu), concentration of W, (uym,v) would
follow.
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The sharp LSl on U (N)

Lemma
If

» 0 is uniform in [0, 27|
» V is uniform in SU (N),
» 6 and V are independent,
then €'V is distributed uniformly in U (N).

Proof.
Let K be uniformin {1,..., N}, X uniformin (0,1) and V
uniform in SU (N). Look at

2wiX  2wiK

evenV
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The sharp LSl on U (N)

Facts 1 & 2: Both [0 7%] and SU (N) satisfy log-Sobolev

inequalities with constant %.

Fact 3: Log-Sobolev inequalities tensorize.

— [0, &f} x SU (N) satisfies an LS| with constant %

Fact 4: The function
F [o,%}xsm(/\/) ~ U(N)
V2it
(V) — ewV

3-Lipschitz and pushes forward the product of uniform
measures on [O, L\/ﬂ and SU (N) to uniform measure on
U (N).
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The sharp LSl on U (N)

— U (N) satisifes a log-Sobolev inequality with contant %

One more application of tensorization gives that
Bo<jemU ({N /D satisfies a log-Sobolev inequality with

constant 6 {ﬂ .

Via the Herbst argument, this leads to:

Nt?
P[F(U1/,Um)2EF(U17U)+t} exp 12L2 ’

where F is L-Lipschitz.



