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Abstract. Dixon’s elliptic functions parameterize the real sextic trefoil curve
by arc length and the complex curve as an embedded Platonic surface with
18 (or 108) faces.

1. Introduction

The purpose of this paper is to give a detailed description of the trefoil, a sextic
curve whose exceptional properties set it apart from other algebraic plane curves
of low degree. The trefoil T has polar equation r3 = 2A cos(3θ) and is given by
(x2 + y2)3 = A(2x3 − 6xy2), in rectangular coordinates. (Except once in §9, we
will use A = 1.)

Arc length parameterization of T will be simply expressed in terms of certain
elliptic functions known as Dixon functions. This is already unusual, for no other
elliptic curve f(x, y) = 0 of low degree (d < 8) can be so parameterized by elliptic
functions [18]; allowing genus zero, only the Bernoulli lemniscate has such unit
speed parameterization [12].

Further, the arc length parameterization of the trefoil will be shown to be
equivariant with respect to a 54-element symmetry group of the underlying el-
liptic curve and corresponding projective symmetry group Sym(T ) ⊂ PGL(3,C)
(Theorem 1).

In this sense, arc length parameterization provides the trefoil’s structure as a
genus one Platonic surface, whose 18 equilateral-triangular faces may be arbitrarily
exchanged and rotated, like the faces of an icosahedron.

This too is reminiscent of the Bernoulli lemniscate; however, it is a rational
parameterization which realizes the lemniscate’s octahedral group of projective
symmetries [15] (while its arc length parameterization has a smaller symmetry
group [16]).
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The existence of arc length parameterizations by elliptic functions is also of
algebraic and number-theoretic significance for these curves. Indeed, the lemniscate
and trefoil are among only a handful of curves known to satisfy uniform subdivision
theorems.

The classical result of Gauss and Lambert asserts that the regular n-gon may
be constructed by straightedge and compass if and only if n = 2jp1 . . . pn is a power
of two times a product of distinct Fermat primes pk = 22

m

. Similarly, Abel showed
that the Bernoulli lemniscate could be uniformly subdivided for precisely the same
integers n. Both results may be said to belong to the province of Galois theory;
while the former result is built on the angle addition identities for the circular
functions sin s, cos s, Abel’s deeper result depends on identities for the lemniscate
elliptic functions sl s, cl s,dl s and the existence of complex multiplication on the
underlying elliptic curve [21], [20].

Likewise, the result of Cox and Shurman [8] on uniform subdivision of the
(12th-degree) clover—by extraction of square roots and cube roots, under number-
theoretic conditions involving Pierpont primes—is built on the third clover func-
tion ϕ3(x) (which arises directly from the elliptic arc length integral for clovers).
The corresponding result was shown to hold for the trefoil [17], again using ϕ3(x).

Presently, the Dixon functions and the trefoil turn out to be a perfect fit.
Since these functions are not very well known, we will provide some background.
In particular, we present a number of relevant identities and apply them first to
the Fermat cubic x3 + y3 = 1, a simpler curve with the same group of projective
symmetries as T .

The trefoil and its parameterization will then be obtained from the latter non-
singular cubic via quadratic transformation, which turns the cubic’s nine inflection
points into three triple points of T while preserving all symmetries. Though iden-
tical as a Riemann surface, the resulting sextic T thereby acquires precisely the
necessary (highly inflectional) behavior at its ideal triple points to be meromor-
phically parameterizable by arc length. Once again, this parallels the case of the
lemniscate (a triflecnodal quartic obtained by inversion of a quadric).

To conclude this introduction, Figure 1 illustrates several of the trefoil’s note-
worthy features:

1. Unit speed parameterization γ(s) = x(s) + iy(s) of T (red) extends mero-
morphically to all ζ = s + it ∈ C. T has foci at the cube roots of unity
1, ω = e2πi/3, ω2. Removing ‘focal rays’ [ωj ,∞), the curvilinear tiling on the
remaining domain is the conformal, γ-image of a (standardly tiled) hexagon.
Odd vertices are simple poles γ(v2j+1) = ∞, and even vertices are mapped
to foci, γ(v2j) = ωj , where angles are tripled.

2. γ : C → S2 defines time-periodic evolution of closed curves in the Riemann
sphere S2 = C∪{∞}; ignoring tile colorings, the figure is simply the (many-
to-one) γ-image of a family of horizontal lines. Evolved curves u 7→ γj(u) =
γ(u+itj) are shown for uniformly spaced ‘times’ t0 = 0, . . . , t12; in particular,
γ0 = γ12 is the (real) trefoil, γ4 is the trihyperbola—the inverse of T in the unit
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Figure 1. The trefoil family of sextics γ(u+ itj).

circle γ8. The remaining curves belong to a continuous family γt of algebraic
curves of degree six [18]. (γt represents a closed geodesic in a symmetric space
geometry of analytic curves [4], [5].)

3. The discrete family of curves {γj}, j = 0, . . . , 11, subdivide the real trefoil
γ0 into 36 arcs of equal length. The subdivision points, like all intersection
points z = x + iy in the figure, have algebraic coordinates; in fact, x and y
can be expressed via square roots, cube roots and rational operations.

4. γ(ζ) defines a three-to-one branched covering of the Riemann sphere S2 by a
torus T 2, ramified over foci ωj . Namely, each point z 6= 1, ω, ω2 is a point of
threefold (60◦) intersection of arcs z ∈ γt1 ∩ γt2 ∩ γt3 . The torus is abstractly
T 2 ' C/Z[ω] (quotient of C by Eisenstein integers).

5. The curves γt may be described as images of parallel geodesics of the elliptic
curve T ' C/Z[ω] under isotropic projection. In fact, the complex trefoil
may be parameterized by isotropic coordinates according to: (x+iy, x−iy) =
(γ(ζ), γ(−ζ)) ⊂ C2. Taking the first coordinate γ(ζ) corresponds to (complex)
linear projection from one of the trefoil’s two ideal triple points, the three
branches of which project to foci.
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2. Dixon’s elliptic functions

Elliptic functions were discovered by Niels Henrik Abel, who defined them as in-
verse functions of elliptic integrals of the first kind. The theory of elliptic functions
was developed by Carl Gustav Jacobi, who introduced the Jacobi Elliptic Func-
tions snu, cnu,dnu in 1829; these functions are adapted to quartic elliptic curves

y2 = (1− x2)(1− k2x2).

(The lemniscate arc length leads to the case k = i.)
Later, Karl Weierstrass developed the theory using what are now known as

the Weierstrass ℘ functions; these naturally parametrize cubics in the Weierstrass
form

y2 = 4x3 − g2x− g3.
The Dixon elliptic functions, which first appeared in 1890 [9], are based on

the curves

x3 + y3 − 3axy = 1.

We are interested in the case of the Fermat cubic, a = 0, for which the functions
display a special hexagonal symmetry. (As indicated in §10, this is the case g2 = 0
in the Weierstrass theory, the other distinguished case, g3 = 0, being that of the
lemniscate.)

Indeed, the Dixonian sine sm z can be used to map a regular hexagon onto the
Riemann sphere; the hexagon interior is mapped conformally onto the complement
of the three rays joining ∞ to a cube root of unity. The equation sm z = tan p

2e
iλ

associates the point in the hexagon with complex coordinate z = x+ iy with the
point in the sphere with latitude π/2 − p and longitude λ. This accounts for the
extensive investigation of the case a = 0 in a work on geodesy [2] (see pp. 68–75).

Aside from the old references [9] and [2], there appears not to be much liter-
ature on the Dixon functions per se. However, much more recently, these functions
were singled out as functions of special interest in combinatorics and probability
because of the unusual continued fraction expansions of related Laplace transforms
[7].

The function w = sm z is implicitly defined for real z by the equation

z =

∫ w

0

dx

(1− x3)2/3
, (2.1)

and cm z is subsequently defined by the relation

sm3 z + cm3 z = 1. (2.2)

Then sm(0) = 0, cm(0) = 1, and

d

dz
sm z = cm2 z,

d

dz
cm z = − sm2 z. (2.3)

Indeed, this first order system may be used to define sm z and cm z (and serves as
the starting point for the theory developed in [7]).
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Figure 2. Conformal mapping from disk to triangle.

We note that the above integral is the case n = 3 of the integral z =∫ w
0

dx
(1−xn)2/n

considered in 1864 by H. A. Schwarz. Along the circle w = eiθ,

the integral has derivative
dz

dθ
=

ieiθ

(1− einθ)2/n
=

i

(−2i sin nθ
2 )2/n

; so arg(z′(θ)) is

piecewise constant, with jumps at zeros of sinnθ/2. It then follows by complex
function theory that w 7→ z defines a conformal mapping of the unit disc onto a
regular n-gon.

Figure 2 shows the mapping in the (exceptionally nice) case n = 3. The in-
verse mapping w = sm z is initially defined on a triangular tile, which sm maps
to the disk; but the Schwarz symmetry principle allows one to extend sm to map
an adjacent tile to the exterior of the disc. Iterating the procedure, one obtains
a doubly periodic, meromorphic function on the complex plane, whose symme-
try properties may be understood in terms of the standard tiling by equilateral
triangles.

Corresponding arguments apply to the case n = 4, the lemniscate sine sl z
and associated square tiling. It happens that such mapping properties were not
understood until after the lemniscate integral had already played a major role in
the development of elliptic integrals.

Oddly, it was not until 1896 that Cayley [6] explicitly identified the above
map w 7→ z (2.1) as an elliptic integral, thus paving the way for the development
of the formal properties of sm z and cm z as elliptic functions.

To be more specific, let

K =

∫ 1

0

dx

(1− x3)2/3
=

1

3

(Γ( 1
3 ))2

Γ( 2
3 )

= 1.76663875...,
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Here, the substitution t = x3 yields K in terms of a beta function, K = 1
3B( 1

3 ,
1
3 ),

consequently in terms of the gamma function Γ(x) by Binet’s formula ([22], p.204).

Then sm z and cm z have periods p1 = 3K and p2 = 3ωK, where ω = −1+i
√
3

2 is a
cube root of unity:

sm(z + 3ωjK) = sm z, cm(z + 3ωjK) = cm z, j = 0, 1, 2 (2.4)

(Of course p3 = 3ω2K is not independent; p1 + p2 + p3 = 0.)
As for any elliptic functions, one can describe the values of sm z and cm z,

z ∈ C, via a tiling of the plane by copies of a ‘period parallelogram’ P whose
edges corresponding to the pair of periods. Alternatively, these functions are well-
defined on the torus Σ = C/Π defined as the quotient of C by the lattice of
periods Π = {jp1 + kp2}. Thus, e.g., the parameterization (2.2) identifies the
Fermat cubic as an elliptic curve; topologically, the curve is a torus obtained from
P with opposite edges identified via p1 and p2.

However, this elliptic curve is exceptional: The lattice Π—a scaling of the
Eisenstein integers Z[ω]—is hexagonal. The special 120◦-rotational symmetry of
the lattice, ωΠ = Π, is crucial for all that follows.

To discuss this symmetry in terms of the elliptic functions sm z and cm z,
observe that the substitution x 7→ ωx results in multiplication of the integral (2.1)
by ω, and the corresponding symmetry follows for the inverse function sm z. In
fact, we have the identities,

sm(ωz) = ω sm z, cm(ωz) = cm z, (2.5)

which correspond to sm z = Σ∞n=0anz
n having only powers of z of order 3k+1 and

cm z having only powers of z3.
Incidentally, this yields the second period as an immediate consequence of

the first: sm(z + 3ωK) = ω sm(ω2z + 3K) = ω sm(ω2z) = sm z and likewise for
cm z.

3. The Eighteen (or 108) Triangles of Σ

To make a musical analogy: If a doubly periodic function repeats on each translate
of a period parallelogram P , it may be said to repeat with variation on subtiles of
P . This applies to sm z and cm z con forza!

Consider the lattice of inflections Λ = {(j+kω)K}—the set of zeros and poles
of sm′′ z or cm′′ z (see also Remark 5.2). There is a corresponding triangulation of
P by 18 equilateral triangles. Figure 3 (left) shows (red, white, blue) points of Λ
and the triangulated P .

Some of the relevant identities for sm z and cm z do not appear in [2] or [9],
but follow easily from the addition formulas (see §10). To begin, sm z, cm z vary
under Λ-translations via reciprocals and quotients:

sm(z + ωjK) =
ωj

cm z
, cm(z + ωjK) = − sm z

ωj cm z
, j = 0, 1, 2 (3.1)
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Figure 3. Lattice Λ; P and H domains for sm z.

One recovers Equation 2.4 as the third iterate of Equation 3.1.
Likewise, one may refine the rotational symmetry; in fact, denoting sixth root

of unity α = 1+i
√
3

2 = 1 + ω = −ω2, we have

sm(αz) =
α sm z

cm z
, cm(αz) =

1

cm z
(3.2)

Thus, in Equations 2.4, one may replace ω by α. Also, one has

sm(−z) = − sm z

cm z
, cm(−z) =

1

cm z
, (3.3)

the third iterates of Equations 3.2.
Subsequently, one obtains translational symmetries

sm(z + αK) =
cm z

α sm z
, cm(z + αK) =

−α
sm z

, (3.4)

as well as formulas for translation by ‘quasi-periods’ f± =
√

3e±iπ/6K:

sm(z + f+) = ω sm z, cm(z + f+) = ω2 cm z (3.5)

sm(z + f−) = ω2 sm z, cm(z + f−) = ω cm z, (3.6)

which follow using f± = (1± α)K.
We note that the lattice of quasiperiods Λq = {jf+ + kf−} ⊂ Λ may also be

described as the set of zeros of sm z—white points in Figure 3. Likewise, poles of
sm z (and cm z) are the (blue) points αK + Λq, and (red) points K + Λq are all
the preimages of 1, ω and ω2 (zeros of cm z).

We are now in a position to describe the mapping properties of sm z. For this
purpose, it is helpful to refer to the trihexagon H = H0 ∪ H1 ∪ H2 in Figure 3
(right), which is simply a rearrangement of the triangular tiles of P and may be
used in its place as fundamental region. For concreteness, let the origin be the
center of the left hexagonal unit H0 in the trihexagon.
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Now sm z maps the (blue) triangle with vertices K,ωK and ω2K conformally
onto the unit disk, preserving symmetry (sm 0 = 0, smωjK = ωj). Further, the
three 30-120-30-triangles making up the rest of H0 are mapped onto the exterior of
the unit disk (including ∞), in accordance with the Schwarz symmetry principle.

Figure 4. Tiling the plane by trihexagons; subdivision of a tile
into 108 subtiles (30-60-90 triangles).

Next, sm z is extended from H0 to H1 and H2 by quasiperiodicity (3.5, 3.6);
say, on Hj the required rotation of w = sm z is ωj . Finally, the entire plane may
be tiled by trihexagons, as in Figure 4, and sm z is determined on all of these by
periodicity (2.4).

Equivalently, a trihexagon may be taken as the model for the elliptic curve
Σ = C/Π, and sm z may be regarded as a branched triple cover of the Riemann

sphere by the torus; the behavior of sm : Σ→ Ĉ is now fully understood in terms
of just one of the eighteen triangles comprising Σ.

Remark 3.1. As discussed in §9, one may further subdivide H into 108 triangles
(Figure 4) such that the values of sm z on any one determines sm z on all of C by
antiholomorphic reflexion!

4. Σ as a Platonic Surface

The symmetries of sm z and cm z lead us to consider the Riemann surface Σ
with extra structure. Namely, the 9 ‘vertices’ of Λ/Π determine 9 geodesics (with
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respect to the flat metric on Σ = C/{jp1+kp2}), which divide Σ into 18 equilateral
triangular faces with edges of length K. We write Σ18 to denote this triangulated
Riemann surface.

As for any Riemann surface, the full group of automorphisms of Σ includes
a two-parameter abelian subgroup of translations identifiable with the additive
group Σ itself. Aut(Σ) also contains the cyclic subgroup of rotations about the
origin, which may be identified with {αj}6j=1 ' Z6. Then Aut(Σ) ' Σ o Z6.

On the other hand, Aut(Σ18) ⊂ Aut(Σ) is finite since it must preserve the
triangulation. It is in fact the 54-element group Aut(Σ18) ' Z2

3 o Z6. There are
other useful ways of describing the group Aut(Σ18). For the moment, we note
that Z2

3 acts transitively on vertices and therefore Aut(Σ18) acts transitively on
oriented edges. Another way of saying the same thing: Any face may be taken to
any other, and also may be rotated by multiples of 120◦.

In this sense, Σ18 abstractly resembles one of the Platonic polyhedra—say,
an icosahedron—but is topologically a torus rather than a sphere. Such abstract
Platonic surfaces have been investigated extensively in recent years, and have been
classified for all cases of low genus (where ‘low’ means rather high!). The systematic
development of the subject begins with the purely combinatorial notion of regular
map; we prefer the more descriptive terms Platonic map, Platonic surface, etc.,
advocated in the comprehensive investigation [11].

To relate Aut(Σ18) with Dixon function symmetries, we note that factors Z2
3

and Z6 correspond, respectively, to Equations 3.1 and 3.2. To be more explicit, con-
sider the following linear functions on C: Az = αz, and Tjz = z+ωjK, j = 0, 1, 2.
Using the same notations for the induced maps on Σ18, we make the identifications
Z6 = {Ak}6k=0 and Z2

3 = {T j0T k1 }, where 0 ≤ j, k ≤ 2.
The corresponding actions on complex functions w = f(z) are given by pull-

back:

A∗f(z) = f(αz), T ∗j f(z) = f(z + ωjK) (4.1)

In the setting of projective algebraic curves, such ‘symmetries with variation’ for
sm, cm presently become full-fledged symmetries for the curves they parameterize.

5. Symmetries of the Fermat Cubic

The Dixon functions are well-suited for parameterizing any of the three related
curves shown in Figure 5. These are all elliptic curves and turn out to have the
same group of projective symmetries. The three curves may also be considered
equivalent number theoretically; their coordinates are rationally related.

We begin with the Fermat curve F : x3 + y3 = 1. For u ∈ R, γ(u) =
(x(u), y(u)) = (cmu, smu) gives a non-singular parameterization of this ‘cubic
circle’; note γ′(u) = (− sm2 u, cm2 u) does not vanish.

Remark 5.1. The argument u in γ(u) has an elegantly simple geometric meaning
(as observed by Dixon [9], p. 175). Namely, the area swept out by the ray ~γ(µ), 0 ≤
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Figure 5. From left: Fermat cubic x3 + y3 = 1, trihyperbola
2x3 − 6xy2 = 1, trefoil (x2 + y2)3 = 2x3 − 6xy2.

µ ≤ u (see Figure 6) is given by:

A(u) =
1

2

∫ u

0

xdy − ydx =
1

2

∫ u

0

cm3 µ+ sm3 µ dµ =
u

2

Thus, u plays precisely the same role for F as the angle θ plays for the unit
circle—one could say, by precisely the same argument! Or, to give the result a
more dynamical interpretation, u is like time in Kepler’s second law of planetary
motion. Thus, we take the liberty to proclaim

Dixon’s Law: The line from the origin to γ(u) = (cmu, smu) ∈ F sweeps
out equal areas in equal increments of time ∆u.

Below, when the Dixon functions sm s, cm s are used to parameterize the
trefoil T , the argument s will play instead the role of arc length parameter—see
Theorem 9.1 i). The result on uniform divisibility of T by arc length [17] will
translate to a corresponding result on subdivision of the region x3 + y3 ≤ 1, x ≥
0, y ≥ 0 into n sectors of equal area A(K/n) = K/2n. The subdivision is illustrated
in Figure 6 for n = 17.

To discuss projective symmetries of F , we consider the complex projec-
tive plane: CP2 = {[X,Y, Z]}, where X,Y, Z do not vanish simultaneously and
[X,Y, Z] ≡ [λX, λY, λZ] for any multiplier λ ∈ C \ {0}. Then elements of the pro-
jective group PGL(3,C) are represented by non-singular 3× 3 matrices M , where
M ≡ λM .

Convenient homogeneous coordinates for F are x = αX/Z, y = αY/Z, α =
eiπ/3. The resulting equation X3 + Y 3 + Z3 = 0 is preserved by permutation of
coordinates and multiplication of a coordinate by a cube root of unity ωj . In fact,
the group of 54 projective symmetries of the Fermat cubic Sym(F) ⊂ PGL(3,C)
is generated by the latter two types of symmetries.

Namely, Sym(F) contains a subgroup of diagonal matricesM = diag(ωj , ωk, 1),
0 ≤ j, k ≤ 2, with diagonal coefficients chosen from 1, ω, ω2 (normalized to have
last entry one); this subgroup is identified with the nine-element abelian group Z2

3.
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Figure 6. Subdivision of the Fermat cubic’s first quadrant into
n = 17 sectors of area A = K/2n.

There is also the subgroup of permutation matrices—nonsingular matrices formed
with three ones and six zeros—which may be identified with the six-element sym-
metric group S3. This subgroup complements the first, which is normal in Sym(F):
in fact, Sym(F) is the 54-element group naturally presented as a semi-direct prod-
uct: Sym(F) = Z2

3 o S3.

Sym(F) is in fact isomorphic to the earlier-defined symmetry group Aut(Σ18) =
Z2
3 o Z6, and the isomorphism is realized by the parameterization of the Fermat

cubic by Dixon functions,

X(z) = cm z, Y (z) = sm z, Z(z) = α (5.1)

For real values of the parameter z = u ∈ R, p = [X,Y, Z] gives a non-singular
parameterization of the real locus of X3 + Y 3 + Z3 = 0. Further, p(u) extends
meromorphically to C and, by virtue of Equation 2.4, determines a well-defined
map p : Σ→ F ⊂ CP2 (where the values of p at the common poles of cm z, sm z
are represented as p = [1, sm z/ cm z, 0]|z=αωjK = [1, αωj , 0]).

To check that p intertwines the actions of the two symmetry groups Aut(Σ18)
and Sym(F), it suffices to consider A and T1 (see Equation 4.1), since these two
maps generate Aut(Σ18). Using the abbreviations c = cm z, s = sm z, Equa-
tion 3.2 gives A∗p = [A∗c, A∗s, α] = [1/c, αs/c, α] = [1/α, s, c] = [ω2α, s, c] =
diag(ω2, 1, 1)M13p, where M13 ∈ Sym(F) is the permutation matrix which swaps
first and third components. Likewise, Equation 3.1 gives T ∗1 p = [−s/(ωc), ω/c, α] =
[s, α, c] = M123p, where M123 ∈ Sym(F) is cyclic permutation. It follows that for
each g ∈ Aut(Σ18), there is a well-defined Mg ∈ Sym(F) such that the intertwining
formula pg = Mgp holds.

Remark 5.2. A non-singular cubic has nine inflection points. In the Hesse normal
form, pλ = X3+Y 3+Z3+λXY Z = 0, λ3+27 6= 0 (essentially the one Dixon used),
the nine points have been placed in particularly symmetrical position: [0,−ωj , 1],
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[1, 0,−ωj ], and [−ωj , 1, 0], j = 0, 1, 2. These are precisely the points in the image
p(Λ) of the inflectional lattice.

By analyzing the symmetries of the so-called ‘tactical configuration’ of nine
points and twelve lines containing them, one may determine which curves pλ =
0 are equivalent, and determine symmetries of a given such curve. Generically,
|Sym(pλ)| = 18, but the Fermat cubic p0 = 0 has three times as many symmetries
because it is invariant under the transformations [X,Y, Z] → [X,Y, ωjZ]. For
details, see [3], pp. 291–297.

6. The Trihyperpola and Trefoil: A Reciprocal Pair

The trihyperbola H has polar equation 2r3 cos 3θ = 1. This is a convenient scaling
since z ∈ H then satisfies |z3 − 1| = |z|3; that is, H is the locus of points in C
whose distance from the origin equals the geometric mean of the distances to three
foci, 1, ω, ω2.

Squaring the above equation gives z3 + z̄3 = 1. Or, replacing z, z̄ by the
independent, isotropic coordinates, R = x + iy, B = x − iy—in which x, y are
now allowed to be complex—we have R3 +B3 = 1 as the equation of the complex
curve H ⊂ C2. In rectangular coordinates, x = R+B

2 , y = R−B
2i , the equation is

2x3 − 6xy2 = 1.
A linear equivalence, (R,B)↔ (x, y), between H and F has just been given,

and it follows that |Sym(H)| = 54, H is tiled by 18 equilateral triangles, etc. It
is more interesting that these features persist also under inversion of H—a ‘non-
projective equivalence’.

In fact, the trefoil T may be defined by the polar equation r3 = 2 cos 3θ,
in which the radius is the reciprocal of the radius for H. Actually, inversion is
described by z 7→ 1/z (not 1/z̄) and the resulting equation |z3− 1| = 1 shows that
the trefoil is the locus of points z ∈ C the product of whose distances from the
three foci (1, ω, ω2) is one.

The sextic equation R3B3 − R3 − B3 = 0 is obtained for T ⊂ C2; in rect-
angular coordinates, 0 = (x2 + y2)3 + 2x(3y2 − x2). Introducing homogeneous
coordinates via R = αU/W, B = αV/W gives

U3V 3 + U3W 3 +W 3V 3 = 0. (6.1)

Again, the three coordinates may be arbitrarily permuted and multiplied by cube
roots of unity ωj ; in particular, |Sym(T )| = 54.

To be more explicit about the operation of inversion σ, we write σ(R,B) =
( 1
R ,

1
B ), or σ([U, V,W ]) = [ 1

U ,
1
V ,

1
W ] = [VW,UW,UV ]. In the language of projec-

tive geometry, this is a quadratic transformation built on the fundamental triangle
4 = IJK which has vertices at the origin K = [0, 0, 1] and the two ideal points
known as circular points, I = [1, 0, 0], J = [0, 1, 0]. Note: In homogeneous rectan-
gular coordinates [X,Y, Z], the circular points are I = [1,−i, 0] and J = [1, i, 0],
so any circle X2 + Y 2 + Z(aX + bY + cZ) = 0 is seen to contain these points.
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Observe that σ is well-defined, as a mapping on projective space, except at
the vertices I,J ,K. On the complement of the fundamental triangle, UVW = 0, σ
defines an involution. On the other hand, σ collapses each edge of4 to its opposite
point; for instance, the preimage of K is the ideal line W = 0.

This explains the trefoil’s triple point at the origin; namely, the cubic H has
three ideal points (corresponding to its three asymptotes), and these three points
are all sent to K by σ. Likewise, H intersects both of the lines U = 0 and V = 0
three times, and σ turns these into triple points at I and J . These account for all
9 singularities of T , in accord with the Clebsch formula for the genus of a curve

of degree n with δ nodes and κ cusps: 1 = g(T ) = (n−1)(n−2)
2 − δ−κ = 10− 9− 0.

Here we already know that T is an elliptic curve because inversion, though not a
projective transformation, is a Riemann surface equivalence.

One can also see now whyH does not lose symmetry under inversion. Namely,
since any M ∈ Sym(H) also preserves 4, it may be conjugated by σ to give a well-
defined projective symmetry of T ; in fact, writing M as a product of permutation
and diagonal matrices M = PD, we have σMσ = PD−1.

Though the three curves F ,H, T have isomorphic symmetry groups, Sym(T )
is arguably the most tangible. Instead of having to keep track of nine indistinguish-
able inflection points (of F or H), a symmetry of T can be described in terms of
what it does to the triple points I,J ,K.

We can picture both the ‘red circular point’ J and the ‘blue circular point’
I as looking like the triple point at the origin K. Indeed, permutation matrices
P ∈ Sym(T ) permute the three points.

On the other hand, the symmetry [U, V,W ] 7→ [αU,α−1V,W ] fixes each triple
point. This symmetry appears in the real, x, y-plane as rotation about the origin
by 2π/3, and evidently permutes the branches of K cyclically. Since the branches
of J show up as foci of T in Figure 1, it is graphically evident that the branches
of J are likewise permuted (the same holds for I, which is ‘at infinity’ in this
projection).

As Riemann surface automorphisms, neither of the symmetries just men-
tioned has a fixed point—they are translations in the elliptic curve T . There are
in fact several types of symmetries with fixed points; these will be described further
in connection with arc length parameterization of T .

Remark 6.1. The real locus of T , being compact, has further graphical advantages.
For instance, the geometric addition law for (real) points on the elliptic curve T
takes place in a bounded region (|z| ≤ 21/3).

First, consider a pair of points p, q ∈ H, and let L be the line containing
both. Then the point r satisfying p+ q+ r = 0 under addition on H is determined
geometrically as the third point of L∩H; see Figure 7. Next, to determine s = p+q,
we need to define the operation r 7→ −r. This requires fixing an ‘origin’ o ∈ H;
a natural choice is the ideal point o = [X,Y, Z] = [0, 1, 0] corresponding to the
vertical asymptote. Then the vertical line or intersects H at −r = s.
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p

q
r

s=p+q

p

q

r

s

p+q=s

Figure 7. Addition on the cubic H and sextic T = σ(H).

Now σ preserves addition as it transforms the entire construction from left
to right in Figure 7: σ(H) = T , σ(L) = C, a circle through the origin K = σ(o),
and σ(or) = C0, a circle tangent to or at K. We note that, by Bezout’s Theorem,
C intersects T a total of 6 × 2 = 12 times. The triple points at the origin and
two circular points count for 3×3 = 9 points (generically); the remaining 3 points
are labelled p, q, r in the figure. The count for C0 is similar, but C0 meets H four
times at K, so there are only two additional finite points r, s.

To summarize: Given p, q ∈ T , find r as the ‘twelfth’ intersection of T with
the circle through p, q, and the origin; then find s as the ‘twelfth’ intersection with
the tangent circle C0 through r.

7. Parameterization of T
Isotropic coordinate functions R = cm z and B = sm z parameterize the trihyper-
bola R3 +B3 = 1; correspondingly, R(z) = 1/ cm z, B(z) = 1/ sm z parameterize
the trefoil R3+B3 = R3B3. Unfortunately, these do not yield real points for u ∈ R
(e.g., for u = 0).

Yet the latter parameterization satisfies a most fortuitous equation: x′2 +

y′2 = R′B′ = B2

R2 · −R
2

B2 = −1. Better yet, R(z) = 1/ cm iz and B(z) = 1/ sm iz
parameterize T and satisfy the ‘unit speed condition’ R′B′ = 1—whatever that
means!

In fact, we are but a step away from an arc length parameterization of the
real trefoil. But first, it will be useful to introduce ‘twisted’ Dixon functions:

S(z) = sm iz, C(z) = cm iz (7.1)
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Then Equation 2.5 gives at once S(ωz) = ωS(z), C(ωz) = C(z) and

S(αz) =
αS(z)

C(z)
, C(αz) =

1

C(z)
(7.2)

follow likewise from Equation 3.2.
For translational identities, it will be convenient to use the basis

e1 = K/β, e2 = βK, β = eiπ/6 (7.3)

and to adopt the following variants of earlier notations:

Λ′ = {me1 + ne2}, Π′ = {m3e1 + n3e2}, Σ′ = C/Π′ (7.4)

The corresponding Platonic surface Σ′18 is represented in Figure 8, as a triangulated
rhombus spanned by 3e1 and 3e2, with opposite edges identified. The color-coding
for points in Λ′ will be explained shortly.

Figure 8. The Platonic surface Σ′18; pre-images of triple points
(red, white, blue), and real locus (dashed) of T .

The following identities are now easily derived:

S(z + e1) = −ωC(z)

S(z)
, S(z + e2) =

ω

C(z)
(7.5)

C(z + e1) =
ω2

S(z)
, C(z + e2) = −ω

2S(z)

C(z)
(7.6)

Using
√

3K = e1 + e2, these yield quasi-period identities

S(z +
√

3K) = ω2S(z), C(z +
√

3K) = ωC(z), (7.7)
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which will shortly acquire a simple geometric interpretation.

Returning to the parameterization of T , we note that Equations 7.5, 7.6 may
be used with iK = ωe1 to obtain

S(z + iK) = −C(z)

S(z)
, C(z + iK) =

1

S(z)
. (7.8)

Therefore, the substitution z → z + iK turns the previous R,B into:

R(z) = S(z), B(z) = −S(z)

C(z)
= S(−z) (7.9)

Since we have merely translated the parameter, the equations R3 + B3 = R3B3

and R′B′ = 1 continue to hold; but now R(0) = B(0) = 0 and, more generally,
u ∈ R is mapped by p = (R,B) to a real point of T . Thus, we have obtained the
promised parameterization p : Σ′ → T . (Expressions for the corresponding x, y
coordinates are given in §10.)

Referring to Figure 8 as a model of the domain of p, we note that white, red,
and blue dots denote pre-images of the three triple points; respectively, the origin
K, the red circular point J and the blue circular point I. Also, the real axis is the
pre-image of the real locus of T . In other words, for s real, R(s) = S(s) traces the

real trefoil curve in the Gaussian plane. The quasi-period relation S(z +
√

3K) =
ω2S(z) therefore expresses the 3-fold rotational symmetry of the real curve.

Remark 7.1. Since p was just obtained in a rather ad hoc manner, let us now
reconsider arc length parameterization of a curve by first principles. If G(R,B) = 0
is the equation for a curve in isotropic coordinates, then the arc length element
may be expressed

ds2 = dRdB = −GR
GB

dR2 = −GB
GR

dB2 (7.10)

In the case of the trefoil, G(R,B) = 1
R3 + 1

B3 gives ds2 = −B
4

R4 dR
2. We may solve

for dR
ds = R′ = 1/B′, making a choice of sign. Assuming p(0) = (0, 0), the ‘half

way point’ is the trefoil’s intersection with the positive real axis, p(3
√

3K/2) =

( 3
√

2, 3
√

2). Then p = (R,B) is uniquely determined by the following initial value
problem:

dR

ds
= −iB

2

R2
,

dB

ds
= i

R2

B2
(7.11)

R(3
√

3K/2) = B(3
√

3K/2) =
3
√

2 (7.12)

Of course, the solution p(s) also satisfies p(0) = (0, 0), but this is not a priori valid
as initial condition.
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8. Projective symmetries of p : Σ′ → T
To discuss equivariance of p : Σ′ → T , we re-express p in homogeneous coordinates
satisfying Equation 6.1:

p = [U, V,W ] = [R,B, α] = [S,−S
C
, α] (8.1)

The symmetries in the z-plane may be generated by π
3 -rotation A(z) = αz and

the translation E1(z) = z + e1. Equations 7.2, 7.5, 7.6 give:

A∗p = [
αS

C
,−αS, α] = [−ω2 S

C
, ω2S, α] = [ω2V, ω2U,W ],

E∗1p = [−ωC
S
, ω2C,α] = [−ω, ω2S, α

S

C
] = [α, S,−S

C
] = [W,U, V ].

It follows that p : Σ′ → T is equivariant with respect to the 54-element symmetry
groups Aut(Σ′18) and Sym(T ).

Details of the correspondence Aut(Σ′18)
p←→ Sym(T ) are of interest and merit

systematic discussion.
To begin, note that elements of Aut(Σ′18) are induced by orientation-preserving

wallpaper symmetries—that is, affine maps w = f(z) = az + b which preserve the
lattice Λ. These are: Translations generated by E1, E2; rotations about a lattice
point by a multiple of π/3; rotations by ±2π/3 about a tile centroid; π-rotations
about an edge midpoint.

To discuss the various trefoil symmetries we now proceed to: a) Give rep-
resentative affine maps f ; b) Identify fixed points of the induced automorphisms
φ ∈ Aut(Σ′18); c) Describe the corresponding projective symmetries F ∈ Sym(T ).
It will be useful to refer to Figure 8.

1. fjk = Ej
1E

k
2 : Lattice translations fjk induce torus translations φjk, 0 ≤

j, k ≤ 2, which fix no points (φjk 6= Id). As the figure shows (and as ver-
ified above), f10 = E1 corresponds to a projective transformation F10 which
cyclically permutes triple points (likewise F01); on the other hand, F11 pre-
serves triple points but cyclically permutes their branches.

2. f = A : One may picture the fixed point z0 = 0, say, as the second white
point from the left. (To see that φA has just the one fixed point, one may
rearrange the tiles to form a hexagon with center z0 = 0.)

F [U, V,W ] = [V,U, ωW ] swaps I and J and swaps two of the three
branches of K. The tangent lines to T at K have equation 0 = U3 + V 3 =
(U + V )(U + ωV )(U + ω2V ). The vertical tangent 2x = (U + V ) = 0 is
preserved, and the corresponding branch of K = [0, 0, 1] is the unique fixed
point p(0) ∈ T .

3. f = A2 : The rotation f(z) = ωz induces an automorphism φ = φ2A which

fixes the three ‘white points’, 0,
√

3K, 2
√

3K ∈ Σ′18, and F 2[U, V,W ] =

[U, V, ω2W ] takes each branch p(0), p(
√

3K), p(2
√

3K) ofK to itself but ‘spins’
each tangent line U + ωjV = 0 about K by multiplication of its points by ω.
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4. f = A3 : fz = −z induces the ‘standard torus involution’ with four fixed
points. If z0 = 0 is the leftmost white point, φ = φ3A may be pictured,
alternatively, as π-rotation about the central point in the rhombus, z1 =
3
√

3K/2; the other two fixed points are the ‘semi-periods’ 3e1/2, 3e2/2 ∈ Σ′18.
F 3[U, V,W ] = [V,U,W ] swaps I and J and swaps two of the three

branches of K. Each involution in Sym(T ) is conjugate to this one. In par-
ticular, it would now be redundant to consider π-rotation about an edge
midpoint!

5. f = B : Bz = ωz + e1 = ωz + 1−ω√
3
K is rotation about the tile centroid

z2 = K/
√

3. The induced map φB fixes also z2 +
√

3K and z2 +2
√

3K ∈ Σ′18.
FB [U, V,W ] = E1A

2[U, V,W ] = [ω2W,U, V ] permutes triple points cyclically.

Remark 8.1. The last two entries represent a point of contact between symmetry
and uniform subdivision of T . Namely, p(z1) = [ 3

√
2, 3
√

2, α] bisects a leaf of the
trefoil (see Equation 7.12), while p(z2) and p(2z2) trisect a leaf of T .

By the theory of subdivision, the latter points must also be given by values
of the transcendental function smx expressible via square roots and cube roots.
In fact, p(z2) = [e5πi/9, e−5πi/9, α] may be characterized algebraically as a fixed
point of FB ; alternatively, p(z2) is the first intersection of p(x) with the unit circle
(see Figure 1).

9. Reflections and Riemannian symmetries of T
The theory of Platonic surfaces encompasses anti-holomorphic as well as holomor-
phic symmetries of Riemann surfaces. In the present case, the full group of 108
symmetries Aut±(Σ′18) is generated by anti-holomorphic reflections in the three
edges of a small, 30-60-90-triangle τ ⊂ C with one vertex of each type consid-
ered above; say, z0 = 0, z2 = K/

√
3 and z′1 = e2/2. Alternatively, Aut±(Σ′18)

is generated by the subgroup Aut(Σ′18) (‘reflection pairs’) together with a single
reflection—say, reflection across edge z0z2, i.e., complex conjugation.

Each reflection φ ∈ Aut±(Σ′18) has a line Lφ as fixed point set, and the set
of all such lines give the barycentric subdivision of Σ′18. The 108 triangles of the
resulting Platonic surface Σ′108 are permuted simply transitively by Aut±(Σ′108) =
Aut±(Σ′18). (The equivalent Platonic surface Σ108 is modeled by the central tri-
hexagon in Figure 4.)

Since the trefoil parameterization p preserves reality, a corresponding group
Sym±(T ) may be generated by the projective trefoil symmetries Sym(T ), together
the canonical involution on CP2 given by complex conjugation of rectangular co-
ordinates [X,Y, Z] 7→ [X̄, Ȳ , Z̄]; this induces ‘reflection of T in its real locus’ (the
real structure of T ).

We recapitulate the results of the last several sections on trefoil parameteri-
zation and symmetry:
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Theorem 9.1. i) Arc length parameterization of the trefoil p : R → T is given in
isotropic coordinates p = (R,B) via the Dixon sine function by p(s) = (sm is, sm−is);
this uniquely solves Equations 7.11, 7.12.

ii) By analytic continuation and projective completion, p extends to an un-
branched covering p : C→ T ⊂ CP2 with period lattice Π′ (See 7.4). The induced
map on the quotient Σ′ = C/Π′ is 1-1 except that p : Σ′ → T maps the nine ver-
tices of Σ′18 to the trefoil’s three triple points. Thus, p uniformizes T as an elliptic
curve.

iii) p : Σ′108 → T is an isomorphism of Platonic surfaces: To each φ ∈
Aut±(Σ′108), there corresponds a unique symmetry F ∈ Sym±(T ) satisfying Fp =
pφ, and the 108 faces of the trefoil T108 = p(Σ′108) are thereby permuted, simply
transitively, by Sym±(T ) ' Aut±(Σ′108).

Figure 9. Level sets of Gauss curvature (p∗G) of the trefoil.

Remark 9.2. The fit between intrinsic and extrinsic symmetry of T ⊂ CP2 may
be further illuminated by considering the Fubini-Study metric g on CP2 [19]. For

g-symmetry, the scaling A =
√

8 is required in the original equation for T . Then
the induced Riemannian metric on the trefoil, though no longer flat, turns out to
have the same group of 108 Riemannian symmetries. Further, the edges of T108
again belong to geodesics, namely, fixed point sets of isometric reflections. (Details
are discussed for the lemniscate in [15].)

The Gaussian curvature G : T → R of such a metric must have (at least) 54
critical points corresponding to the vertices of T108 since these are fixed points of
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orientation-preserving isometries. Figure 9 shows a level set diagram of the pulled-
back curvature p∗G which suggests that G has precisely 54 critical points. Then
G has just the critical values: Gmax = G(p(0)) = 2, Gmin = G(p(K/

√
3)) = −14,

and

Gsaddle = G(p(z1)) = G([
3
√

2,
3
√

2, α]) = 2− 4
3
√

2 ≈ −3.04

The precise value for Gsaddle is useful for plotting the saddle level set of p∗G—
which apparently consists of nearly straight lines!

10. Appendix

All required identities for sm z and cm z may be recovered from the fundamental
addition and subtraction formulas (see [2], pp. 13–14, or [9], pp. 179–180). Using
the shorthand s1 = smu, s2 = sm v, c1 = cmu, c2 = cm v, the formulas are:

sm(u+ v) =
s21c2 − s22c1
s1c22 − s2c21

=
s1 + s2c2c

2
1

c2 + s1c1s22

cm(u+ v) =
s1c1 − s2c1
s1c22 − s2c21

=
c1c

2
2 − s21s2

c2 + s1c1s22

sm(u− v) =
s21c2 − s22c1
s1 + s2c2c21

=
s1c1 − s2c2
c1c22 − s21s2

cm(u− v) =
s2 + s1c1c

2
2

s1 + s2c2c21
=
c2c

2
1 − s22s1

c1c22 − s21s2
For instance, setting u = z, v = ωjK, the first two equation give Equa-

tion 3.1. Likewise, with u = 0, v = z, the third and fourth equations give Equa-
tion 3.3. This in turn gives Equation 3.2, using αz = −ω2z and Equation 2.5.

It is also useful to be able to express S(z) = sm iz, C(z) = cm iz in terms

of sm z, cm z. Using the identity i = ω−ω2
√
3

, and letting v = u√
3
, the subtraction

formulas give:

sm iu =

√
3i sm v cm v

cm3 v − ω sm3 v
, cm iu =

cm3 v − ω2 sm3 v

cm3 v − ω sm3 v
(10.1)

We can now express the trefoil parameterization 7.9 in rectangular coordinates
x, y. Using the shorthand σ = sm s√

3
, c = cm s√

3
:

x(s) =
R(s) +B(s)

2
=
S(s)(C(s)− 1)

2C(s)
=

i
√

3σc

2(c3 − ω2σ3)
· (ω − ω2)σ3

c3 − ωσ3

= − 3σ4c

2(c6 + σ6 + σ3c3)
= − 3σ4c

2(1− σ3c3)
,

y(s) =
R(s)−B(s)

2i
=
S(s)(C(s) + 1)

2iC(s)
=

√
3σc

2(c3 − ω2σ3)
· 2c3 − (ω + ω2)σ3

c3 − ωσ3
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=

√
3σc(2− σ3)

2(c6 + σ6 + σ3c3)
=

√
3σc(1 + c3)

2(1− σ3c3)
.

Incidentally, these formulas lead to r2 = x2 + y2 =
3σ2c2

1− σ3c3
.

To conclude this appendix, we note that Dixon functions are not built into
the software package Mathematica, which was used to generate figures in this
paper. For purposes of numerical computation, it is quite useful to know that
these functions may be expressed in terms of ‘standard’ functions.

To quote formulas involving the Weierstrass ℘-function, we recall that this

function satisfies a differential equation of the form ℘′
2

= 4℘3 − g2℘ − g3 =
4(℘ − e1)(℘ − e2)(℘ − e3). Here, the critical values of ℘ are distinct: 0 6= [4(e1 −
e2)(e2 − e3)(e3 − e1)]2 = g32 − 27g23 . The most symmetrical cases correspond to
one or the other of g2, g3 vanishing. (By scaling, the remaining coefficient can
normalized to one.) In these two cases only, the quantity λ = e3−e2

e1−e2 yields fewer

than six distinct values under permutation of ej . (See [1], Ch. 7, for an intoduction
to elliptic functions and the Weierstrass theory.)

In fact, g3 = 0 is the harmonic (or lemniscate) case (three λ-values), which
corresponds to a square period lattice. The most symmetric case of all, g2 = 0, is
the equianharmonic case (two λ-values), which is the hexagonal case of the Dixon
functions with a = 0.

For present purposes, a convenient normalization is g2 = 0, g3 = 1
27 . Using

this case of the Weierstrass ℘-function, sm z and cm z may be expressed:

sm z =
6℘(z)

1− 3℘′(z)
, cm z =

3℘′(z) + 1

3℘′(z)− 1

In [7], p.39, these formulas are attributed to Dumont [10].

Elegant as these formulas may be, they still require some care to apply. For
instance, Mathematica reports division by zero when one uses these formulas to
parametrically plot T as p(s) = (<[sm is],=[sm is]), 0 ≤ s ≤ 3

√
3K. Note that

although p(t) should be well-behaved at t = 0, the Weierstrass function itself has
a second order pole at the origin.
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[10] Dominique Dumont, Le paramétrage de la courbe d’équation x3+y3 = 1, Manuscript
(1988), 18 pages.

[11] Maxim Hendriks, Platonic maps of low genus, Thesis, Technische Universiteit Eind-
hoven, 2013.

[12] Joel Langer, On meromorphic parametrizations of real algebraic curves, J. Geom.,
100, No. 1 (2011), 105–128.

[13] Joel Langer and David Singer, Foci and foliations of real algebraic curves, Milan J.
Math., 75 (2007), 225–271.

[14] , When is a curve an octahdron?, Amer. Math. Monthly, 117, No. 10 (2010),
889–902

[15] , Reflections on the lemniscate of Bernoulli: The forty eight faces of a math-
ematical gem, Milan J. Math., Vol 78 (2010), 643–682

[16] , The lemniscatic chessboard, Forum Geometricorum, Vol. 11 (2011), 183–199

[17] , Subdividing the trefoil by origami, Geometry, Vol. 2013, ID 897320.

[18] , Singularly beautiful curves and their elliptic curve families, in preparation.

[19] Linda Ness, Curvature on algebraic plane curves. I, Compositio Mathematica 35
(1977), pp. 57–63.

[20] Michael Rosen, Abel’s theorem on the lemniscate, Amer. Math. Monthly, 88 (1981),
387–395.

[21] Victor Prasolov and Yuri Solovyev, Elliptic Functions and Elliptic Integrals, Transla-
tions of Mathematical Monographs, Vol. 170, American Mathematical Society, Prov-
idence, 1997.

[22] Cornelis Zwikker, The Advanced Geometry of Plane Curves and Their Applications,
Dover, New York, 2005.

Joel C. Langer
Dept. of Mathematics
Case Western Reserve University
Cleveland, OH 44106-7058
USA

e-mail: joel.langer@case.edu



Vol. 99 (9999) The Trefoil 23

David A. Singer
Dept. of Mathematics
Case Western Reserve University
Cleveland, OH 44106-7058
USA
e-mail: david.singer@case.edu


