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Abstract

The central theme of this dissertation is an extension of Stein’s method of exchangeable

pairs for use in proving the approximate normality of random variables which are invari-

ant under a continuous group of symmetries. A key feature of the technique is that, for

univariate approximation, it provides convergence rates in the total variation metric as

opposed to the weaker notions of distance obtained via the classical versions of Stein’s

method. This new technique is applied to projections of Haar measure on the classical

matrix groups as well as spherically symmetric distributions on Euclidean space. The

technique is also used in studying eigenfunctions of the Laplacian on a large class of

Riemannian manifolds. A multivariate version of the method is developed and applied

to higher dimensional projections of Haar measure on the classical matrix groups and

spherically symmetric distributions on Euclidean space.
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CHAPTER 1

Introduction

1.1. Background: Stein’s method

Charles Stein first published what has come to be known as Stein’s method in 1970 in

the paper [78], as a tool for proving central limit theorems for sums of dependent random

variables. The central idea of the method is that the standard Gaussian distribution on

R is characterized by a certain differential operator. This idea is made precise by the

following lemma.

Lemma 1.1 (Stein). Let Z be a standard Gaussian random variable. Then

(i) For all f ∈ C1
o (R),

E
[
f ′(Z)− Zf(Z)

]
= 0.

(ii) If Y is a random variable such that

E
[
f ′(Y )− Y f(Y )

]
= 0

for all f ∈ C1(R), then L(Y ) = L(Z); i.e., Y is also distributed as a standard

Gaussian random variable.

Remark: The differential operator To defined by

(1.1) Tof(x) = f ′(x)− xf(x)

is called the characterizing operator of Z.

The first statement of the lemma follows trivially by integration by parts. To prove

the second part, Stein introduced a left inverse to the characterizing operator To given

1



2 1. INTRODUCTION

by the following formula

(1.2) Uog(t) = et2/2

∫ t

−∞

[
g(x)− Eg(Z)

]
e−x2/2dx.

Integration by parts shows

ToUog(x) = (Uog)′(x)− x(Uog)(x)

= g(x)− Eg(Z),

UoTof(x) = f(x);

in particular, Uog is a solution to the differential equation

h′(x)− xh(x) = g(x)− Eg(Z).

Now to prove (ii), let g be a smooth, compactly supported test function and let h = Uog.

Then, since E
[
f ′(Y )− Y f(Y )

]
= 0 for all f ,

Eg(Y )− Eg(Z) = E
[
h′(Y )− Y h(Y )

]
= 0.

Since C∞
o is dense (with respect to the supremum norm) in the set of bounded continuous

functions vanishing at infinity, this proves that Y and Z have the same distribution.

After observing that the Gaussian distribution is characterized by the differential

operator To, the next essential observation made by Stein was that if ETof(Y ) =

E
[
f ′(Y ) − Y f(Y )

]
is small for all f in some large class of functions, then Y is close

to Z in law. As above, if g is a test function and h = Uog, then

(1.3)
∣∣Eg(Y )− Eg(Z)

∣∣ = ∣∣E[h′(Y )− Y h(Y )
]∣∣ .

Now,

sup
‖g‖∞≤1,

g continuous

∣∣Eg(Y )− Eg(Z)
∣∣ =: 2dTV (Y, Z)

and

sup
‖g‖L≤1

∣∣Eg(Y )− Eg(Z)
∣∣ =: dL∗(Y, Z),
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where ‖g‖L is the Lipschitz norm of g; i.e., the sum of ‖g‖∞ and the Lipschitz constant of

g. This means that estimating
∣∣E[h′(Y )− Y h(Y )

]∣∣ over a class of h which includes Uog

for g bounded and continuous (resp. bounded, Lipschitz) gives the distance between the

random variables Y and Z in the total variation (resp. dual-Lipschitz) metric. Indeed,

one of the advantages of Stein’s method is that when used to prove probabilistic limit

theorems, it automatically provides a rate of convergence in a metric of this kind.

There are various ways to try to estimate the right-hand side of (1.3). One general

technique, developed by Stein in [79] is the method of exchangeable pairs. Very roughly,

the idea is the following. Given a random variable W conjectured to be approximately

normal, make a small change to W to construct a random variable W ′ such that (W,W ′)

is exchangeable. Use the pair (W,W ′) to approximate h′(W ) when estimating

E
[
h′(W )−Wh(W )

]
and use the exchangeability to evaluate the resulting expression. More formally, the

following abstract normal approximation theorem is the basis for the method of ex-

changeable pairs. The proof is given below.

Theorem 1.2 (Stein). Let (W,W ′) be an exchangeable pair of random variables with

EW 2 = 1, and let ∆ = W ′ −W. Suppose that

E
[
∆
∣∣W ]

= −λW.

Then

(i)

∣∣Eg(W )− Eg(Z)
∣∣ ≤ 1

λ
‖g − Eg(Z)‖∞

√
Var

(
E
[
∆2
∣∣W ])

+
‖g′‖∞

2λ
E|∆|3

(ii) for any t ∈ R,

∣∣P(W ≤ t)− Φ(t)
∣∣ ≤ 1

λ

√
Var

(
E
[
∆2
∣∣W ])

+ (8π)−1/4

√
1
λ

E|∆|3,
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where Φ(t) = 1√
2π

∫ t
−∞ e−x2/2dx.

This theorem was improved by Rinott and Rotar [71] in two main directions. They

showed that the condition E
[
∆
∣∣W ]

= −λW need only hold approximately and gave a

modified form of the bound (i) taking R := E
[
∆
∣∣W ]

+ λW into account. In the case

that ∆ is almost surely bounded, they improved the error bound of (ii) significantly.

Theorem 1.2 above yields only a rate of n−1/4 in the Berry-Esseen theorem, whereas for

bounded random variables, Rinott and Rotar’s improvement yields the correct rate of

n−1/2. Further work in replacing the boundedness assumption by moment assumptions

and getting sharp bounds has been done by Chatterjee [20] and Shao and Su [76].

The following lemma is one of the key ingredients of the proof of Theorem 1.2 and

will also be used in later sections.

Lemma 1.3 (Stein). Let Uo be the operator defined in equation (1.2) and let g : R → R

be bounded and continuous. Then

(i) ‖Uog‖∞ ≤
√

π
2 ‖g − Eg(Z)‖∞ ≤

√
2π‖g‖∞

(ii) ‖(Uog)′‖∞ ≤ 2‖g − Eg(Z)‖∞ ≤ 4‖g‖∞

(iii) If g is also differentiable, then ‖(Uog)′′‖∞ ≤ 2‖g′‖∞

The proof of the lemma is by calculus and can be found in [79].

Proof of Theorem 1.2. Let g : R → R be continuous and compactly supported

with ‖g‖L ≤ 1, and let h = Uog for Uo as in equation (1.2). By the exchangeability of

(W,W ′),

0 = E
[
(W ′ −W )(h(W ′) + h(W ))

]
= E

[
(W ′ −W )(h(W ′)− h(W )) + 2(W ′ −W )h(W )

]
= E

[
h′(W )E

[
(W ′ −W )2

∣∣W ]
+ 2h(W )E

[
(W ′ −W )

∣∣W ]
+ R

]
,

where R is the error in the derivative approximation. Applying the condition of the

theorem and rearranging gives

0 = E
[
2λh′(W )− 2λWh(W ) + h′(W )

(
E
[
(W ′ −W )2

∣∣W ]
− 2λ

)
+ R

]
,
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thus

(1.4)
∣∣E[g(W )− g(Z)

]∣∣ = ∣∣∣∣E [h′(W )
2λ

(
2λ− E

[
(W ′ −W )2

∣∣W ])
− R

2λ

]∣∣∣∣
Note that

E
(
E
[
(W ′ −W )2

∣∣W ])
= 1− 2E

[
(1− λ)W 2

]
+ 1 = 2λ.

It follows by the Cauchy-Schwarz inequality and Lemma 1.3 that

(1.5)
∣∣∣∣h′(W )

2λ

(
E
[
(W ′ −W )2

∣∣W ]
− 2λ

)∣∣∣∣ ≤ ‖g − Eg(Z)‖∞
λ

√
Var

(
E
[
∆2
∣∣W ])

.

By Taylor’s theorem,

1
2λ

E|R| ≤ ‖h′′‖∞
4λ

E|W ′ −W |3

≤ ‖g′‖∞
2λ

E|∆|3.
(1.6)

Applying the triangle inequality to (1.4) and using the bounds (1.5) and (1.6) proves (i).

For (ii), let

ht,δ(x) =


1 x ≤ t

1− x−t
δ t ≤ x ≤ t + δ

0 x ≥ t + δ.

Then

(i) Eht−δ,δ(W ) ≤ P(W ≤ t) ≤ Eht,δ(W ),

(ii) |ht,δ(x)− Eht,δ(Z)| ≤ 1 for all x ∈ R, and

(iii) |h′t,δ(x)| ≤ 1
δ

for all x ∈ R.

Applying the first statement of the theorem to the test function ht,δ gives

P(W ≤ t) ≤ Eht,δ(W )

≤ Eht,δ(Z) +
1
λ

√
Var

(
E
[
(W ′ −W )2

∣∣W ])
+

1
2λδ

E|W ′ −W |3

≤ Φ(t) +
1
λ

√
Var

(
E
[
(W ′ −W )2

∣∣W ])
+

δ√
2π

+
1

2λδ
E|W ′ −W |3.
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The right-hand side is minimized by choosing

δ =
(8π)1/4

2

√
1
λ

E|W ′ −W |3;

this gives that

P(W ≤ t) ≤ Φ(t) +
1
λ

√
Var

(
E
[
(W ′ −W )2

∣∣W ])
+ (8π)−1/4

√
1
λ

E|W ′ −W |3.

A corresponding lower bound can be proved similarly by using the lower bound from (i)

above.

�

Remark: Estimating the remainder in the derivative approximation more carefully

can lead to a slight improvement in the coefficient of E|∆|3; see [79].

Since the first publication of Stein’s method in 1970, a great deal of work has been

done in extending and applying the method. As mentioned above, Rinott and Rotar [71]

made significant improvements to the method of exchangeable pairs. They applied their

result to studying the stationary distribution of the antivoter chain introduced by Matloff

[61] and to weighted U -statistics. The method is extended to a multivariate context in

[22], which includes the results of chapter 5 of this thesis, as well as an application to

linear functions on the permutation group.

Usually when using the method of exchangeable pairs, construction of the exchange-

able pair itself is quite straightforward and suggested by the natural symmetries of the

problem. In many examples, the random variable W being studied is a function of some

other random object X. For example, X may be a sequence of n i.i.d. random variables

or a random element of a compact group. In such cases, W ′ is often constructed by

first defining an exchangeable pair (X, X ′) and then applying the same function to X

and X ′ to get W and W ′. For example, a natural choice in the case of a sum of a

sequence of random variables {Xi} is to choose an index I at random and replace XI

with an independent copy X∗
I . However, it need not be the case that W ′ is constructed

in this way. In studying certain permutation statistics, Jason Fulman [41] introduced a
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clever construction for an exchangeable pair (W,W ′) where W = W (π) with π a random

permutation, such that W ′ = W (π′) but (π, π′) is not exchangeable.

As mentioned above, the method of exchangeable pairs is just one possible implemen-

tation of the basic idea of Stein’s method, namely that the normal distribution can be

characterized by a differential operator. There are other somewhat similar approaches

which go under the general name of ‘coupling’ or ‘auxiliary randomization’. In these

methods, an auxiliary random variable (like W ′ above) is constructed from W in some

way as a tool for estimating

(1.7) E
[
h′(W )−Wh(W )

]
over a large class of h. One such approach is the zero-bias coupling method of Goldstein

and Reinert [44]. Motivated by the form of (1.7), they construct a random variable W ∗

from W such that

EWh(W ) = Eh′(W ∗)

for all h ∈ C1(R) for which the expectations above are defined. Goldstein and Reinert

applied this coupling to simple random sampling; Goldstein [43] later applied it in prov-

ing various combinatorial central limit theorems and, in collaboration with Aihua Xia

[47], in proving a ‘discrete central limit theorem’.

Another coupling approach which has been used frequently, e.g. in [5], [46], [68],

is the size bias coupling. This approach has been especially useful for positive random

variables such as counts; for example, it was used in [5] in studying the number of local

maxima of random functions on graphs. Assume W ≥ 0 and let λ, σ be defined by

EW = λ and EW 2 = σ2. The variable W ∗ is defined by the relation

EWh(W ) = λEh(W ∗).

A rather different approach to Stein’s method is the method of ‘local dependence’,

introduced for use in Poisson approximation by Chen in [25], [26], and further developed

in [2]. Baldi and Rinott [4] developed a version for studying the approximate normality

of graph-related statistics. The method is useful when there exists a natural dependence
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structure in the problem, e.g., a random variable W =
∑

i Xi where the Xi depend only

on Xj with |i − j| small. Situations of this sort often arise in geometric problems; the

local dependence method has recently been of use in the study of random polytopes

(see [69], [6]). A more refined version of local dependency structure was exploited in

a multivariate context in [70], which contains a fairly general multivariate central limit

theorem with applications to graph colorings.

For a very readable introduction to Stein’s method for normal approximation via

these methods, see Rinott and Rotar [72].

Stein’s method has also been used in conjunction with induction. Bolthausen [16]

used this approach in determining a rate of convergence in the combinatorial central

limit theorem of Hoeffding (see [51]). Stein [80] later used this approach to obtain fast

rates of convergence to normal for Tr (Mk) for M a random n × n orthogonal matrix

and k fixed.

One of the most celebrated aspects of Stein’s method is that it allows the relaxation

of independence assumptions. The other main advantage is that the method can be used

for many different approximating distributions, not just the normal distribution. Shortly

after its introduction, Louis Chen [25], [26] developed a version for Poisson approxima-

tion which he applied to sums of dependent Bernoulli random variables. Stein’s method

for Poisson approximation was developed further by Arratia, Goldstein, and Gordon

in [1] and [2], including developing a local dependency approach which only requires

separating summands into weakly and strongly dependent groups, rather than requiring

strict independence. Penrose’s book [66] has applications of local dependency versions of

Stein’s method in studying random geometric graphs. The book [10] of Barbour, Holst,

and Janson on Poisson approximation uses Stein’s method in conjunction with size bias

coupling and contains applications to a wide variety of problems. The survey paper [21]

gives a version of the method of exchangeable pairs for Poisson approximation, including

many examples.

Stein’s method has also been developed in the context of approximation by Γ distri-

butions (see Luk [60]), χ2 distributions (see Pickett [67]), the uniform distribution on

the discrete circle (see the paper [33] of Diaconis in [37]), the semi-circle law (see Götze
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and Tikhomirov [48]) the binomial and multinomial distributions (see Holmes [52], Loh

[59]), the hypergeometric distribution (also in [52]) and the uniform distribution on S1

(see Meckes [62]).

Barbour made a significant contribution to the development of Stein’s method in the

papers [7] and [8], which develop versions of the method in the context of approximation

by Poisson processes and Gaussian processes. A different approach to Poisson process

approximation was introduced by Arratia, Goldstein and Gordon in [1]. The ideas

introduced in [8] have subsequently been widely exploited; see e.g. [46], [45], and [22].

A testament to the power of Stein’s method is the extremely wide variety of problems

which have been successfully treated using one or more of the approaches discussed above.

As has already been mentioned, many problems involving graph statistics and various

types of random graphs have been treated; see [5], [4], [12], [11], [66], [70]. Reitzner

[69] applied Stein’s method in studying random polytopes; see also [6]. Many types of

sums of dependent random variables, both with local dependence and global dependence,

have been treated with various versions of the method; see [25], [26], [30], [53], [71]. In

particular, limiting distributions of linear functions in various contexts ([16], [75], [63],

[64]) have been treated. Many other applications have been explored, including disso-

ciated statistics [9], scan statistics [30], permutation statistics [41], pattern occurrences

in sequences of trials [27], the bootstrap [53], and stationary distributions of Markov

chains [33], [54], [71].

1.2. Summary of results

One of the fundamental results of this thesis is the following extension of Theorem

1.2 to situations in which continuous symmetries are present.

Theorem 1.4. Suppose that (W,Wε) is a family of exchangeable pairs defined on

a common probability space with EW = 0 and EW 2 = σ2. Suppose there is a random

variable E = E(W ), deterministic functions h(ε) and k(ε) with

lim
ε→0

h(ε) = lim
ε→0

k(ε) = 0,



10 1. INTRODUCTION

and functions α and β with

E|α(σ−1W )| < ∞, E|β(σ−1W )| < ∞,

such that

(i)
1
ε2

E
[
Wε −W

∣∣W ]
= −λW + h(ε)α(W ),

(ii)
1
ε2

E
[
(Wε −W )2

∣∣W ]
= 2λσ2 + Eσ2 + k(ε)β(W ),

(iii)
1
ε2

E |Wε −W |3 = o(1),

where o(1) refers to the limit as ε → 0 with implied constants depending on the distribu-

tion of W . Then

dTV (W,Z) ≤ 1
λ

E |E| ,

where Z ∼ N(0, σ2).

In situations in which it is possible to construct (W,Wε) as above, Theorem 1.4 gives

a significant improvement to Theorem 1.2. Consider the following example. Let X be a

random point of
√

nSn−1 ⊆ Rn. The following theorem, first proved in [36], is shown in

section 2.1 below to be a consequence of Theorem 1.4.

Theorem 1.5. Let X be as above. For θ ∈ Sn−1, define Wθ = 〈X, θ〉 . Then

dTV

(
Wθ, Z

)
≤ 4

n− 1
,

where Z ∼ N(0, 1).

One could try to prove the asymptotic normality of Wθ as a consequence of Theorem

1.2. First note that by the symmetry of the sphere, it suffices to prove the theorem for

one fixed θ, e.g., the principle diagonal θ = 1√
n
(1, . . . , 1). A natural exchangeable pair is
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the following. Let X be a random point of
√

nSn−1, and let I ∈ {1, . . . , n} be a random

index, independent of X. Let

(1.8) X ′ = X − 2eIXI ,

where ej is the jth standard basis vector of Rn. Thus X ′ is constructed from X by

choosing a coordinate at random and changing the sign. Let W = 1√
n

∑n
i=1 Xi and

W ′ = 1√
n

∑n
i=1 X ′

i; the pair (W,W ′) is exchangeable by the symmetry of the sphere.

The following computation shows that Theorem 1.2 applies with λ = 2
n . Making use

of the independence of X and I,

E
[
W ′ −W

∣∣W ]
= E

[
− 2√

n
XI

∣∣∣∣W]
= − 2

n3/2

n∑
i=1

E
[
Xi

∣∣W ]
= − 2

n
E

[
1√
n

n∑
i=1

Xi

∣∣∣∣∣W
]

= − 2
n

W.

It remains to bound the error terms provided by Theorem 1.2. The following formula

from [40] for integrating polynomials over spheres is useful. The theorem in [40] is

only stated for polynomials with even powers of each coordinate (and with a different

normalization of surface measure on Sn−1), but the proof of the theorem stated below

is identical.

Theorem 1.6. Let P (x) = |x1|α1 |x2|α2 · · · |xn|αn. Then if X is uniformly distributed

on
√

nSn−1,

E
[
P (X)

]
=

Γ(β1) · · ·Γ(βn)Γ(n
2 )n( 1

2

P
αi)

Γ(β1 + · · ·+ βn)πn/2
,

where βi = 1
2(αi + 1) for 1 ≤ i ≤ n and

Γ(t) =
∫ ∞

0
st−1e−sds = 2

∫ ∞

0
r2t−1e−r2

dr.



12 1. INTRODUCTION

Now,

E
[
(W ′ −W )2

∣∣W ]
= E

[
4
n

X2
I

∣∣∣∣W]
=

4
n2

n∑
i=1

E
[
X2

i

∣∣W ]
=

4
n

E

[
1
n

n∑
i=1

X2
i

∣∣∣∣∣W
]

=
4
n

.

Therefore,

Var
(
E
[
(W ′ −W )2

∣∣W ])
= 0,

and the first half of the error term in either statement of Theorem 1.2 is zero.

For the second term,

E
∣∣W ′ −W

∣∣3 =
8

n3/2
E
∣∣XI

∣∣3
=

8
n5/2

n∑
i=1

E
∣∣Xi

∣∣3
=

8
n3/2

E
∣∣X1

∣∣3,
(1.9)

where the last line follows again by the symmetries of the sphere. By Theorem 1.6 and

the Cauchy-Schwarz inequality,

E
∣∣X1

∣∣3 ≤ (EX4
1

)3/4 =
(

3n

n + 2

)3/4

≤ 33/4.

Note that the Cauchy-Schwarz inequality also implies that

E
∣∣X1

∣∣3 ≥ (EX2
1

)3/2 = 1,

so the loss in estimating E
∣∣X1

∣∣3 by 33/4 is only a loss in the constant. Combining this

estimate with (1.9) yields

(1.10)
1
λ

E
∣∣W ′ −W

∣∣3 ≤ 4 · 33/4

√
n

,
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thus Theorem 1.2 gives a rate of convergence of Wθ to Gaussian on the order of n−1/2

in the dual-Lipschitz distance and shows that the distance between the distribution

functions is bounded by a bound of order n−1/4. The theorem does not provide a bound

on the total variation distance from Wθ to a Gaussian random variable. Theorem 1.4

thus gives a faster rate of convergence in a stronger metric in this problem.

Though its proof is quite simple, Theorem 1.4 above is one of the foundational

results of this thesis; all of the results of chapters 3 and 4 make use of it. Chapter 2

contains the proof of the theorem and a first application: under certain conditions, rank

one projections of spherically symmetric distributions on Rn are close to the standard

Gaussian distribution in the total variation distance. This is related to work of Diaconis

and Freedman [36]; some comparison is offered in section 2.1.

Chapter 3 is concerned with applications of Theorem 1.4 to studying the behavior of

linear functions on the classical matrix groups. A theme in studying random matrices

distributed according to Haar measure on the orthogonal group On and the unitary group

Un has been that in many ways, Haar measure is ‘like’ Gaussian measure; see, e.g., [36],

[29] and [55]. This is not true in all ways – in particular, [42] and [35] show that the

eigenvalue distributions are very different – but is often true when studying the joint

distribution of the entries. One way of defining Gaussian measure on higher dimensional

space (such as the space of n× n matrices) is to require all projections to be Gaussian.

Thus a natural comparison between Haar measure and Gaussian measure on On or Un

is to determine the distributions of linear functions and compare them to the normal

distribution on R. This motivates the following theorem of section 3.1.

Theorem 1.7. Let A be a fixed n×n matrix over R such that Tr (AAt) = n, M ∈ On

distributed according to Haar measure, and W = Tr (AM). Let Z be a standard normal

random variable. Then for n > 1,

(1.11) dTV (W,Z) ≤ 2
√

3
n− 1

.

Further motivation and historical background for this theorem are given in chapter

3.
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The natural analog of Theorem 1.7 in the unitary case would be a bound on the

total variation distance between the complex random variable Tr (AM) and a standard

complex normal random variable, where M is a random unitary matrix and A a fixed

n × n matrix over C. The difficulty is that looking for such a bound is a bivariate

problem, thus Theorem 1.4 does not apply directly. It can be applied to prove the

following univariate theorem.

Theorem 1.8. Let M be a random unitary matrix, distributed according to Haar

measure, and let A be a fixed n×n matrix over C with Tr (AA∗) = n. Let W = Tr (AM)

and let Wθ be the inner product of W with the unit vector making angle θ with the real

axis. Then

dTV

(
Wθ,N

(
0,

1
2

))
≤ c

n

for a constant c which is independent of θ.

The bivariate approximation problem is treated in chapter 5, which has a multivariate

analog of Theorem 1.4.

Chapter 4 contains an abstraction of the results of chapter 3 to a much more general

setting than the classical matrix groups. The main result of the chapter is the following.

Theorem 1.9. Let M be a compact locally symmetric space without boundary and

f an eigenfunction for the Laplacian on M with eigenvalue λ 6= 0, normalized so that∫
M f2 = 1. Let X be a random (i.e., distributed according to normalized volume measure)

point of M . Then

dTV (f(X), Z) ≤ 1
|λ|

√
Var
(
‖∇f(X)‖2

)
,

where Z is a standard Gaussian random variable on R.

In this generality, the theorem is not a limit theorem but a relationship between the

distribution of eigenfunctions and how much their gradients vary. One could try to apply

Theorem 1.9 to obtain limit theorems in various contexts. One possibility is to consider

a sequence of manifolds with dimension tending to infinity, and bound the right-hand

side of the expression above by something tending to zero as the dimension tends to

infinity. An example of such an application is the following.
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Theorem 1.10. Let g(x) =
∑

i,j aijxixj , where A = (aij)n
i,j=1 is a symmetric matrix

with Tr (A) = 0. Let f = Cg, where C is chosen such that ‖f‖2 = 1 when f is considered

as a function on Sn−1. Let W = f(X), where X is a random point on Sn−1. If d is the

vector in Rn whose entries are the eigenvalues of A, then

dTV (W,Z) ≤
√

5
(
‖d‖4

‖d‖2

)2

,

where ‖d‖p = (
∑

i |di|p)1/p .

In certain natural examples, the bound on the right hand side above is of the order
1√
n
, a statement which is discussed in more detail in section 4.1.

Another direction one could try to go with Theorem 1.9 is to consider a fixed manifold

and investigate behavior of eigenfunctions as the eigenvalue tends to infinity. This is

closely connected with the field of quantum chaos; in particular, Hejhal and various

coauthors (see, e.g, [49]) have provided numerical evidence that on certain hyperbolic

surfaces, eigenfunctions with high eigenvalues are approximately normally distributed.

Chapter 5 deals with multivariate extensions of the results of chapters 2 and 3. The

following theorem of section 5.1 gives an abstract framework for approximation by a

multivariate Gaussian random variable in situations having continuous symmetries.

Theorem 1.11. Let X and Xε be two random vectors such that L(X) = L(Xε) with

the property that limε→0 Xε = X almost surely. Suppose there is a constant λ, functions

Eij = Eij(X), h and k with

lim
ε→0

1
ε2

h(ε) = lim
ε→0

1
ε2

k(ε) = 0,

and α(X) and β(X) with

E|α(X)|, E|β(X)| < ∞,

such that

(i) E
[
(Xε −X)i

∣∣X] = −λε2Xi + h(ε)α(X)

(ii) E [(Xε −X)i(Xε −X)j |X] = 2λε2δij + ε2Eij + k(ε)β(X)

(iii) E
[
|Xε −X|3

]
= o(ε2).
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Then

dL∗(X, Z) ≤ min

 1
2λ

∑
i,j

E|Eij |,
√

k

2λ
E

∑
i,j

E2
ij

1/2
 .

If furthermore Eij = EiFj +δijRi, then writing E for the vector with components Ei and

F for the vector with components Fj,

dL∗(X, Z) ≤ 1
λ
√

2π
E (‖E‖2‖F‖2) +

1
λ

k∑
i=1

E|Ri|.

Theorem 1.11 is not analogous to Theorem 1.4 in the strictest sense, since the bounds

given are for dual-Lipschitz distance rather than total variation distance. It seems to be

unavoidable using the techniques of section 5.1 that rates of convergence will be with

respect to a weaker notion of distance between measures than total variation distance.

The rest of chapter 5 contains applications of Theorem 1.11. The first example,

treated in section 5.2, is a multivariate analog of the example of section 2.1, showing

that rank k projections of spherically symmetric distributions on Rn are close to normal

for k = o(n). As this is an application of Theorem 1.11, ‘close’ refers here to the dual-

Lipschitz distance. This is closely related to the results of the paper [36] of Diaconis

and Freedman; discussion of the connections and some comparison of results are given

in section 5.2.

As alluded to above, chapter 5 contains an extension of Theorem 1.8 to the complex

setting; this is the topic of section 5.3. The result is the following.

Theorem 1.12. Let M ∈ Un be distributed according to Haar measure, and let A be

a fixed n×n matrix such that Tr (AA∗) = n. Let W = Tr (AM) and let Z be a standard

complex normal random variable. Then there is a constant c such that

dL∗(W,Z) ≤ c

n
.

Finally, section 5.4 gives a multivariate extension of the main result of section 3.1

by showing that for k = o(n2/3), rank k projections of Haar measure are close to
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k-dimensional Gaussian random vectors. This is a finer comparison between Haar-

distributed orthogonal matrices and Gaussian matrices, since for Gaussian matrices,

all projections to any lower dimensional spaces are Gaussian. A somewhat simplified

version of the main result of section 5.4 is the following.

Theorem 1.13. Let A1, . . . , Ak be n×n matrices over R satisfying Tr (AiA
t
j) = nδij ;

for i 6= j, Ai and Aj are orthogonal with respect to the Hilbert-Schmidt inner product.

Let M be a random orthogonal matrix, and consider the vector

W = (Tr (A1M),Tr (A2M), . . . ,Tr (AkM)) ∈ Rk.

Let Z = (Z1, . . . , Zk) be a random vector whose components are independent standard

normal random variables. Then for f : Rk → R bounded and Lipschitz,

dL∗(W,Z) ≤ 2k3/2

n− 1

for n ≥ 3.

In section 5.4, this result is extended by linear algebra to parameter matrices {Ai}

which need only be linearly independent.

1.3. Notation and conventions

The total variation distance dTV (µ, ν) between the measures µ and ν on R is defined

by

dTV (µ, ν) = sup
A

∣∣µ(A)− ν(A)|,

where the supremum is over measurable sets A. This is equivalent to

dTV (µ, ν) =
1
2

sup
f

∣∣∣∣∫ f(t)dµ(t)−
∫

f(t)dν(t)
∣∣∣∣ ,

where the supremum is taken over continuous functions which are bounded by 1 and

vanish at infinity; this is the definition most commonly used in what follows. The total

variation distance between two random variables X and Y is defined to be the total
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variation distance between their distributions:

dTV (X, Y ) = sup
A

∣∣P(X ∈ A)− P(Y ∈ A)
∣∣ = 1

2
sup

f

∣∣Ef(X)− Ef(Y )
∣∣.

The Lipschitz norm of a Lipschitz function g on Rn is defined by

‖g‖L = ‖g‖∞ + Mg,

where Mg is the Lipschitz constant of g. The dual-Lipschitz distance dL∗(X, Y ) between

the random variables X and Y is defined by

dL∗(X, Y ) = sup
‖g‖L≤1

∣∣Eg(X)− Eg(Y )
∣∣.

It is shown in [39] that the dual-Lipschitz distance metrizes the weak-star topology on

laws.

We will use N(µ, σ2) to denote the normal distribution on R with mean µ and variance

σ2; unless otherwise stated, the random variable Z is understood to be a standard

Gaussian random variable on the space in question.

The notation Ck(Ω) will be used for the space of k-times continuously differentiable

real-valued functions on Ω, and Ck
o (Ω) ⊆ Ck(Ω) are those Ck functions on Ω with

compact support.

On the space of real n×n matrices, the Hilbert-Schmidt inner product is defined by

〈A,B〉H.S. = Tr (ABt),

with corresponding norm

‖A‖H.S. =
√

Tr (AAt).

The operator norm of a matrix A is defined by

‖A‖op = sup
‖v‖=1,‖w‖=1

| 〈Av,w〉 |.

Finally, In denotes the n×n identity matrix, 0n the n×n matrix of all zeros, and A⊕B

the standard block direct sum of A and B.



CHAPTER 2

An abstract normal approximation theorem

In this section, the general framework for normal approximation to random variables

with continuous symmetries is developed; in particular, Theorem 2.1 below is one of the

basic results of this thesis. The theorem is an abstraction of an argument which first

appeared in Stein [80], where fast rates of convergence to Gaussian were obtained for

Tr (Mk), where k ∈ N is fixed and M is a random (Haar distributed) orthogonal matrix.

Theorem 2.1. Suppose that (W,Wε) is a family of exchangeable pairs defined on

a common probability space with EW = 0 and EW 2 = σ2. Suppose there is a random

variable E = E(W ), deterministic functions h and k with

lim
ε→0

h(ε) = lim
ε→0

k(ε) = 0

and functions α and β with

E|α(σ−1W )| < ∞, E|β(σ−1W )| < ∞,

such that

(i)
1
ε2

E
[
Wε −W

∣∣W ]
= −λW + h(ε)α(W ),

(ii)
1
ε2

E
[
(Wε −W )2

∣∣W ]
= 2λσ2 + Eσ2 + k(ε)β(W ),

(iii)
1
ε2

E |Wε −W |3 = o(1),

19
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where o(1) refers to the limit as ε → 0 with implied constants depending on the distribu-

tion of W . Then

dTV (W,Z) ≤ 1
λ

E |E| ,

where Z ∼ N(0, σ2).

Remark: The factor of 1
ε2

in each of the three expressions above could be replaced by

a general function f(ε). In practice, Wε is typically constructed such that Wε−W = O(ε).

This makes it clear that f(ε) = 1
ε2

is the suitable choice for condition (ii). It is less clear

that f(ε) = 1
ε2

is the suitable choice for condition (i). In the applications given here,

while Wε −W = O(ε), symmetry conditions imply that

E
[
Wε −W

∣∣W ]
= O(ε2).

Proof. First note that by replacing W by σ−1W and Wε by σ−1Wε, it suffices to

consider the case σ = 1. To prove the theorem, it is enough to show that

∣∣f(W )− f(Z)
∣∣ ≤ 2

λ
E|E|

for all smooth, compactly supported f with ‖f‖∞ ≤ 1, since such f are dense in the

class of continuous functions vanishing at infinity and bounded by 1, with respect to

the supremum norm. Fix an f : R → R in this class and let g be the solution given in

equation 1.2 to the differential equation

g′(x)− xg(x) = f(x)− Ef(Z).

Fix ε. By the exchangeability of (W,Wε),

0 = E [(Wε −W )(g(Wε) + g(W ))]

= E [(Wε −W )(g(Wε)− g(W )) + 2(Wε −W )g(W )]

= E
[
E
[
(Wε −W )2

∣∣W ]
g′(W ) + 2E

[
(Wε −W )

∣∣W ]
g(W ) + R

]
,

(2.1)

where

(2.2) R = (Wε −W )
[
g(Wε)− g(W )− (Wε −W )g′(W )

]
.
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By Taylor’s theorem,

g(Wε) = g(W ) + (Wε −W )g′(W ) +
1
2
(Wε −W )2g′′(c),

where c is a point between W and Wε. Thus

(2.3) g(Wε)− g(W )− (Wε −W )g′(W ) =
1
2
(Wε −W )2g′′(c).

Combining (2.2) and (2.3) with Lemma 1.3 (iii), it follows that

|R| ≤ ‖g′′‖∞
2

|Wε −W |3 ≤ ‖f ′‖∞|Wε −W |3,

and by the assumption on |Wε −W |3

(2.4) lim
ε→0

1
ε2

E|R| ≤ ‖f ′‖∞ lim
ε→0

1
ε2

E|Wε −W |3 = 0.

Inserting the assumptions of conditions (i) and (ii) of the statement of the theorem into

(2.1) and dividing both sides by 2λε2 gives:

0 = E
[
g′(W )

(
1 +

E

2λ
+

k(ε)
ε2

β(W )
)
− g(W )

(
W − h(ε)

ε2
α(W )

)
+

R

2λε2

]
= E

[
g′(W )−Wg(W ) + g′(W )

(
E

2λ
+

k(ε)
ε2

β(W )
)

+ g(W )
(

h(ε)
ε2

α(W )
)

+
R

2λε2

]
= E

[
f(W )− f(Z) + g′(W )

(
E

2λ
+

k(ε)
ε2

β(W )
)

+ g(W )
(

h(ε)
ε2

α(W )
)

+
R

2λε2

]
.

Taking the limit of both sides as ε → 0 yields

0 = E
[
f(W )− f(Z)

]
+ E

[
g′(W )

E

2λ

]
+ lim

ε→0

k(ε)
ε2

E
[
g′(W )β(W )

]
+ lim

ε→0

h(ε)
ε2

E
[
g(W )α(W )

]
+ lim

ε→0

1
2λε2

ER

(2.5)

We have already seen that

lim
ε→0

1
2λε2

ER = 0.

Next, ∣∣Eg′(W )β(W )
∣∣ ≤ ‖g′‖∞E|β(W )| < ∞,
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so

lim
ε→0

k(ε)
ε2

E
[
g′(W )β(W )

]
= 0

by the assumtption on k. Similarly,

∣∣Eg(W )α(W )
∣∣ ≤ ‖g‖∞E|α(W )| < ∞,

so

lim
ε→0

h(ε)
ε2

E
[
g(W )α(W )

]
.

It thus follows from (2.5) that

∣∣E[f(W )− f(Z)
]∣∣ = 1

2λ

∣∣E(g′(W )E
)∣∣.

Applying the bound on ‖g′‖∞ from Lemma 1.3 to this last equation completes the proof.

�

2.1. Spherically symmetric distributions on Rn

This section contains a first example of an application of Theorem 2.1.

Theorem 2.2. Let X be a random vector with E|X|3 < ∞, and suppose that X has

a spherically symmetric distribution. Assume that EXiXj = δij. For θ ∈ Sn−1, define

Wθ = 〈X, θ〉 . Then for Z ∼ N(0, 1),

dTV

(
Wθ, Z

)
≤ 2E

∣∣1− E[X2
2 |X1]

∣∣
≤ 2

n− 1

√
Var

(
‖X‖2

2

)
+

4
n− 1

.

Note that EXi = 0 for all i and EXiXj = cδij , where c is independent of i and j, by

spherical symmetry. The condition EXiXj = δij is thus only a scaling of X.

This result is closely connected with the following result from [36].

Theorem 2.3 (Diaconis-Freedman). Let Z be a standard Gaussian random variable

and let Pσ be the law of σZ. For a probability µ on [0,∞), define Pµ by

Pµ =
∫

Pσdµ(σ).
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Let X ∈ Rn be an orthogonally invariant random vector, and let P be the law of X1.

Then there is a probability µ on [0,∞) such that

dTV (P, Pµ) ≤ 4
n− 4

.

Theorem 2.3 says that the first component of an orthogonally invariant random vector

is close to a mixture of Gaussian random variables. Theorem 2.2 above gives a sufficient

condition for when the mixing measure µ can be taken to be a point mass.

We next give some comparison between the two bounds of Theorem 2.2. The first line

is sharp enough to reprove the following theorem, the two-dimensional version of which

is the classical Herschel-Maxwell theorem (see page 1 of [19] for the Herschel-Maxwell

theorem and pointers to various related results throughout that book).

Corollary 2.4. Let X be a random vector with E|X|3 < ∞ whose distribution is

spherically symmetric. Assume that EX2
i = 1 for all 1 ≤ i ≤ n. If Xi and Xj are

independent for i 6= j, then X is distributed as a standard Gaussian random vector.

Proof. If the components of X are independent, then

1− E
[
X2

2

∣∣X1

]
= 0;

the result now follows immediately from the first line of the conclusion of Theorem

2.2. �

The proof of Corollary 2.4 shows that the first bound of Theorem 2.2 is sometimes

significantly better than the second. However, the following example shows that there

may be little loss in using the second line, which is likely to be much easier to compute.

Let X be a uniform random point on
√

nSn−1. Then the second statement of the theorem

says that

dTV (Wθ, Z) ≤ 4
n− 1

.
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Making use of the first line instead yields the following.

1− E
[
X2

2

∣∣X1

]
= 1− 1

n− 1
E

[
n∑

i=2

X2
i

∣∣∣∣∣X1

]

= 1− 1
n− 1

[
n−X2

1

]
=

1
n− 1

(
X2

1 − 1
)
.

Thus

E
∣∣1− E

[
X2

2

∣∣X1

]∣∣ = 1
n− 1

E
∣∣X2

1 − 1
∣∣

≤ 1
n− 1

√
E
[
X4

1 − 2X2
1 + 1

]
.

(2.6)

By the formula from Theorem 1.6, EX4
1 = 3n

n+2 ; combining this with (2.6) and Theorem

2.2 gives

dTV (Wθ, Z) ≤ 2
√

2
n− 1

.

Thus in this example, using the first bound instead of the second resulted only in a minor

improvement in the constant.

Proof of Theorem 2.2. By the spherical symmetry of the distribution of X, it

suffices to prove the theorem in the case θ = e1, so W = X1. Note that the normalization

is such that EW 2 = 1, thus σ = 1.

To apply Theorem 2.1, construct a family of random variables {Wε}, for ε ∈ (0, 1
2)

as follows. Let Aε be the n× n orthogonal matrix

Aε =

√1− ε2 ε

−ε
√

1− ε2

⊕ In−2

and let U be a random n × n orthogonal matrix, chosen independently of X according

to Haar measure; UT AεU is a rotation in a random two-dimensional subspace through

an angle sin−1(ε). Define

Wε =
〈
(UT AεU)X, e1

〉
.

By the rotational invariance of X, (W,Wε) is an exchangeable pair for each ε.
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The conditions of Theorem 2.1 are satisfied as follows. (All assertions are proved

below.)

E[Wε −W |W ] = −
(
1 + O(ε2)

)ε2
n

W,(2.7)

E[(Wε −W )2|W ] =
(
1 + O(ε)

)2ε2

n
E[X2

2 |W ] + O(ε3),(2.8)

E|Wε −W |3 = O(ε3).(2.9)

Here and throughout this proof the O notation refers to asymptotic behavior as ε → 0,

with deterministic implied constants (that may depend on n, f , and the distribution of

X).

The first statement says in particular that λ = 1
n . It follows immediately from the

second statement that

E =
2
n

E
[
X2

2 − 1
∣∣W ]

.

This proves the first bound in the theorem.

For the second bound, observe that by spherical symmetry,

E
[
X2

2

∣∣X1

]
=

1
n− 1

(
E
[
‖X‖2

2

∣∣X1

]
−X2

1

)
,

and therefore

E
∣∣1− E[X2

2 |X1]
∣∣ ≤ 1

n− 1

(
E
∣∣n− E

[
‖X‖2

2

∣∣X1

]∣∣+ E
∣∣X2

1 − 1
∣∣)

≤ 1
n− 1

√
Var

(
‖X‖2

2

)
+

2
n− 1

by the Cauchy-Schwarz inequality and the normalization EX2
1 = 1.

It remains to show (2.7), (2.8) and (2.9). To prove (2.7), first observe that

Aε = In +
[
εC2 −

(
1 + O(ε2)

)ε2
2

I2

]
⊕ 0n−2,

where 0n−2 denotes the (n− 2)× (n− 2) zero matrix and

C2 =

 0 1

−1 0

 .
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Denote by K the 2× n matrix consisting of the first two rows of the random orthogonal

matrix U . Then

(UT AεU)X = X + KT

[
εC2 −

(
1 + O(ε2)

)ε2
2

I2

]
KX,

and so

(2.10) W −Wε = −ε
〈
(KT C2K)X, e1

〉
+
(
1 + O(ε2)

)ε2
2
〈
(KT K)X, e1

〉
.

Now if uij denotes the entries of U , then by expanding in components,

E
[〈

(KT C2K)X, e1

〉∣∣X] =
n∑

i=2

XiE(u11u2i − u21u1i)

and

E
[〈

(KT K)X, e1

〉∣∣X] =
n∑

i=1

XiE(u11u1i + u21u2i).

Computing these expectations is not difficult because the distribution of U is unchanged

by multiplying any row or column by −1, and any row or column of U is distributed

uniformly on Sn−1. Therefore

(2.11) Euijukl = δikδjl
1
n

,

and so

E
[〈

(KT C2K)X, e1

〉∣∣X] = 0

and

E
[〈

(KT K)X, e1

〉∣∣X] =
2
n

W.

Putting these together proves (2.7).

The proofs of (2.8) and (2.9) follow similarly from (2.10). For (2.8),

E
[
(Wε −W )2

∣∣X] = ε2E
[〈

(KT C2K)X, e1

〉2 ∣∣X]+ O(ε3)

= ε2E

 n∑
i,j=2

XiXj(u2
11u2iu2j − u11u21u2iu1j − u21u1iu11u2j + u2

21u1iu1j)
∣∣X


=
2

n(n− 1)

n∑
i=2

X2
i ,
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where the expectations are evaluating using the formulae in section 3.1. Equation 2.8

now follows by noting that since X is spherically symmetric, E
[
X2

i

∣∣X1

]
= E

[
X2

2

∣∣X1

]
for each i 6= 1.

Finally, (2.9) follows immediately from (2.10) and the fact that E|X|3 < ∞.

�
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CHAPTER 3

Linear functions on the classical matrix groups

Let On denote the group of n × n orthogonal matrices, and let M be distributed

according to Haar measure on On. Let A be a fixed n × n matrix over R, subject to

the condition that Tr (AAt) = n, and let W = Tr (AM). D’Aristotile, Diaconis, and

Newman showed in [29] that

sup
Tr (AAt)=n
−∞<x<∞

|P(W ≤ x)− Φ(x)| → 0

as n → ∞. Their argument uses classical methods involving sub-subsequences and

tightness, and cannot be improved to yield a theorem for finite n. Theorem 3.1 below is

an application of Theorem 2.1 which gives an explicit rate of convergence of the law of

W to standard normal in the total variation metric on probability measures, specifically,

(3.1) d(LW ,N(0, 1))TV ≤ 2
√

3
n− 1

for all n ≥ 2.

The history of this problem begins with the following theorem, first given rigorous

proof by Borel in [17]: let X be a random vector on the unit sphere Sn−1, and let

X1 be the first coordinate of X. Then P
(√

nX1 ≤ t
)
−→ Φ(t) as n → ∞, where

Φ(t) = 1√
2π

∫ t
−∞ e−

x2

2 dx. Since the first column of a Haar-distributed orthogonal matrix

is uniformly distributed on the unit sphere, Borel’s theorem follows from Theorem 3.1

by taking A =
√

n ⊕ 0. Borel’s theorem was generalized in one direction by Diaconis

and Freedman [36], who proved the convergence of the first k coordinates of
√

nX to

independent standard normals in total variation distance for k = o(n); [36] also contains

a detailed history of this problem. This line of research was further developed in [34],

where a total variation bound was given between an r× r block of a random orthogonal

matrix and an r × r matrix of independent standard normals, for r = O
(
n1/3

)
. This

29
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was later improved by Jiang (see [55]) to r = O
(
n1/2

)
, which he proved was sharp. In

the same paper, Jiang also showed that given a sequence of Haar distributed random

matrices {Mn}, there is a sequence of Gaussian matrices {Yn} with Yj defined on the

same probability space as Mj such that if

εn = max
1≤i≤n

1≤j≤mn

∣∣√nMij − Yij

∣∣
with mn ≤ n

log2 n
, then εn → 0 in probability as n → ∞. Thus an n × n

log2 n
block of

a Haar distributed matrix can be approximated by a Gaussian matrix ‘in probability’.

Theorem 3.1 gives another sense in which a random orthogonal matrix is close to a

matrix of independent Gaussians by giving a uniform bound of distance to normal over

all linear combinations of entries of M .

Another special case of theorem 3.1 is A = I, so that W = Tr (M). Diaconis

and Mallows (see [31]) first proved that Tr (M) is approximately normal; Stein [80]

and Johansson [56] later independently obtained fast rates of convergence to normal

of Tr (Mk) for fixed k, with Johansson’s rates an improvement on Stein’s. In studying

eigenvalues of random orthogonal matrices, Diaconis and Shahshahani [38] extended this

to show that the joint limiting distribution of Tr (M),Tr (M2), . . . ,Tr (Mk) converges to

that of independent normal variables as n →∞, for k fixed.

The other source of motivation for theorems like Theorem 3.1 is Hoeffding’s com-

binatorial central limit theorem [51], which can be stated as follows. Let A = (aij) be

a fixed n × n matrix over R, normalized to have row and column sums equal to zero

and 1
n−1

∑
i,j a2

ij = 1. Let π be a random permutation in Sn, and let W (π) =
∑

i aiπ(i).

Then under certain conditions on A, W is approximately normal. Later, Bolthausen

[16] proved an explicit rate of convergence via Stein’s method, which was extended by

Schneller [75] to give Edgeworth corrections. Bolthausen’s work was extended in another

direction by Bloznelis and Götze (see [15], e.g), who considered the case of vector-valued

aiπ(i). Zhao, Bai, Chao, and Liang [84] also used an approach similar to Bolthausen’s in
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considering statistics of the form

∑
1≤i,j≤n

ζ(i, j, π(i), π(j)),

with applications to limits of Spearman’s rho and Kendall’s tau. Note that if

Mij =


1 π(j) = i

0 otherwise

then W = Tr (AM), and so Hoeffding’s theorem is really a theorem about the distribution

of linear functions on the set of permutation matrices.

The unitary group is another source of many important applications; see, e.g. [32].

In section 3.2, the random variable Tr (AM) for A a fixed matrix over C and M a random

unitary matrix distributed according to Haar measure on Un is considered. The main

theorem of the section, Theorem 3.4 gives a bound on the total variation distance of

Re
[
Tr (AM)

]
to standard normal analogous to that of Theorem 3.1; this can be viewed

as theorem about real-linear functions on Un. Corollary 3.6 shows that in the limit, the

complex random variable Tr (AM) is close to standard complex normal.

A more natural approach might be to consider the distance between Tr (AM) to

standard complex normal directly. However, as this is a multivariate problem, Theorem

2.1 cannot be applied. Chapter 5 contains a multivariate version of Theorem 2.1, and

section 5.3 applies this theorem to the complex random variable Tr (AM).

3.1. The Orthogonal Group

This section is mainly devoted to the proof of the following theorem.

Theorem 3.1. Let A be a fixed n×n matrix over R such that Tr (AAt) = n, M ∈ On

distributed according to Haar measure, and W = Tr (AM). Let Z be a standard normal

random variable. Then for n > 1,

(3.2) dTV (W,Z) ≤ 2
√

3
n− 1

.
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The bound in theorem 3.1 is sharp up to the constant; consider the matrix A =
√

n⊕0

where 0 is the n− 1× n− 1 matrix with all zeros. For this A, Theorem 3.1 reproves the

following theorem, proved in [36] with slightly worse constant

Theorem 3.2. Let x ∈
√

nSn−1 be uniformly distributed, and let Z be a standard

normal random variable. Then

dTV (x1, Z) ≤ 2
√

3
n− 1

.

It is argued in [36], remark (2.12), that the order of this error term is correct.

Before beginning the proof of Theorem 3.1, we give the following lemma which will

be used frequently both in this section and in chapter 5.

Lemma 3.3. Let H ∈ On be distributed according to Haar measure. Then E
[
hijhklhmnhpq

]
is only non-zero if there are an even number of entries from each row and each column.

Fourth-order mixed moments are as follows.

(i) E
[
h2

11h
2
12

]
=

1
n(n + 2)

,

(ii) E
[
h2

11h
2
22

]
=

n + 1
(n− 1)n(n + 2)

,

(iii) E [h11h12h21h22] =
−1

(n− 1)n(n + 2)
, and

(iv) E
[
(hi1hi′2 − hi2hi′1)(hj1hj′2 − hj2hj′1)

]
=

2
n(n− 1)

[
δijδi′j′ − δij′δi′j

]
, where

i 6= i′ and j 6= j′.

Proof. Recall that the first row of H is distributed uniformly on the unit sphere of

Rn. Part (i) thus follows from Theorem 1.6, after renormalizing to go from the sphere

of radius
√

n to the sphere of radius one.

Part (ii) is straightforward using the symmetries of Haar measure and the first equa-

tion:

E
[
h2

11h
2
22

]
=

1
n− 1

E

[
h2

11

(∑
k>1

h2
k2

)]

=
1

n− 1
E
[
h2

11(1− h2
12)
]

=
1

n− 1

[
1
n
− 1

n(n + 2)

]
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=
n + 1

(n− 1)n(n + 2)
.

For part (iii),

E [h11h12h21h22] =
1

n(n− 1)
E

∑
i

j 6=i

hi1hi2hj1jj2


=

1
n(n− 1)

E

(∑
i

hi1hi2

)2

−
∑

i

h2
i1h

2
i2


=

1
n(n− 1)

E [(hi1) · (hi2)]−
1

n− 1
E
[
h2

11h
2
12

]
=

−1
(n− 1)n(n + 2)

,

where the orthogonality of the columns of H has been used to get the last line.

Finally, part (iv) follows from parts (ii) and (iii):

E
[
(hi1hi′2 − hi2hi′1)(hj1hj′2 − hj2hj′1)

]
= E

[
hi1hi′2hj1hj′2 + hi2hi′1hj2hj′1 − hi2hi′1hj1hj′2 − hi1hi′2hj2hj′1

]
= 2

[
δijδi′j′

(
n + 1

(n− 1)n(n + 2)

)
− δij′δi′j

(
1

(n− 1)n(n + 2)

)]
− 2

[
δij′δi′j

(
n + 1

(n− 1)n(n + 2)

)
− δijδi′j′

(
1

(n− 1)n(n + 2)

)]
=

2
(n− 1)n(n + 2)

[
(n + 2)δijδi′j′ − (n + 2)δij′δi′j

]
=

2
n(n− 1)

[
δijδi′j′ − δij′δi′j

]
.

�

Proof of theorem 3.1. First note that one can assume without loss of generality

that A is diagonal: let A = UDV be the singular value decomposition of A. Then

W = Tr (UDV M) = Tr (DV MU), and the distribution of V MU is the same as the

distribution of M by the translation invariance of Haar measure.
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Now define the pair (W,Wε) for each ε as follows. Choose H = (hij) ∈ O(n) according

to Haar measure, independent of M , and let Mε = HAεH
tM , where

Aε =



√
1− ε2 ε

−ε
√

1− ε2 0

1

0
. . .

1


,

thus Mε can be thought of as a small random rotation of M . Let Wε = W (Mε); (W,Wε)

is an exchangeable pair by construction.

As in the example of chapter 2, Mε can be written as a perturbation of M : let I2

be the 2× 2 identity matrix, K the n× 2 matrix made from the first two columns of H,

and let

C2 =

 0 1

−1 0

 .

Then

Mε = M + K
[
(
√

1− ε2 − 1)I2 + εC2

]
KtM.

By Taylor’s theorem,
√

1− ε2 = 1− ε2

2 + O(ε4), thus

Mε = M + K

[(
−ε2

2
+ O(ε4)

)
I2 + εC2

]
KtM.

This yields

Wε −W = Tr
((

−ε2

2
+ O(ε4)

)
AKKtM + εAKC2K

tM

)
= ε

[(
− ε

2
+ O(ε3)

)
Tr (AKKtM) + Tr (AKC2K

tM)
]
.(3.3)

It is necessary to expand KKt and KC2K
t in components to compute the necessary

expectations. If uij denotes the i-jth entry of U , then

(KKt)ij = ui1uj1 + ui2uj2

(KC2K
t)ij = ui1uj2 − ui2uj1.
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Recall equation (2.11):

Euijuk` =
1
n

δikδj`.

It follows that

E
[
KKt

]
=

2
n

In

E
[
KC2K

t
]

= 0n.

(3.4)

Combining these equations with (3.3) yields

n

ε2
E
[
(Wε −W )

∣∣W ]
= −n

2
E
[
E
[
Tr (AKKtM)

∣∣M] ∣∣W ]
+

n

ε
E
[
E
[
Tr (AKC2K

tM)
∣∣M] ∣∣W ]

+ O(ε)

= −n

2
E
[
Tr
(

A

(
2
n

In

)
M

)∣∣∣∣W]
+

n

ε
E
[
Tr
(
A
(
0n

)
M
) ∣∣W ]

+ O(ε)

= −E
[
E
[
Tr (AM)

∣∣M] ∣∣W ]
+ O(ε)

= −W + O(ε),

where the independence of M and H has been used to get the second line. In this

computation and in what follows, the implied constants in the O(ε) may depend on A

and n. It now follows that

(3.5) lim
ε→0

n

ε2
E
[
(Wε −W )

∣∣W ]
= −W,

so the first condition of Theorem 2.1 is satisfied with λ = 1
n .

We next determine the quantity E from the second condition of Theorem 2.1. Recall

that A is assumed to be diagonal. By 3.3,

E
[
(Wε −W )2

∣∣W ]
= ε2E

[
(Tr (AKC2K

tM))2
∣∣W ]

+ 2
(
−ε3

2
+ O(ε5)

)
E
[
Tr (AKKtM) Tr (AKC2K

2M)
∣∣W ]

+
(
−ε2

2
+ O(ε4)

)2

E
[(

Tr (AKKtM)
)2 ∣∣W]

.

Only the first term has quadratic factors of ε; the other two terms are of higher order in

ε. This observation means that in the following expression, the other two terms can and
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have been absorbed into the O(ε).

n

2ε2
E
[
(Wε −W )2

∣∣W ]
=

n

2
E
[
E
[
(Tr (AKC2K

tM))2
∣∣M] ∣∣W ]

+ O(ε)

=
n

2
E

E

∑
i,i′

(AKC2K
t)ii′mi′i

∑
j,j′

(AKC2K
t)jj′mj′j

∣∣∣M
 ∣∣∣W

+ O(ε)

=
n

2
E

 ∑
i,i′,j,j′

mi′imj′jE
[
(AKC2K

t)ii′(AKC2K
t)jj′

∣∣∣M] ∣∣∣W
+ O(ε)

=
n

2
E

∑
i,j

∑
i′ 6=i
j′ 6=j

mi′imj′jaiiajjE
[
(hi1hi′2 − hi2hi′1)(hj1hj′2 − hj2hj′1)

∣∣M]∣∣∣∣∣∣∣∣W
+ O(ε),

(3.6)

where the conditions on i′ and j′ are justified as the expression inside the expectation is

identically 0 when either i = i′ or j = j′.

Recall that M and H are independent, thus the expectation above can be evaluated

using Lemma 3.3 (iv). This yields

n

2ε2
E
[
(Wε −W )2

∣∣W ]
=

1
n− 1

∑
i,j

∑
i′ 6=i
j′ 6=j

mi′imj′jaiiajj

[
δi′j′δij − δij′δji′

]
+ O(ε)

=
1

n− 1

∑
i,i′ 6=i

m2
i′ia

2
ii −

∑
i,i′ 6=i

mi′imii′aiiai′i′

+ O(ε)

=
1

n− 1

∑
i

a2
ii

[
(M tM)ii −m2

ii

]
−
∑
i,i′ 6=i

(MA)ii′(MA)i′i

+ O(ε)

=
1

n− 1

[
n−

∑
i

a2
iim

2
ii −

[
Tr ((MA)2)−

∑
i

a2
iim

2
ii

]]
+ O(ε)

= 1 +
1

n− 1
[
1− Tr ((AM)2)

]
+ O(ε),

where the normalization
∑

i a
2
ii = n has been used to get the fourth line. Thus

(3.7) lim
ε→0

1
ε2

E
[
(Wε −W )2

∣∣W ]
=

2
n

+
2

n(n− 1)
[
1− Tr ((AM)2)

]
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and so the error E of Theorem 2.1 has the form

(3.8) E =
2

n(n− 1)
[
1− Tr ((AM)2)

]
.

Finally, (3.3) gives immediately that

E
[
|Wε −W |3

∣∣W ]
= O(ε3).

It remains to bound nE|E|. First,

E
[
Tr ((AM)2)

]
= E

∑
i,j

aiiajjmijmji


=

1
n

∑
i

a2
ii

= 1.(3.9)

The following computation makes use of the formulae of Lemma 3.3 and the normaliza-

tion condition on A. Let
∑′

stand for summing over distinct indices.

E
[
(Tr ((AM)2))2

]
= E

∑
i,j

aiiajjmijmji

∑
k,l

akkallmklmlk


=
∑
i,j,k,l

aiiajjakkall

[
n + 1

(n− 1)n(n + 2)
[
δijδkl

(
1− δik

)
+ δikδjl

(
1− δij

)
+

δilδjk

(
1− δij

)]
+

3
n(n + 2)

I(i = j = k = l)
]

=
n + 1

n(n− 1)(n + 2)

∑′

i,k

a2
iia

2
kk +

∑′

i,j

a2
iia

2
jj +

∑′

i,j

a2
iia

2
jj

+
3

n(n + 2)

∑
i

a4
ii

Now,

∑′

i,j

a2
iia

2
jj =

∑
i

a2
ii(n− a2

ii) = n2 −
∑

i

a4
ii.
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Applying this above gives

E
[
(Tr ((AM)2))2

]
=

3(n + 1)
(n− 1)n(n + 2)

(
n2 −

∑
i

a4
ii

)
+

3
n(n + 2)

∑
i

a4
ii

=
3(n + 1)n2

(n− 1)n(n + 2)
− 3(n + 1)

(n− 1)n(n + 2)

∑
i

a4
ii +

3
n(n + 2)

∑
i

a4
ii

= 3 +
6

(n− 1)(n + 2)
−
(

6
(n− 1)n(n + 2)

)∑
i

a4
ii

≤ 3 +
6

(n− 1)(n + 2)
.

Putting this estimate into Theorem 2.1 gives:

(3.10) dTV (W,Z) ≤
2
√

2 + 6
(n−1)(n+2)

(n− 1)
.

Noting that 6
(n−1)(n+2) ≤ 1 for n ≥ 3 and that the bound in theorem 3.1 is trivially true

for n = 2 completes the proof. �

3.2. The Unitary Group

Now let M ∈ Un be distributed according to Haar measure, A be an n × n matrix

over C, and W = Tr (AM). In [29] it was shown that if M = Γ + iΛ and A and B are

fixed real diagonal matrices with Tr (AAt) = Tr (BBt) = n, then Tr (AΓ) + iTr (BΛ)

converges in distribution to standard complex normal. This implies in particular that

Re(W ) converges in distribution to N
(
0, 1

2

)
. The main theorem of this section gives a

rate of this convergence in total variation distance. As the convergence of the complex

random variable Tr (AM) to a standard complex Gaussian random variable is a bivariate

problem, it will be treated in chapter 5.

Theorem 3.4. With M , A, and W as above, let Wθ be the inner product of W with

the unit vector making angle θ with the real axis. Then

(3.11) dTV

(
Wθ,N

(
0,

1
2

))
≤ c

n

for a constant c which is independent of θ.

The constant c is asymptotically equal to
√

2; for n ≥ 8 it can be taken to be 2.
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Before beginning the proof, we give the following complex analog of Lemma 3.3 for

use here and in chapter 5.

Lemma 3.5. Let H ∈ Un be distributed according to Haar measure. Then the expected

value of a product of entries of H and their conjugates is non-zero only when there are

the same number of entries as conjugates of entries from each row and from each column.

The following are formulae for some non-zero expectations.

(i) E
[
|hij |2

]
=

1
n

,

(ii) E
[
|hij |4

]
=

2
n(n + 1)

,

(iii) E
[
|hij |2|hik|2

]
=

1
n(n + 1)

for j 6= k,

(iv) E
[
|hij |2|hk`|2

]
=

1
(n− 1)(n + 1)

for i 6= k and j 6= `,

(v) E
[
hijhikh`jh`k

]
= − 1

(n− 1)n(n + 1)
,

(vi)

E
[
(hi1hj2 − hi2hj1)(hk1h`2 − hk2h`1)

]
= −

2δi`δjk(1− δij)
(n− 1)(n + 1)

+
2δijδk`(1− δik)
(n− 1)n(n + 1)

− 2I(i = j = k = `)
n(n + 1)

,

and

(vii)

E
[
(hi1hj2 − hi2hj1)(hk1h`2 − hk2h`1)

]
=

2δikδj`(1− δij)
(n− 1)(n + 1)

− 2δijδk`(1− δik)
n(n− 1)(n + 1)

+
2I(i = j = k = `)

n(n + 1)
.

Proof. The requirement that the same number of entries as conjugates of entries

from each row and column be present is a simple consequence of the invariance properties

of Haar measure; any row or column is invariant under multiplication by a complex

number of unit modulus.

(i) Since
∑

k |hik|2 = 1, this part is immediate by the invariance of Haar measure

under permuting the columns of H.

(ii) This is proved in detail in section 4.2, page 139 of [50].
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(iii) It suffices to assume that j = 1 and k = 2. By symmetry,

E
[
|hi1|2|hi2|2

]
=

1
n− 1

∑
j 6=1

E
[
|hi1|2|hij |2

]
=

1
n− 1

E
[
|hi1|2

(
1− |hi1|2

)]
=

1
n− 1

E
[
|hi1|2 − |hi1|4

]
=

1
n(n + 1)

.

(iv) This part is the same as the previous part:

E
[
|hi1|2|hj2|2

]
=

1
n− 1

∑
k 6=i

E
[
|hi1|2|hk2|2

]
=

1
n− 1

E
[
|hi1|2

(
1− |hi2|2

)]
=

1
(n− 1)(n + 1)

.

(v) This part makes use of the complex-orthogonality of the columns of H as well

as the invariance under permutations of the rows. It is no loss to assume that

i = j = 1 and k = ` = 2. We have

E
[
h11h12h21h22

]
=

1
n− 1

∑
k 6=1

E
[
h11h12hk1hk2

]
=

1
n− 1

E
[〈

(hk1) ,
(
hk2

)〉
− |h11|2|h12|2

]
= − 1

n− 1
E
[
|h11|2|h12|2

]
= − 1

(n− 1)n(n + 2)
.

(vi) This part is just putting together the previous parts. Multiplying out the

product gives

E
[
(hi1hj2−hi2hj1)(hk1h`2 − hk2h`1)

]
= E

[
hi1hk1hj2h`2 + hi2hk2hj1h`1 − hi2hk1hj1h`2 − hi1hk2hj2h`1

]
.
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The first two terms integrate to zero, since H is invariant under multiplying

the first column by
√
−1. Thus

E
[
(hi1hj2 − hi2hj1)(hk1h`2 − hk2h`1)

]
= E

[
− hi2hk1hj1h`2 − hi1hk2hj2h`1

]
.

Each of these terms integrates to something non-zero if and only if either i = `

and j = k or i = j and k = `. The second term is the obtained from the

first by switching the indices 1 and 2, thus they integrate to the same thing by

spherical symmetry. It follows that

E
[
(hi1hj2 − hi2hj1)(hk1h`2 − hk2h`1)

]
= −2E

[
δi`δjk(1− δij)|hi2|2|hj1|2 + δijδk`(1− δik)hi2hk1hi1hk2

+ I(i = j = k = `)|hi1|2|hi2|2
]
.

Part (vi) now follows from parts (iii), (iv) and (v).

(vii) This part is just like the last part. First,

E
[
(hi1hj2 − hi2hj1)(hk1h`2 − hk2h`1)

]
= E

[
hi1h`2hj2hk1 + hi2h`1hj1hk2 − hi1h`1hj2hk2 − hi2h`2hj1hk1

]
.

Here, the last two terms integrate to zero by symmetry. Thus

E
[
(hi1hj2 − hi2hj1)(hk1h`2 − hk2h`1)

]
= E

[
hi1h`2hj2hk1 + hi2h`1hj1hk2

]
.

Again, the two integrals are the same by switching the indices 1 and 2, and

each is non-zero if and only if i = k and j = ` or i = j and k = `. It follows

that

E
[
(hi1hj2 − hi2hj1)(hk1h`2 − hk2h`1)

]
= 2E

[
δikδj`(1− δij)|hi1|2|hj2|2 + δijδk`(1− δik)hi1hk2hi2hk1

+ I(i = j = k = `)|hi1|2|hi2|2
]
;

the formula of part (vii) follows from parts (iv), (v) and (ii).

�
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Proof of Theorem 3.4. To prove the theorem, first note that it suffices to con-

sider the case θ = 0, that is, to prove that

dTV

(
Re(W ),N

(
0,

1
2

))
≤ c

n
;

the theorem then follows as stated since the distribution of W is invariant under multi-

plication by any complex number of unit modulus. By the singular value decomposition

(see, e.g., [14], page 6), there is an n × n diagonal matrix S with non-negative entries

such that A = USV for two unitary matrices U and V . Then Tr (AM) = Tr (USV M) =

Tr (SV MU) and V MU has the same distribution as M by the translation invariance of

Haar measure. It follows that A can be assumed to be diagonal with non-negative real

entries.

The proof is almost identical to the orthogonal case. Let H ∈ Un be a random

unitary matrix, independent of M , and let Mε = HAεH
∗M , where

Aε =



√
1− ε2 ε

−ε
√

1− ε2 0

1

0
. . .

1


.

Let Wε = W (Mε).

Let I2 be the 2 × 2 identity matrix, K the n × 2 matrix made from the first two

columns of H, and let

C2 =

 0 1

−1 0

 .

Then

Wε −W = Tr
((

−ε2

2
+ O(ε4)

)
AKK∗M + εAKC2K

∗M

)
= ε

[(
− ε

2
+ O(ε3)

)
Tr (AKK∗M) + Tr (AKC2K

∗M)
]
.(3.12)
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Let W r = Re(W ) and W r
ε = Re(Wε). To verify the conditions of Theorem 2.1, first

observe that by expanding in components and applying Lemma 3.5,

KK∗
ij = hi1hj1 + hi2hj2

E
[
KK∗

ij

]
=

2
n

δij(3.13)

KC2K
∗
ij = hi1hj2 − hi2hj1

E
[
KC2K

∗
ij

]
= 0.(3.14)

Line (3.14) implies that

E [Tr (AKC2K
∗M)|M ] = 0,

since M and H are independent. It follows by (3.12) that

(3.15) lim
ε→0

n

ε2
E
[
W r

ε −W r
∣∣W ]

= −W r;

condition (1) of Theorem 2.1 is satisfied with λ = 1
n . Also by (3.12),

lim
ε→0

1
ε2

E[(W r
ε −W r)2

∣∣W ] = lim
ε→0

E
[
(Re(Tr (AKC2K

∗M)))2
∣∣W]

since all the other terms are higher order in ε. Expanding this expression gives

lim
ε→0

1
ε2

E[(W r
ε −W r)2

∣∣W ]

= E

∑
i,j,k,l

Re
[
aiimji(hi1hj2 − hi2hj1)

]
Re
[
akkmlk(hk1hl2 − hk2hl1)

]∣∣∣∣∣∣W


=
1
2
Re E

∑
i,j,k,l

aiimjiakkmlk(hi1hj2 − hi2hj1)(hk1hl2 − hk2hl1) +

aiimjiakkmlk(hi1hj2 − hi2hj1)(hk1hl2 − hk2hl1)

∣∣∣∣∣∣W


(3.16)
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Let
∑′

i,j

stand for summing over all pairs (i, j) where i and j are distinct. Applying

parts (vi) and (vii) of Lemma 3.5 now gives

lim
ε→0

n

2ε2
E
[(

W r
ε −W r

)2∣∣W ]
=

n

2(n− 1)(n + 1)
Re E

∑
i,j,k,`

aiimjiakkm`k

(
−δi`δjk(1− δij) +

1
n

δijδk`(1− δik)

−
(

n− 1
n

)
I(i = j = k = `)

)
+
∑

i,j,k,`

aiimjiakkm`k

(
δikδj`(1− δij)−

1
n

δijδk`(1− δik)

+
(

n− 1
n

)
I(i = j = k = l)

)∣∣∣∣∣W
]

=
n

2(n− 1)(n + 1)
Re E

−∑′

i,j

aiiajjmijmji +
1
n

∑′

i,k

aiiakkmiimkk

−
(

n− 1
n

)∑
i

a2
iim

2
ii +

∑′

i,j

a2
ii|mji|2

− 1
n

∑′

i,k

aiiakkmiimkk +
n− 1

n

∑
i

a2
ii|mii|2

∣∣∣∣∣W
]

=
n

2(n− 1)(n + 1)
Re E

[
−

(
Tr ((AM)2)−

∑
i

(AM)2ii

)
+

1
n

(
W 2 −

∑
i

(AM)2ii

)

−
(

n− 1
n

)∑
i

(AM)2ii +
∑

i

a2
ii(1− |mii|2)

− 1
n

(
|W |2 −

∑
i

a2
ii|mii|2

)
+

n− 1
n

∑
i

a2
ii|mii|2

∣∣∣∣∣W
]

=
1
2

+
1

2(n− 1)(n + 1)

+
n

2(n− 1)(n + 1)
Re E

[
−Tr ((AM)2) +

W 2 − |W |2

n

∣∣∣∣W]
.

Condition (2) of Theorem 2.1 is thus satisfied with

nE =
1

2(n− 1)(n + 1)
+

n

2(n− 1)(n + 1)
Re E

[
−Tr ((AM)2) +

W 2 − |W |2

n

∣∣∣∣W]
,

(3.17)
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and it remains to estimate nE|E|. First,

E
∣∣Tr ((AM)2)

∣∣ = E
√∑

i,j,k,l

aiiajjmijmjiakkallmklmlk

≤
√∑

i,j,k,l

aiiajjakkallE [mijmjimklmlk]

=

√√√√ 2n2

(n− 1)(n + 1)
− 2

(n− 1)n(n + 1)

(∑
i

a4
ii

)

≤
√

2 +
1

n2 − 1
,

using Lemma 3.5 to evaluate the integrals.

Next,

E|W |2 = E

∑
i,j

aiiajjmiimjj


=

1
n

∑
i

a2
ii

= 1.

Putting these estimates into (3.17) proves the theorem.

�

Theorem 3.4 yields the following bivariate corollary, which can also be seen as a

corollary of the main unitary lemma of [29].

Corollary 3.6. Let M be a random unitary matrix, A a fixed n×n matrix over C

with Tr (AA∗) = n, and let W = Tr (AM). Then the distribution of W converges to the

standard complex normal distribution in the weak-star topology.

Proof. The result follows immediately from Theorem 3.4 by considering the char-

acteristic function of W . �

The corollary is refined to include a rate of convergence in the dual-Lipschitz distance

in section 5.3.
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CHAPTER 4

Eigenfunctions of the Laplacian

The results of this chapter are an abstraction of the results of section 2.1 and chapter

3. In those cases, a specific class of functions (linear) were considered on three specific

manifolds – the sphere, the orthogonal group, and the unitary group. The exchange-

able pair in each case was a small random rotation. Here, this approach is generalized

to a large class of Riemannian manifolds, with the linear functions being replaced by

eigenfunctions of the Laplacian.

Eigenvalues and eigenfunctions of the Laplacian ∆g on a Riemannian manifold (M, g)

have appeared as important and interesting objects in several branches of analysis. The

spectrum of the Laplacian is a central object of study in spectral geometry, which is

concerned with relationships between the spectrum of ∆g and the geometry of M . In

particular, spectral geometry deals with inverse problems such as Mark Kac’s [57] famous

question, “Can you hear the shape of a drum?” More specifically, how much information

can one recover about the geometry of a manifold from knowledge of the spectrum of

its Laplacian? Weyl [82] showed that you can determine the volume of the manifold: if

N(λ) denotes the number of eigenvalues less than λ, he showed that

lim
λ→∞

N(λ)
λ

=
vol(M)

2π
.

Milnor [65] showed that not all information about the manifold could be recovered. He

found two Riemannian flat tori of dimension 16 which were not isometric, yet whose

Laplacians had the same sequence of eigenvalues.

Eigenvalues and eigenfunctions of the Laplacian are also of central interest in quan-

tum chaos. An important open question in the field is whether the quantum unique

ergodicity conjecture of Rudnick and Sarnak [73] holds. The conjecture is the following.

47
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Conjecture 4.1 (Rudnick-Sarnak). Let M be a compact hyperbolic surface, and let

{φk}∞k=1 be a sequence of linearly independent eigenfunctions of the Laplacian ∆g on M ,

normalized to have L2-norm one. Then the probability measures µk defined by

µk(A) =
∫

A
|φk(x)|2 dvol(x)

converge to the measure vol in the weak-star topology.

Šnirel′man [77], Colin de Verdière [28], and Zelditch [83] have shown that the con-

jecture is true up to the removal of a subsequence of density zero, on manifolds on which

the geodesic flow is ergodic. The conjecture above is consistent with the ‘random wave

model’ of eigenstates (see [13]), which conjectures that individual eigenfunctions behave

like random waves. See Sarnak [74] for an introduction to this area of study. In partic-

ular, it is discussed in [74] that a consequence of the random wave model would be that

high eigenfunctions would be approximately normally distributed. In connection with

this conjecture, Hejhal and various coauthors (see, e.g., [49]) and Aurich and Steiner

[3] have provided numerical evidence indicating that on certain hyperbolic manifolds,

the distributions of eigenfunctions become close to Gaussian as the eigenvalue tends

to infinity. Theorem 4.3 below suggests a possible approach to rigorous results in this

direction.

In this chapter we will freely use standard facts and notations of Riemannian geome-

try. For an introduction to the ideas used here, see the book [24] of Chavel, particularly

chapters 1 and 3.

Let (M, g) be an n-dimensional Riemannian manifold. Integration with respect to

the normalized volume measure is denoted dvol, thus
∫
M 1dvol = 1. For a linearly inde-

pendent set of vector fields
{

∂
∂xi

}n

i=1
, define

(G(x))ij = gij(x) =
〈

∂

∂xi

∣∣∣∣
x

,
∂

∂xj

∣∣∣∣
x

〉
, g(x) = det(G(x)), gij(x) = (G−1(x))ij .

Define the gradient ∇f of f : M → R and the Laplacian ∆gf of f by

∇f(x) =
∑
j,k

∂f

∂xj
gjk ∂

∂xk
, ∆gf(x) =

1
√

g

∑
j,k

∂

∂xj

(
√

ggjk ∂f

∂xk

)
.
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Let Φt(x, v) denote the geodesic flow on the tangent bundle TM and let π : TM →

M be the projection map of a tangent vector onto its base point. Recall that the

manifold is said to have ‘bounded geometry’ if there is a non-trivial lower bound on the

injectivity radius of the exponential map. We call a Riemannian manifold M locally

weakly symmetric if M has bounded geometry, and there is an ε with expx(t, v) injective

on the unit tangent bundle SM for t ∈ (−ε, ε), such that the volume measure on M is

invariant under the substitution

π ◦ Φt(x, v) → π(−Φt(x, v))

for t ∈ (−ε, ε). In particular, a compact locally symmetric space is weakly locally sym-

metric. The class of manifolds considered here is thus quite broad and includes Lie

groups, quotients of Lie groups, flat tori and tori of genus at least two with hyperbolic

geometry.

In what follows, some basic facts about the Laplacian on a Riemannian manifold are

needed. Chavel’s book [23] is a good source of background; in particular, the following

theorem is Theorem 1 of section 1.3 (page 8).

Theorem 4.2 (see [23]). Let M be a compact, connected Riemannian manifold with-

out boundary. The set of real numbers λ for which there exists a nontrivial solution

ϕ ∈ C2(M) to

∆ϕ + λϕ = 0

consists of a sequence

0 ≤ λ1 < λ2 · · · ↑ +∞

and each associated eigenspace is finite dimensional. Eigenspaces belonging to distinct

eigenvalues are orthogonal in L2(M), and L2(M) is the direct sum of all the eigenspaces.

Furthermore, each eigenfunction is C∞ on M .

The following theorem is the main result of this section.

Theorem 4.3. Let M be a finite-volume locally weakly symmetric space (without

boundary), and f an eigenfunction for the Laplacian on M with eigenvalue λ 6= 0,
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normalized so that
∫
M f2dvol = 1. Let X be a random (i.e., distributed according to

normalized volume measure) point of M . Then

dTV (f(X), Z) ≤ 1
|λ|

√
Var
(
‖∇f(X)‖2

)
,

where Z is a standard Gaussian random variable on R.

Proof. Start by constructing a family of exchangeable pairs of points in M parametrized

by ε. Let X be a random point of M and let ε > 0 be smaller than the injectivity radius

of the exponential map at X. Since M has bounded geometry, there is a range of ε

small enough to work at every point. Now, choose a unit vector V ∈ TXM at random,

independent of X, and define

Xε = expX(εV ).

The fact that M is a locally weakly symmetric space implies that the pair (X, Xε) is

exchangeable. To see this, we show that∫
M×M

g(x, xε)dµ =
∫

M×M
g(xε, x)dµ

for all integrable g : M ×M → R, where µ is the measure defined by the construction of

the pair (X, Xε).

Let L denote the normalized Liouville measure on SM , which is locally the product

of the normalized volume measure on M and normalized Lebesgue measure on the unit

spheres of TxM . The measure L also has the property that it is invariant under the

geodesic flow Φt(x, v). See [24], section 5.1 for a construction of L and proofs of its key

properties. By construction of the measure µ,∫
M×M

g(x, xε)dµ =
∫

SM
g(x, π ◦ Φε(x, v))dL(x, v)

=
∫

SM
g(π ◦ Φ−ε(y, η), y)dL(y, η)

by the substitution (y, η) = Φε(x, v), since Liouville measure is invariant under the

geodesic flow. Now,

Φ−ε(y, η) = −Φε(y,−η),
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as both correspond to going backwards on the same geodesic. It follows that∫
SM

g(x, xε)dL(x, v) =
∫

SM
g(π(−Φε(y,−η)), y)dL(y, η)

=
∫

SM
g(π(−Φε(y, η)), y)dL(y, η)

=
∫

SM
g(π(Φε(y, η)), y)dL(y, η)

=
∫

SM
g(yε, y)dµ,

where the second line follows from the substitution −η → η, under which Lebesgue

measure on the tangent space is invariant, and the third line follows by the symmetry

assumption on M . Thus the pair (X, Xε) is exchangeable as required.

Now, let f be an eigenfunction of the Laplacian on M with eigenvalue λ < 0 and

‖f‖2 = 1. Recall that the eigenspaces of the Laplacian are orthogonal and that a constant

function on M is an eigenfunction with eigenvalue 0, thus
∫
M fdµ = 0. A consequence

of Stokes’ theorem is that ∫
M

f∆fdvol = −
∫

M
‖∇f‖2dvol.

Since f is an eigenfunction with eigenvalue λ and ‖f‖2 = 1, this means that

1
|λ|

∫
M
‖∇f‖2dvol = 1.

For notational convenience, let W = f(X) and Wε = f(Xε). Since (X, Xε) is ex-

changeable, (W,Wε) is an exchangeable pair as well.

In order to verify the conditions of Theorem 2.1, first let γ : [0, 1] → M be a constant-

speed geodesic such that γ(0) = X, γ(1) = Xε, and γ′(0) = εV . Then applying Taylor’s

theorem on R to the function f ◦ γ yields

f(Xε)− f(X) = ε · d(f ◦ γ)
dt

∣∣∣∣
t=0

+ ε2 · d2(f ◦ γ)
dt2

∣∣∣∣
t=0

+ O(ε3)

= ε · dXf(V ) + ε2 · d2(f ◦ γ)
dt2

∣∣∣∣
t=0

+ O(ε3),

(4.1)

where the coefficient implicit in the O(ε3) depends on f and γ and dxf denotes the

differential of f at x. Recall that dxf(v) = 〈∇f(x), v〉 for v ∈ TxM and the gradient
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∇f(x) defined as above. Now, for X fixed, V is distributed according to normalized

Lebesgue measure on SXM and dXf is a linear functional on TXM . It follows that

E
[
dXf(V )

∣∣X] = E
[
dXf(−V )

∣∣X] = −E
[
dXf(V )

∣∣X] ,
so

E
[
dXf(V )

∣∣X] = 0.

This implies that

lim
ε→0

1
ε2

E
[
f(Xε)− f(X)

∣∣X]
exists and is finite.

Claim 4.4.

lim
ε→0

1
ε2

E
[
f(Xε)− f(X)

∣∣X] =
1
2n

∆gf(X) =
λ

2n
f(X).

Proof. Let Sε
X denote the geodesic sphere of radius ε in M centered at X, and

let Bε
X be the corresponding geodesic ball. Let A be the area form on Sε

X ; that is, dA

denotes integration over Sε
X with respect to the volume measure given by the Riemannian

structure. Then

lim
ε→0

1
ε2

E
[
f(Xε)− f(X)

∣∣X]
= lim

ε→0

1
ε2A(Sε

X)

∫
Sε

X

[
f(Xε)− f(X)

]
dA(v)

= lim
ε→0

1
εA(Sε

X)

∫
Sε

X

1
ε

∫ 1

0

〈
∇f, γ′(t)

〉
γ(t)

dtdA(v)

= lim
ε→0

1
εA(Sε

X)

∫
Sε

X

1
ε

∫ 1

0

[
ε 〈v,∇f〉X + ε2t 〈v,∇v(∇f)〉X

+
〈
γ′(t),∇f

〉
γ(t)

− 〈εv,∇f + t∇εv(∇f)〉X
]
dtdA(v),

(4.2)

by the fundamental theorem of calculus. (Recall that ∇v denotes the covariant derivative

in the direction v.)

Now, ∫
Sε

X

〈v,∇f〉X dA(v) = 0
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by symmetry as discussed above (the area form on Sε
X pulls back to uniform measure on

the sphere in the tangent space), so the first term of (4.2) is zero.

For the last term, note that 〈γ′(t),∇f〉γ(t) − 〈εv,∇f + t∇εv(∇f)〉X = 0 for t = 0.

The first derivative with respect to t of this expression is

〈
γ′(t),∇γ′(t)(∇f)

〉
γ(t)

− 〈εv,∇εv(∇f)〉X

(which is also zero at t = 0) and the second derivative is

〈
γ′(t),∇γ′(t)(∇γ′(t)(∇f))

〉
γ(t)

,

using the fact that ∇γ′(t)(γ′(t)) = 0, since γ is a geodesic. This last expression is O(ε3),

since ‖γ′(t)‖ = ε for each t, and f is smooth, so taking the limit gives

lim
ε→0

1
ε2

E
[
f(Xε)− f(X)

∣∣X] = lim
ε→0

1
2A(Sε

X)

∫
Sε

X

〈v,∇v(∇f)〉X dA

=
1

2σ(Sn−1)

∫
Sn−1⊆TXM

〈v,∇v(∇f)〉 dσ(v),
(4.3)

where σ is uniform measure on the sphere. This is now an integral over a Euclidean

sphere. Choose an orthonormal basis
{

∂
∂xi

∣∣∣
X

}
of TXM which extends to Riemannian

coordinates in a neighborhood of X. Then at X,

gij = δij , gij = δij , g = 1,

thus

∆gf(X) =
∑

i

∂2f

∂x2
i

.

Expressing the integrand in these coordinates gives:

lim
ε→0

1
ε2

E
[
f(Xε)− f(X)

∣∣X] =
1

2σ(Sn−1)

∫
Sn−1⊆TXM

∑
i,j

vivj

〈
∂

∂xi
,∇ ∂

∂xj

(∇f)
〉

dσ(v)

=
1
2

∑
i

1
n

∂2f

∂x2
i

=
1
2n

∆gf(X)

=
λ

2n
f(X),
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since E
[
vivj

]
= 1

nδij for v uniform on the sphere with {vi} the coordinates of v in an

orthonormal basis.

�

Consider next

lim
ε→0

1
ε2

E
[
(Wε −W )2

∣∣X].
By the expansion (4.1),

E
[
(Wε −W )2

∣∣X] = E
[
(f(Xε)− f(X))2

∣∣X]
= ε2E

[
(dxf(v))2

∣∣X]+ O(ε3).

In the coordinates introduced above,

∇f(X) =
∑

i

∂f

∂xi

∂

∂xi
,

thus

[dxf(v)]2 = [〈∇f, v〉]2

=
n∑

i=1

(
∂f

∂xi

)2

v2
i +

∑
i6=j

∂f

∂xi

∂f

∂xj
vivj .

Making use again of the independence of v and X and the fact that E[vivj ] = 1
nδij yields

lim
ε→0

1
ε2

E
[
(dxf(v))2

∣∣X] =
1
n
‖∇f‖2 = −λ

n
+

1
n

[
‖∇f‖2 + λ

]
,

thus condition (2) is satisfied with

E =
2
λ

[
‖∇f‖2 + λ

]
.

Finally, (4.1) gives immediately that

lim
ε→0

1
ε2

E
[
|Wε −W |3

∣∣W ]
= 0.

Recall that E‖∇f‖2 = −λ; the proof is completed by applying the Cauchy-Schwarz

inequality to E|E|.
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�

4.1. Example: Second order spherical harmonics

In section 2.1, linear functions of a random point on the sphere were shown to be

approximately normally distributed. The following theorem is a non-linear example of

an application of Theorem 4.3, treating quadratic functions of the form
∑

i,j aijxixj of

a random point on the sphere. These are eigenfunctions of the Laplacian on the sphere

with eigenvalue λ = −2n provided that Tr (A) =
∑

i aii = 0. Some examples and

remarks illustrating the theorem appear after the proof.

Theorem 4.5. Let g(x) =
∑

i,j aijxixj , where A = (aij)n
i,j=1 is a symmetric matrix

with Tr (A) = 0. Let f = Cg, where C is chosen such that ‖f‖2 = 1 when f is considered

as a function on Sn−1. Let W = f(X), where X is a random point on Sn−1. If d is the

vector in Rn whose entries are the eigenvalues of A, then

dTV (W,Z) ≤
√

5
(
‖d‖4

‖d‖2

)2

,

where ‖d‖p = (
∑

i |di|p)1/p .

Proof. To apply Theorem 4.3, it is first necessary to show that f is indeed an

eigenfunction of the Laplacian on Sn−1 and to identify its eigenvalue. It is discussed

in section 9.5 of [81] that the eigenfunctions of the spherical Laplacian are exactly the

restrictions of homogeneous harmonic polynomials on Rn to the sphere, and that such

polynomials of degree l have eigenvalue −l(l + n− 2). It is trivial to verify that since A

is traceless, g is harmonic on Rn and thus is an eigenfunction with eigenvalue λ = −2n.

Next, note that g(x) = 〈x,Ax〉 , and A is a symmetric matrix, so A = U∗DU for a

diagonal matrix D and an orthogonal matrix U . Thus

g(x) = 〈x,U∗DUx〉 = 〈Ux, DUx〉 .

Since the uniform distribution on the sphere is invariant under the action of the orthog-

onal group, this observation means that it suffices to prove the theorem in the case that

A = diag(a1, . . . , an).
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By Theorem 4.3,

dTV (W,Z) ≤ 1
|λ|

√
V ar

(
‖∇f‖2

)
,

and the main task of the proof is to estimate the right-hand side. A consequence of

Stokes’ theorem is that ∫
Sn−1

‖∇g‖2dσ = |λ|
∫

Sn−1

g2dσ,

so one can calculate E‖∇g‖2 in order to determine C. The spherical gradient ∇g is

just the projection onto the hyperplane orthogonal to the radial direction of the usual

gradient. Letting
∑′

stand for summing over distinct indexes,

E‖∇Sn−1g(x)‖2 = E‖∇Rng(x)‖2 − E (x · ∇Rng(x))2

= E

[
n∑

i=1

4a2
i x

2
i

]
− 4E

 n∑
i=1

a2
i x

4
i +

∑′

i,j

aiajx
2
i x

2
j


=

4
n

n∑
i=1

a2
i −

4
n(n + 2)

3
∑

i

a2
i +

∑′

i,j

aiaj


=

4
n

n∑
i=1

a2
i −

4
n(n + 2)

2
∑

i

a2
i +

(
n∑

i=1

ai

)2


=
4

n + 2

n∑
i=1

a2
i ,

where Lemma 1.6 (after renormalization) has been used to get the third line, and the

fact that Tr (A) = 0 is used to get the last line. From this computation it follows that

the constant C in the statement of the theorem should be taken to be
√

n(n+2)
2‖a‖22

, where

a = (ai)n
i=1.

Now,

E‖∇Sn−1g‖4 ≤ E‖∇Rng‖4,

since ∇Sn−1g is a projection of ∇Rng.

E‖∇Rng‖4 = 16 E

 n∑
i=1

a4
i x

4
i +

∑′

i,j

a2
i a

2
jx

2
i x

2
j


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=
16

n(n + 2)

(∑
i

a2
i

)2

+ 2
∑

i

a4
i

 ,

and so

E‖∇Sn−1f‖4 ≤ n2(n + 2)2

4‖a‖4
2

E‖∇Rng‖4

=
4n(n + 2)
‖a‖4

2

(∑
i

a2
i

)2

+ 2
∑

i

a4
i


= 4n(n + 2)

[
1 +

2‖a‖4
4

‖a‖4
2

]
.

This gives that

Var
(
‖∇f‖2

)
≤ 8n2

(
‖a‖4

4

‖a‖4
2

)
+ 8n

[
1 +

2‖a‖4
4

‖a‖4
2

]
,

thus

dTV (W,Z) ≤

√(
2 +

2
n

)(
‖a‖4

‖a‖2

)4

+
2
n
≤
√

4 +
2
n

(
‖a‖4

‖a‖2

)2

,

since ‖a‖4 ≥ n−1/4‖a‖2. �

Remark: For n even, consider the quadratic function

f(x) =

√
n + 2

2

 n
2∑

i=1

x2
i −

n∑
j=n

2
+1

x2
j

 .

This f satisfies the conditions of the theorem and is normalized such that Ef2(X) = 1

for X a random point on Sn−1. Theorem 4.5 gives that

dTV (f(X), Z) ≤
√

5
n

,

so in this case, Theorem 4.5 gives a rate of convergence to normal.

The cases in which the bound does not tend to zero as n →∞ are those in which a

small number of coordinates of X control the value of f(X); in those situation one would

not expect f to be normally distributed. For example, if f(x) = cx2
1−cx2

2, where c is the

proper normalization constant, then because x1 and x2 are asymptotically independent
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Gaussian random variables (see section 5.2), f is asymptotically distributed as c(Z2
1−Z2

2 )

for independent Gaussians Z1 and Z2.



CHAPTER 5

Multivariate normal approximation

5.1. A multivariate abstract approximation theorem

This section contains the statement and proof of a multivariate analog to Theorem

2.1; the results of this section are joint work with Sourav Chatterjee.

There has been some previous work in using Stein’s method for multivariate normal

approximation. Rinott and Rotar used a ‘two level’ dependency graph approach to prove

central limit theorems for dependent random vectors, which they applied to studying

statistics on nearest neighbor random graphs. Their approach yields bounds on

∣∣Eh(W )− Eh(Z)
∣∣

for Z a multivariate Gaussian random vector, W the random vector being studied, and

h in a class H of (not necessarily smooth) functions. They restrict attention to classes

of functions H with the following properties. For h : Rn → R, set

h+
ε = sup{h(x + y) : |y| ≤ ε}, h−ε = inf{h(x + y) : |y| ≤ ε},

h̃(x; ε) = h+
ε (x)− h−ε (x).

Then it is required of H that

(i) If h ∈ H, ‖h‖∞ ≤ 1.

(ii) If h ∈ H, then h+
ε ∈ H and h−ε ∈ H for any ε > 0.

(iii) For any n× n matrix A and vector b ∈ Rn, if h ∈ H then h(Ax + b) ∈ H.

(iv) For all ε > 0,

sup{Eh̃(Z; ε) : h ∈ H} < aε,

where Z ∼ N(0, 1) and a is a constant depending only on H and n.

The constant a is sometimes called the isoperimetric constant of H.

59
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The class H can for example be taken to be the indicator functions of convex sets.

However, the restrictions on H are enough that their approach does not yield a bound

in total variation distance.

Goldstein and Rinott [46] have also developed a technique for multivariate normal

approximation using Stein’s method and size-bias coupling, where the dependence in the

problem need not be local. They apply their techniques to statistics of random graphs.

The notion of distance used is bounding

Eh(W )− Eh(Z)

over a class of smooth functions h.

More recently, Goldstein and Reinert [45] have developed a version of multivariate

normal approximation using Stein’s method together with zero-bias coupling, with ap-

plications to simple random sampling. The also consider a notion of distance which

compares expectations of smooth functions with respect to the random variable in ques-

tion and the normal distribution.

In the univariate case, there are problems which are most easily treated via the

method of exchangeable pairs than other approaches to Stein’s method, e.g., when the

random variable under study depends on an underlying reversible Markov chain. See

in particular the analysis of the antivoter chain in [71] and the examples in [33]. This

partly motivated the development of a multivariate version of the method of exchangeable

pairs in [22]. Another motivation for this development is the fact that the extension of

Stein’s method to situations with continuous symmetries given in chapter 2 seems very

well suited to work with the method of exchangeable pairs. This is still the case in a

multivariate context; see Theorem 5.3 below.

The following lemma gives a second-order characterizing operator for the Gaussian

distribution on Rk. For f ∈ C1(Rk), define the gradient of f by∇f(x) = ( ∂f
∂x1

(x), . . . , ∂f
∂xk

(x))t.

Define the Laplacian of f by ∆f(x) =
∑k

i=1
∂2f
∂x2

i
(x).

Lemma 5.1. Let Z ∈ Rk be a random vector with {Zi} i.i.d. standard Gaussians.
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(i) If f : Rk → R is two times continuously differentiable and compactly supported,

then

E
[
∆f(Z)− Z · ∇f(Z)

]
= 0.

(ii) If Y ∈ Rk is a random vector such that

E
[
∆f(Y )− Y · ∇f(Y )

]
= 0

for every f ∈ C2(Rk), then L(Y ) = L(Z).

(iii) If g ∈ C∞
o (Rk), then the function

Uog(x) :=
∫ 1

0

1
2t

[
Eg(

√
tx +

√
1− tZ)− Eg(Z)

]
dt

is a solution to the differential equation

(5.1) ∆h(x)− x · ∇h(x) = g(x)− Eg(Z).

Proof. Part (i) is just integration by parts.

For part (iii), first note that since g is Lipschitz, if t ∈
(
0, 1

2

)
and L is the Lipschitz

constant of g,∣∣∣∣ 1
2t

[
Eg(

√
tx +

√
1− tZ)− Eg(Z)

]∣∣∣∣ ≤ L

2t
E
∣∣∣√tx + (

√
1− t− 1)Z

∣∣∣
≤ L

2t

[√
t|x|+ t√

2

√
k

]
,

which is integrable on
(
0, 1

2

)
, and the integrand is bounded on

(
1
2 , 1
)
, so the integral

exists by the dominated convergence theorem.

To show that it is indeed a solution to the differential equation (5.1), let

Zt =
√

tx +
√

1− tZ

and observe that

g(x)− Eg(Z) =
∫ 1

0

d

dt
Eg(Zt)dt

=
∫ 1

0

1
2
√

t
E(x · ∇g(Zt))dt−

∫ 1

0

1
2
√

1− t
E(Z · ∇g(Zt))dt
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=
∫ 1

0

1
2
√

t
E(x · ∇g(Zt))dt−

∫ 1

0

1
2

E(∆g(Zt))dt

by integration by parts. Noting that

∆(Uog)(x) =
∫ 1

0

1
2

E(∇g(Zt))dt

and

x · ∇(Uog)(x) =
∫ 1

0

1
2
√

t
E(x · ∇g(Zt))dt

completes part (iii).

Finally, if

E
[
∆f(Y )− Y · ∇f(Y )

]
= 0

for every f ∈ C2(Rk), then for g ∈ C∞
o given,

Eg(Y )− Eg(Z) = E
[
∆(Uog)(Y )− Y · ∇(Uog)(Y )

]
= 0,

and so L(Y ) = L(Z) since C∞
o is dense in the class of bounded continuous functions

vanishing at infinity, with respect to ‖ · ‖∞.

The next lemma gives various useful bounds on Uog and its derivatives in terms of

g and its derivatives. Below, |∇g| is the length of the gradient vector ∇g, thus ‖|∇g|‖∞

denotes the supremum of |∇g(x)| over x ∈ Rk.

�

Lemma 5.2. For g ∈ C3
o (Rk), Uog satisfies the following bounds:

(i) For all 1 ≤ i ≤ k, ∥∥∥∥∂(Uog)
∂xi

∥∥∥∥
∞
≤ 1√

2
‖g‖∞.

(ii) For 1 ≤ i, j ≤ k, ∥∥∥∥∂2(Uog)
∂xi∂xj

∥∥∥∥
∞
≤
∥∥∥∥ ∂g

∂xj

∥∥∥∥
∞

.

(iii) If H is the Hessian matrix of Uog, then

‖H‖H.S. =
√

Tr (HHt) ≤
√

k‖|∇g|2‖∞
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and

‖H‖op = sup
|v|=1,|w|=1

|〈Hv, w〉| ≤
√

2
π
‖|∇g|‖∞.

(iv) For 1 ≤ i, j, ` ≤ k,∥∥∥∥ ∂3(Uog)
∂xi∂xj∂x`

∥∥∥∥
∞
≤
∥∥∥∥ ∂2g

∂xj∂x`

∥∥∥∥
∞

.

Proof. Write h(x) = Uog(x). Note that by the formula for Uog, if g ∈ Cr
o(Rk), then

(5.2)
∂rh

∂xi1 · · · ∂xir

(x) =
∫ 1

0
(2t)−1tr/2E

[
∂rg

∂xi1 · · · ∂xir

(Zt)
]

dt.

By integration by parts,

E
[

∂g

∂xi
(Zt)

]
=

1√
1− t

E [Zig(Zt)] ,

thus ∣∣∣∣ ∂h

∂xi
(x)
∣∣∣∣ =

∣∣∣∣∣
∫ 1

0

1
2
√

t(1− t)
E [Zig(Zt)] dt

∣∣∣∣∣
≤ ‖g‖∞

√
2
π

∫ 1

0

1
2
√

t(1− t)
dt

=
1√
2
‖g‖∞.

This proves part (i); parts 2 and 4 are essentially the same argument.

For part 3,

∂2h

∂xi∂xj
(x) =

∫ 1

0

1
2

E
[

∂2g

∂xi∂xj
(Zt)

]
dt

=
∫ 1

0

1
2
√

1− t
E
[
Zi

∂g

∂xj
(Zt)

]
dt.

(5.3)
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Summing in k gives

k∑
j=1

(
∂2h

∂xi∂xj
(x)
)2

=
k∑

j=1

(∫ 1

0

1
2
√

1− t
E
[
Zi

∂g

∂xj
(Zt)

]
dt

)2

≤
∫ 1

0

1
2
√

1− t
E

Z2
i

k∑
j=1

(
∂g

∂xj
(Zt)

)2
 dt

≤ ‖|∇g|2‖∞,

where the second line follows by two applications of Jensen’s inequality, first considering

the function E
[
Zi

∂g
∂xj

(Zt)
]

being integrated with respect to 1
2
√

1−t
dt on (0, 1), then to

the expression
(
E
[
Zi

∂g
∂xj

(Zt)
])2

. Summing in i now gives that ‖H(x)‖2
H.S. ≤ k‖|∇g|2‖∞

for all x.

The bound on ‖H‖op is proved similarly. Making use of equation (5.3),

|〈Hv, w〉| =

∣∣∣∣∣∣
∫ 1

0

1
2
√

1− t
E

( k∑
i=1

viZi

) k∑
j=1

wj
∂g

∂xj
(Zt)

 dt

∣∣∣∣∣∣
=
∣∣∣∣∫ 1

0

1
2
√

1− t
E [〈v, Z〉 〈w,∇g(Zt)〉] dt

∣∣∣∣
≤ ‖|∇g|‖∞

∫ 1

0

1
2
√

1− t
E |〈v, Z〉| dt

≤ ‖|∇g|‖∞

√
2
π

,

since 〈v, Z〉 is a standard Gaussian random variable. �

The following is a multivariate analog of Theorem 2.1. It is not an analog in the

strictest sense, as it gives convergence rates only in the dual-Lipschitz distance rather

than the stronger total variation distance. This seems to be an unavoidable consequence

of the fact that the characterizing operator used here for the multivariate normal distri-

bution is a second-order operator, whereas the characterizing operator for the standard

normal distribution on R used in section 1 is first-order.

Theorem 5.3. Let X and Xε be two random vectors such that L(X) = L(Xε) with

the property that limε→0 Xε = X almost surely. Suppose there is a constant λ, functions
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Eij = Eij(X), h and k with

lim
ε→0

1
ε2

h(ε) = lim
ε→0

1
ε2

k(ε) = 0,

and α(X) and β(X) with

E|α(X)| < ∞, E|β(X)| < ∞,

such that

(i) E
[
(Xε −X)i

∣∣X] = −λε2Xi + h(ε)α(X)

(ii) E [(Xε −X)i(Xε −X)j |X] = 2λε2δij + ε2Eij + k(ε)β(X)

(iii) E
[
|Xε −X|3

]
= o(ε2).

Then

(5.4) dL∗(X, Z) ≤ min

 1
2λ

∑
i,j

E|Eij |,
√

k

2λ
E

∑
i,j

E2
ij

1/2
 .

If furthermore Eij = EiFj +δijRi, then writing E for the vector with components Ei and

F for the vector with components Fj,

dL∗(X, Z) ≤ 1
λ
√

2π
E (‖E‖2‖F‖2) +

1
λ

k∑
i=1

E|Ri|.

Proof. Fix g with ‖g‖L ≤ 1 and let Uog be as in Lemma 5.1. As before, write

h(x) = Uog(x) and observe

0 =
1

ε2λ
E [h(Xε)− h(X)]

=
1

ε2λ
E
[
(Xε −X) · ∇h(X) +

1
2
(Xε −X)t(Hess h(X))(Xε −X) + R

]
,(5.5)

where R is the error in the second-order Taylor approximation of h(Xε) − h(X). By

Taylor’s theorem,

R = O
(
|Xε −X|3

)
,

where the implied constant depends on g. It follows from (iii) that

lim
ε→0

1
ε2λ

E
[
R
]

= 0.
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For the first two terms of 5.5,

1
ε2λ

E
[
(Xε −X) · ∇h(X) +

1
2
(Xε −X)t(Hess h(X))(Xε −X)

]
=

1
ε2λ

E

E
[
(Xε −X)

∣∣X] · ∇h(X) +
1
2

k∑
i,j=1

E
[
(Xε −X)i(Xε −X)j

∣∣X] ∂2h

∂xi∂xj
(X)


= E

−X · ∇h(X) + ∆h(X) +
1
2λ

∑
i,j

Eij
∂2h

∂xi∂xj
(X) + o(1)(α(X) + β(X))


= Eg(X)− Eg(Z) + E

 1
2λ

∑
i,j

Eij
∂2h

∂xi∂xj
(X)

+ o(1),

(5.6)

where (i) and (ii) have been used to get the third line and Lemma 5.1 (iii) and the

assumptions on α and β have been used to get the last line. Taking the limit of both

sides of (5.5) as ε → 0 now gives

∣∣Eg(X)− Eg(Z)
∣∣ ≤ 1

2λ
E

∣∣∣∣∣∣
∑
i,j

Eij
∂2h

∂xi∂xj
(X)

∣∣∣∣∣∣(5.7)

The bound

dL∗(X, Z) ≤ 1
2λ

∑
i,j

E|Eij |

is now immediate from the bound on ∂2h
∂xi∂xj

of Lemma 5.2. Alternatively, apply the

Cauchy-Schwarz inequality to (5.7) to get

∣∣Eg(X)− Eg(Z)
∣∣ ≤ 1

2λ
E


∑

i,j

E2
ij

1/2∑
i,j

(
∂2h

∂xi∂xj
(X)

)2
1/2


≤ ‖H‖H.S.

2λ
E

∑
i,j

E2
ij

1/2

≤
√

k

2λ
E

∑
i,j

E2
ij

1/2

.
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If the condition Eij = EiFj + δijRi holds, then write

1
2λ

E

∣∣∣∣∣∣
∑
i,j

Eij
∂2h

∂xi∂xj

∣∣∣∣∣∣ ≤ 1
2λ

E

∣∣∣∣∣∣
∑
i,j

∂2h

∂xi∂xj
EiFj

∣∣∣∣∣∣+
∣∣∣∣∣∑

i

∂2h

∂2xi
Ri

∣∣∣∣∣
 .

The result is now immediate by applying the bound on ‖H‖op to the first term and the

bounds on the ∂2h
∂2xi

to the second term.

�

5.2. Rank k projections of spherically symmetric measures on Rn

Consider a random vector Y ∈ Rn whose distribution is spherically symmetric; i.e., if

U is a fixed orthogonal matrix, then the distribution of Y is the same as the distribution

of UY . Assume that E|Y |2 < ∞. By the spherical symmetry, EYi = 0 for each i and

EYiYj = cδij for some c; assume that Y has been normalized so that c = 1. Assume

further that there is a constant a so that

Var(|Y |2) ≤ a.

For k fixed, let Pk denote the orthogonal projection of Rn onto the span of the first k

standard basis vectors. In this example, Theorem 5.3 is applied to show that X := Pk(Y )

is approximately distributed as a k-dimensional Gaussian random vector if k = o(n).

This is a multivariate version of the example of section 2.1, and as discussed in that

section, is closely related to the results of Diaconis and Freedman in [36]. In particular,

they proved the following.

Theorem 5.4 (Diaconis-Freedman). Let Y be as above and let Pk be the law of

(Y1, . . . , Yk). Let Z1, Z2, . . . be independent standard normal random variables. For k ∈

N, let Pk
σ be the law of (σZ1, . . . , σZk) and for µ a probability on [0,∞), let

Pµk =
∫

P k
σ dµ(σ).

Then there is a probability µ on [0,∞) such that for 1 ≤ k ≤ n− 4,

dTV (Pk, Pµk) ≤
2(k + 3)
n− k − 3

.
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The mixing measure µ can be taken to be the law of |Y |2.

Theorem 5.4 says that orthogonally invariant vectors have their first k components

close (in total variation distance) to a mixture of normals. In some cases, the explicit

form given for the mixing measure has allowed the theorem to be used to prove central

limit theorems of interest in convex geometry; see [18] and [58]. Theorem 5.5 below says

that the variance bound above is sufficient to show that the mixing measure of Theorem

5.4 can be taken to be a point mass. The rates obtained are of the same order, though the

rate of Theorem 5.5 is not in total variation distance, but in the weaker dual-Lipschitz

distance.

To apply Theorem 5.3 to projections of the vector Y , construct a family of exchange-

able pairs (X, Xε) as follows. For ε > 0 fixed, let

Aε =

√1− ε2 ε

−ε
√

1− ε2

⊕ In−2

= In +

− ε2

2 + O(ε4) ε

−ε − ε2

2 + O(ε4)

⊕ 0n−2

Let U be a random n× n orthogonal matrix, independent of Y , and let

Yε = UAεU
tY ;

Yε is a small random rotation of Y . Let Xε = PkYε. Note that

(5.8) Xε −X = ε
[
−
( ε

2
+ O(ε3)

)
PkKKt + PkKC2K

t
]
Y,

where K is the k × 2 matrix made of the first two columns of U and C2 =

 0 1

−1 0

 .

Recall from section 3.1 that E
[
KKt

]
= 2

nI and E
[
KC2K

t
]

= 0, and so

lim
ε→0

n

ε2
E
[
(Xε −X)

∣∣X] = −X;
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condition 1 thus holds with λ = 1
n . The Eij are determined as follows.

lim
ε→0

n

ε2
E
[
(Xε −X)2i

∣∣X] = nE
[
(PkKC2K

tY )2i
∣∣X]

= nE

∑
j

I(i ≤ k)(KC2K
t)ijYj

2∣∣∣∣∣∣X


= nI(i ≤ k)E

∑
j,`

YjY`(ui1uj2 − ui2uj1)(ui1u`2 − ui2u`1)

∣∣∣∣∣∣X


= 2nI(i ≤ k)E

∑
j,`

YjY`

(
1

n(n− 1)

)
δj`(1− δij)

∣∣∣∣∣∣X


=
2I(i ≤ k)

n− 1
E

∑
j 6=i

Y 2
j

∣∣∣∣∣∣X


=
2I(i ≤ k)

n− 1
E
[
|Y |2 − Y 2

i

∣∣X] ,
thus for 1 ≤ i ≤ k

Eii = lim
ε→0

1
ε2

E
[
(Xε −X)2i

∣∣X]− 2
n

=
2

n(n− 1)

[
E
[
|Y |2 − n

∣∣X]− (X2
i − 1)

]
.

For i 6= j,

lim
ε→0

1
ε2

E
[
(Xε −X)i(Xε −X)j

∣∣X]
= E

[
(PkKC2K

tY )i(PkKC2K
tY )j

∣∣X]
= E

I(i ≤ k)I(j ≤ k)
∑
`,m

Y`Ym(ui1u`2 − ui2u`1)(uj1um2 − uj2um1)

∣∣∣∣∣∣X


= 2I(i ≤ k)I(j ≤ k)E

∑
`,m

Y`Ym

(
−1

n(n− 1)

)
δimδ`j

∣∣∣∣∣∣X


=
−2

n(n− 1)
XiXj .

Thus

Eij =
−2

n(n− 1)
XiXj +

2δij

n(n− 1)
E
[
|Y |2 − (n− 1)

∣∣X] ;
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in particular, Eij has the form EiFj + δijRi with

Ei =

√
2

n(n− 1)
Xi,

Fj = −

√
2

n(n− 1)
Xj ,

Ri =
2

n(n− 1)
E
[
|Y |2 − (n− 1)

∣∣X] .
Now,

E‖X‖2
2 = k

and

E
∣∣E [|Y |2 − (n− 1)

∣∣X]∣∣ ≤ √
a + 1

by assumption, so applying Theorem 5.3 gives:

Theorem 5.5. With notation as above, there is a constant c (depending on a) such

that

dL∗(X, Z) ≤ ck

n
.

5.3. Complex-linear functions of random unitary matrices

The following theorem is an application of Theorem 5.3 giving a rate of convergence

in Theorem 3.6

Theorem 5.6. Let M ∈ Un be distributed according to Haar measure, and let A be

a fixed n×n matrix such that Tr (AA∗) = n. Let W = Tr (AM) and let Z be a standard

complex normal random variable. Then there is a constant c such that

dL∗(W,Z) ≤ c

n
.

Remark: The constant in the statement of the Theorem is asymptotically equal to

3
√

2; for n ≥ 6, c can be taken to be 6.

Proof. Much, though not all, of the work needed to apply Theorem 5.3 was done in

section 3.2. Recall from the beginning of the proof of Theorem 3.4 that by the singular
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value decomposition and the translation invariance of Haar measure, it suffices to prove

the theorem for A diagonal with positive entries. Note that the normalization is such

that Re W and Im W each have variance 1
2 , so Theorem 5.3 will actually be applied to

the random variable
√

2W .

To apply the theorem, we must first construct a family of pairs (W,Wε). Let U ∈ Un

be a random unitary matrix, independent of M , and let Mε = UAεU
∗M , where

Aε =



√
1− ε2 ε

−ε
√

1− ε2 0

1

0
. . .

1


,

thus Mε is a small random rotation of M . Let Wε = W (Mε); (W,Wε) is exchangeable

by construction.

Now, let I2 be the 2× 2 identity matrix, K the n× 2 matrix made from the first two

columns of U , and let

C2 =

 0 1

−1 0

 .

Then

Mε = M + K
[
(
√

1− ε2 − 1)I2 + εC2

]
K∗M.

By Taylor’s theorem,
√

1− ε2 = 1− ε2

2 + O(ε4), thus

Mε = M + K

[(
−ε2

2
+ O(ε4)

)
I2 + εC2

]
K∗M,

and so

Wε −W = Tr
((

−ε2

2
+ O(ε4)

)
AKK∗M + εAKC2K

∗M

)
= ε

[(
− ε

2
+ O(ε3)

)
tr(AKK∗M) + tr(AKC2K

∗M)
]
.

(5.9)

Expanding in components and using the independence of M and U together with

Lemma 3.5 (i) gives
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(KK∗)ij = ui1uj1 + ui2uj2

E
[
(KK∗)ij

∣∣W ]
=

2
n

δij(5.10)

(KC2K
∗)ij = ui1uj2 − ui2uj1

E
[
(KC2K

∗)ij

∣∣W ]
= 0(5.11)

Thus

n

ε2
E
[
Wε −W

∣∣W ]
= −n

2
E
[
Tr (AKK∗M)

∣∣W ]
+

n

ε
E
[
Tr (AKC2K

∗M)
∣∣W ]

= −W,

(5.12)

and the first condition of Theorem 5.3 holds with λ = 1
n . To check the second condition

of the theorem and determine the Eij , the following three expressions are needed:

E
[(

Re(Wε −W )
)2∣∣W]

=
1
2

Re
[
(Wε −W )2 + |Wε −W |2

]
,

E
[(

Im(Wε −W )
)2∣∣W]

=
1
2

Re
[
|Wε −W |2 − (Wε −W )2

]
,

E
[(

Re(Wε −W )
)(

Im(Wε −W )
)∣∣W ]

=
1
2

Im
[
(Wε −W )2

]
.

By (5.9),

lim
ε→0

1
ε2

E[(Wε − W )2
∣∣W ]

= lim
ε→0

E
[
(Tr (AKC2K

∗M))2
∣∣W]

= E

∑
i,j,k,l

aiimjiakkmlk(ui1uj2 − ui2uj1)(uk1ul2 − uk2ul1)

∣∣∣∣∣∣W
(5.13)

Recall (see Lemma 3.5 (vi)) that

E[(ui1uj2−ui2uj1)(uk1ul2 − uk2ul1)]

= −
2δilδjk(1− δij)
(n− 1)(n + 1)

+
2δijδkl(1− δik)
(n− 1)n(n + 1)

− 2I(i = j = k = l)
n(n + 1)

.
(5.14)
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Let
∑′

i,j

stand for summing over all pairs (i, j) where i and j are distinct. Putting

(5.14) into (5.13) and using the independence of M and U gives:

lim
ε→0

1
ε2

E
[
(Wε −W )2

∣∣W]
=

2
(n− 1)(n + 1)

E

−∑′

i,j

aiiajjmijmji +
1
n

∑′

i,k

aiiakkmiimkk

−
(

n− 1
n

)∑
i

a2
iim

2
ii

∣∣∣∣∣W
]

=
2

(n− 1)(n + 1)
E

[
−

(
Tr ((AM)2)−

∑
i

(AM)2ii

)

+
1
n

(
W 2 −

∑
i

(AM)2ii

)
− n− 1

n

∑
i

(AM)2ii

∣∣∣∣∣W
]

=
2

(n− 1)(n + 1)
E
[
−Tr ((AM)2) +

1
n

W 2

∣∣∣∣W]
.

(5.15)

Next,

lim
ε→0

1
ε2

E[|Wε − W |2
∣∣W ]

= lim
ε→0

E
[
|Tr (AKC2K

∗M |)2
∣∣W]

= E

∑
i,j,k,l

aiimjiakkmlk(ui1uj2 − ui2uj1)(uk1ul2 − uk2ul1)

∣∣∣∣∣∣W
 .(5.16)

From Lemma 3.5 ((vii)),

E
[
(ui1uj2−ui2uj1)(uk1ul2 − uk2ul1)

]
=

2δikδjl(1− δij)
(n− 1)(n + 1)

− 2δijδkl(1− δik)
n(n− 1)(n + 1)

+
2I(i = j = k = l)

n(n + 1)
,

(5.17)
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thus

lim
ε→0

1
ε2

E
[
|Wε −W |2

∣∣W]
=

2
(n− 1)(n + 1)

E

∑′

i,j

a2
ii|mji|2 −

∑′

i,j

aiiajjmiimjj +
n− 1

n

∑
i

a2
ii|mii|2

∣∣∣∣∣∣W


=
2

(n− 1)(n + 1)
E

∑
i

a2
ii(1− |mii|2)−

∣∣∣∣∣∑
i

aiimii

∣∣∣∣∣
2

+
∑

i

a2
ii|mii|2 +

n− 1
n

∑
i

a2
ii|mii|2

∣∣∣∣∣W
]

=
2
n

+
2(1− |W |2)

(n− 1)n(n + 1)
,

(5.18)

where the normalization tr(AA∗) = n has been used to get the last line.

Using (5.15) and (5.18) now gives

lim
ε→0

1
ε2

E
[(

Re(Wε −W )
)2∣∣W ]

=
1
n

+
1

(n− 1)(n + 1)
Re
[
1− |W |2

n
+

W 2

n
+ E

[
−Tr ((AM)2)

∣∣W ]]
,

lim
ε→0

1
ε2

E
[(

Im(Wε −W )
)2∣∣W ]

=
1
n

+
1

(n− 1)(n + 1)
Re
[
1− |W |2

n
− W 2

n
+ E

[
Tr ((AM)2)

∣∣W ]]
,

and

lim
ε→0

1
ε2

E
[(

Re(Wε −W )
)(

Im(Wε −W )
)∣∣W ]

=
1

(n− 1)(n + 1)
Im E

[
−Tr ((AM)2) +

W 2

n

∣∣∣∣W]
.
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This gives, for Eij as in Theorem 5.3 for the random variable
√

2W ,

E11 = lim
ε→0

2
ε2

E
[(

Re(Wε −W )
)2∣∣W]

− 2
n

=
2

(n− 1)(n + 1)
Re
[
1− |W |2

n
+

W 2

n
+ E

[
−Tr ((AM)2)

∣∣W ]]
,

E22 = lim
ε→0

2
ε2

E
[(

Im(Wε −W )
)2∣∣W]

− 2
n

=
2

(n− 1)(n + 1)
Re
[
1− |W |2

n
− W 2

n
+ E

[
Tr ((AM)2)

∣∣W ]]
,

E12 = lim
ε→0

2
ε2

E
[(

Re(Wε −W )
)(

Im(Wε −W )
)∣∣W ]

=
2

(n− 1)(n + 1)
Im E

[
−Tr ((AM)2) +

W 2

n

∣∣∣∣W]
.

The normalization is such that E|W |2 = 1, so the first two terms of both E11 and

E22 each have expectations bounded by 2
n(n−1)(n+1) . It remains to bound E|Tr ((AM)2)|.

Making use of Lemma 3.5,

E
∣∣Tr ((AM)2)

∣∣2 = E
[
Tr ((AM)2)Tr ((AM)2)

]
= E

∑
i,j,k,`

aiiajjakka``mijmjimk`m`k


=

1
(n− 1)(n + 1)

∑
i,j,k,`

aiiajjakka``

[
δikδj`(1− δij) + δi`δjk(1− δik)

+
(

2(n− 1)
n

)
I(i = j = k = `)

]

=
2

(n− 1)(n + 1)

∑′

i,j

a2
iia

2
jj +

(
n− 1

n

)∑
i

a4
ii


=

2
(n− 1)(n + 1)

[
n2 −

∑
i

a4
ii +

(
n− 1

n

)∑
i

a4
ii

]

= 2 +
2

(n− 1)(n + 1)
− 2

(n− 1)n(n + 1)

∑
i

a4
ii

≤ 2 +
2

(n− 1)(n + 1)
.



76 5. MULTIVARIATE NORMAL APPROXIMATION

This completes the proof. �

5.4. Rank k projections of Haar measure on On

In this section, the result of section 3.1 on the asymptotic normality of rank 1 pro-

jections of Haar measure on the orthogonal group is extended to rank k projections for

k = o(n2/3). This is also a comparison theorem between Gaussian matrices and Haar

distributed matrices as discussed in section 3.1, since for Gaussian matrices, all lower

dimensional projections are Gaussian.

Theorem 5.7. Let B1, . . . , Bk be linearly independent n × n matrices over R such

that Tr (BiB
t
i) = n for each i. Let bij = Tr (BiB

t
j). Let M be a random orthogonal matrix

and let

W = (Tr (B1M),Tr (B2M), . . . ,Tr (BkM)) ∈ Rk.

Let Y = (Y1, . . . , Yk) be a random vector whose components are standard normals, with

covariance matrix 1
n (bij)

k
i,j=1. Then

sup
‖f‖L≤1

∣∣Ef(W )− Ef(Y )
∣∣ ≤ 2

√
λk3/2

n− 1

for n ≥ 3, where λ is the largest eigenvalue of 1
n (bij)

k
i,j=1 and ‖f‖L is the Lipschitz norm

of f .

This theorem follows fairly easily from the following special case.

Theorem 5.8. Let A1, . . . , Ak be n×n matrices over R satisfying Tr (AiA
t
j) = nδij ;

for i 6= j, Ai and Aj are orthogonal with respect to the Hilbert-Schmidt inner product.

Let M be a random orthogonal matrix, and consider the vector

W = (Tr (A1M),Tr (A2M), . . . ,Tr (AkM)) ∈ Rk.

Let Z = (Z1, . . . , Zk) be a random vector whose components are independent standard

normal random variables. Then for f : Rk → R bounded and Lipschitz,

∣∣Ef(W )− Ef(Z)
∣∣ ≤ 2‖f‖Lk3/2

n− 1
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for n ≥ 3.

Remark: The rate of k3/2

n is probably not sharp. If Ai has (Ai)1i =
√

n and

(Ai)jk = 0 otherwise, then the random vector W above is just
√

n times the first k

entries of the i-th column of M . But a column of M is distributed as a random point

on Sn−1, so this reduces to the previous example, where the rate was on the order k
n . It

is argued on page 406 of [36] that the rate k
n (in the total variation distance) is sharp,

suggesting that k
n is the best one can hope for. It does not follow formally that k

n is a

lower bound, as the dual-Lipschitz distance is weaker than the total variation distance.

Example. Let M be a random n× n orthogonal matrix, and let

0 < a1 < a2 < . . . < ak = n.

For each 1 ≤ i ≤ n, let

Bi =
√

n

ai
Iai ⊕ 0n−ai ;

Bi has
√

n
ai

in the first ai diagonal entries and zeros everywhere else. If i ≤ j, then

〈Bi, Bj〉HS = n
√

ai
aj

; in particular, 〈Bi, Bi〉HS = n. The Bi are linearly independent

w.r.t. the Hilbert-Schmidt inner product since the ai are all distinct, so to apply Theorem

5.7, we have only to bound the eigenvalues of the matrix
(√

amin(i,j)

amax(i,j)

)k

i,j=1
. But this is

easy, since |λ| ≤
√∑k

i,j=1
amin(i,j)

amax(i,j)
≤ k for all eigenvalues λ (see, e.g., [14], page 7). It

now follows from Theorem 5.7 that if Y is a vector of standard normals with covariance

matrix
(√

amin(i,j)

amax(i,j)

)k

i,j=1
and W = (Tr (B1M), . . . ,Tr (BkM)), then

sup
‖f‖L≤1

∣∣Ef(W )− Ef(Y )
∣∣ ≤ 2k2

n− 1
.

Proof of Theorem 5.7 from Theorem 5.8. Perform the Gram-Schmidt algo-

rithm on the matrices {B1, . . . , Bk} with respect to the Hilbert-Schmidt inner product

〈C,D〉 = Tr (CDt) to get matrices {A1, . . . , Ak} which are mutually orthogonal and have
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H-S norm
√

n. Denote the matrix which takes the B’s to the A’s by C−1; the matrix is

invertible since the B’s are linearly independent. Now by assumption,

bij = 〈Bi, Bj〉

=

〈∑
k

cikAk,
∑

l

cjlAl

〉

= n
∑

k

cikcjk.

Thus CCt = 1
n (bij)

k
i,j=1 .

Now, let f : Rk → R with ‖f‖L ≤ 1. Define h : Rk → R by h(x) = f(Cx). Then

|h|L ≤
√

λ, since the operator norm of C as a function from Rk to itself is bounded by

the largest singular value of C. By Theorem 5.8,

∣∣Eh(Tr (A1M), . . . ,Tr (AkM))− Eh(Z)
∣∣ ≤ 2

√
λk3/2

n− 1

for Z a standard Gaussian random vector in Rk. But C
(
Tr (A1M), . . . ,Tr (AkM)

)
=(

Tr (B1M), . . . ,Tr (BkM)
)

and CZ has standard normal components with covariance

matrix 1
n (bij)

k
i,j=1 . �

Proof of Theorem 5.8. Make an exchangeable pair (M,Mε) as before; Mε =

UAεU
tM , where U is a random orthogonal matrix independent of M and

Aε =

√1− ε2 ε

−ε
√

1− ε2

⊕ 0n−2.

Let Wε = (Tr (A1Mε), . . . ,Tr (AkMε)).

Recall from section 3.1 that

(5.19) Mε −M = ε

[(
−ε

2
+ O(ε3)

)
KKt + KC2K

2

]
M,
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where K is the first two columns of U and C2 =

 0 1

−1 0

. It follows that

(Wε)i −Wi = ε

[(
−ε

2
+ O(ε3)

)
Tr (AiKKtM) + Tr (AiKC2K

2M)
]

.

As in section 3.1, E
[
KKt

]
= 2

nI and E
[
KC2K

t
]

= 0, and so

lim
ε→0

n

ε2
E
[
Wε −W

∣∣W ]
= −W.

Condition 1 of Theorem 5.3 is thus satisfied with λ = 1
n . If α 6= β, Eαβ is computed as

follows. For notational convenience, write Aα = A = (aij) and Aβ = B = (bij), and let∑′
denote summing over distinct indices. By (5.19),

lim
ε→0

1
ε2

E
[
(Wε −W )α(Wε −W )β

∣∣W ]
= E

[
Tr (AKC2K

tM) Tr (BKC2K
tM)

∣∣W ]
,

(5.20)
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since all of the other terms in the product are of higher order in ε. Making use of Lemma

3.3 (iv),

E
[
Tr (AKC2K

tM) Tr (BKC2K
tM)

∣∣W ]
= E

 ∑
i,j,k,l,p,q

aikbjpmlimqj(uk1ul2 − uk2ul1)(up1uq2 − up2uq1)
∣∣W


= E

∑
ij

∑′

kl

∑′

p,q

aikbjpmlimqj

(
2

n(n− 1)

)
(δkpδlq − δkqδlp)

∣∣W


=
2

n(n− 1)

∑
i,j

∑′

k,l

aikbjkmlimlj −
∑
i,j

∑′

k,l

aikbjlmlimkj

∣∣∣∣∣∣W


=
2

n(n− 1)
E

∑
i,j

(∑
k

aikbjk

)(∑
l

mlimlj

)
−
∑
i,j,k

aikbjkmkimkj

−
∑
i,j

(∑
k

aikmkj

)(∑
l

bjlmli

)
+
∑
i,j,k

aikbjkmkimkj

∣∣∣∣∣∣W


=
2

n(n− 1)
E

−∑
i,j

(AM)ij(BM)ji

∣∣∣∣∣∣W


=
−2

n(n− 1)
E
[
Tr (AMBM)

∣∣W ]
,

(5.21)

where the orthogonality of the columns of M was used to get the second-last line. In

section 3.1 it was shown that

(5.22) lim
ε→0

1
ε2

E
[
(Wε −W )2i

∣∣W ]
=

2
n

+
2

n(n− 1)
E
[
1− Tr ((AiM)2)

∣∣W ]
,

thus

Eii =
2

n(n− 1)
E
[
1− Tr ((AiM)2)

∣∣W ]
.

It remains to estimate E
(
E2

ij

)
. Claim:

(i) If n ≥ 3, then E
(
Tr ((AiM)2)− 1

)2 ≤ 4 for all i

(ii) If n ≥ 2, then E (Tr (AiMAjM))2 ≤ 4 for all i and j with i 6= j.
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The claim gives that E(E2
ij) ≤ 16

n2(n−1)2
for all i, j, which together with Theorem 5.3

proves Theorem 5.8.

It remains to prove the claim. In fact, part (i) of the claim was proved in section 3.1,

as the last step in the proof of Theorem 3.1.

The second part of the claim is messier than the first, since the matrices Ai and Aj

cannot be simultaneously diagonalized in general. However, we can assume (making use

of the singular value decomposition as always) that one of the two parameter matrices

is diagonal. Again write Ai = A and Aj = B, and suppose that A is diagonal. The

strategy is to write Tr (AMBM) in components, break up the sums according to the

equality structure of the indices, use Lemma 3.3 and collect terms.
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E
(
Tr (AMBM)

)2 = E

 ∑
i,j,k,α,β,γ

aiiaααbjkbβγmijmkimαβmγα


=
∑

i

a2
iib

2
iiE
[
m4

ii

]
+
∑′

i,j

a2
iib

2
jiE
[
m2

iim
2
ij

]
+
∑′

i,j

aiiajjbiibjjE
[
m2

iim
2
jj

]
+
∑′

i,j

aiiajjbijbjiE [miimijmjimjj ] +
∑′

i,j

a2
iib

2
ijE
[
m2

iim
2
ji

]
+
∑

i

∑
j 6=i
k 6=i

aii2b
2
jkE

[
m2

ijm
2
ki

]
+
∑′

i,j

aiiajjbijbjiE [miimijmjimjj ]

+
∑′

i,j

aiiajjbiibjjE
[
m2

ijm
2
ji

]
=

3
n(n + 2)

∑
i

a2
iib

2
ii +

1
n(n + 2)

∑′

i,j

a2
iib

2
ji +

n + 1
(n− 1)n(n + 2)

∑′

i,j

aiiajjbiibjj

− 1
(n− 1)n(n + 2)

∑′

i,j

aiiajjbijbji +
1

n(n + 2)

∑′

i,j

a2
iib

2
ij

+
n + 1

(n− 1)n(n + 2)

∑
i

∑
j 6=i
k 6=i

a2
iib

2
jk −

1
(n− 1)n(n + 2)

∑′

i,j

aiiajjbijbji

+
n + 1

(n− 1)n(n + 2)

∑′

i,j

aiiajjbiibjj

=
−2

(n− 1)n(n + 2)

∑
i,j

a2
iib

2
ij +

∑
i,j

a2
iib

2
ji

+
2(n + 1)

(n− 1)n(n + 2)

∑
i,j

aiiajjbiibjj

− 2
(n− 1)n(n + 1)

∑
i,j

aiiajjbijbji +
n(n + 1)

(n− 1)(n + 2)
.

Now, ∑
i,j

aiiajjbiibjj ≤

(∑
i

a2
ii

)(∑
i

b2
ii

)
≤ n2.

By the Cauchy-Schwarz inequality,∣∣∣∣∣∣
∑
i,j

aiiajjbijbji

∣∣∣∣∣∣ ≤
√√√√√
∑

i,j

a2
iia

2
jj

∑
i,j

a2
ijb

2
ji

.
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Now,

∑
i,j

a2
iia

2
jj =

(∑
i

a2
ii

)2

= n2.

By repeated application of the Cauchy-Schwarz inequality,

∑
i,j

b2
ijb

2
ji ≤

∑
i,j

b4
ij ≤

∑
i,j

b2
ij

2

= n2.

It follows that ∣∣∣∣∣∣
∑
i,j

aiiajjbijbji

∣∣∣∣∣∣ ≤ n2,

and so

E
(
Tr (AMBM)

)2 ≤ 3n(n + 1)
(n− 1)(n + 2)

+
2

(n− 1)n(n + 2)
= 3+

2
(n− 1)(n + 2)

[
1 +

1
n

]
≤ 4

for n ≥ 2. This proves the second claim.

�
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