
Reflections on the Lemniscate of Bernoulli:
The Forty-Eight Faces of a
Mathematical Gem
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Abstract. Thirteen simple closed geodesics are found in the lemniscate. Among
these are nine “mirrors”—geodesics of reflection symmetry—which generate the
full octahedral group and determine a triangulation of the lemniscate as a dis-
dyakis dodecahedron. New visualizations of the lemniscate are presented.

1. Introduction

The plane curve known as the lemniscate of Bernoulli, which resembles ∞, has played
a key role in the history of mathematics (see [15]). Briefly, the lemniscatic integral
for the curve’s arclength was considered by James Bernoulli (1694) in the course of
his investigation of thin elastic rods; Count Fagnano (1718) discovered a formula for
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“doubling the arc” of the lemniscate, based on the lemniscatic integral; Euler (1751)
took the first steps towards extending Fagnano’s formula to a more general addition
theorem for elliptic integrals. Because it had far-reaching consequences, eventually,
Euler’s insight was hailed by Jacobi as the birth of the theory of elliptic functions.

Fagnano’s doubling formula and his related methods for division of a quadrant
of ∞ into two, three, or five equal subarcs by ruler and compass also anticipated
developments in algebra and number theory. Gauss (1796) proved constructibility
of the 17-gon by ruler and compass, which is equivalent to solving the equation
x17 − 1 = 0 by square roots. He later established that the circle can be divided into
n equal parts when n = 2jp1p2 . . . pk, where the integers pi = 22mi + 1 are distinct
Fermat primes. Apparently inspired by Gauss, Abel (1827) presented a proof of
the corresponding result on subdivision of the lemniscate in his treatise on elliptic
functions (see [13] and [12]).

The geometry of the lemniscate is not widely known. Recall that the lemniscate
may be described by the Cartesian equation (x2 + y2)2 = A(x2 − y2); from the polar
coordinate equation, r2 = A cos 2θ, the qualitative picture ∞ of the real curve follows
(for A > 0). If we expand our vision of the lemniscate, however, to include complex
(and infinite) points on the lemniscate, not just the “visible” (real) ones, we can
discover the hidden symmetries it possesses.

The full complex curve looks topologically like a sphere; in other words, as a
complex algebraic curve, the lemniscate ∞ has genus zero. More precisely, it is an
immersed copy of the Riemann sphere S2 = CP 1 in complex projective space CP 2

with three self-intersections. These singularities, known as nodes or double points
(which also happen to be the inflection points of ∞), must be permuted by any
projective transformation taking ∞ to itself. In [9], the authors prove:

Theorem 1.1. The subgroup of the projective group PGL(3, C) describing symmetries
of the lemniscate is abstractly isomorphic to the (24 element) octahedral group O.
Up to projective equivalence, the lemniscate is the unique genus zero curve of degree
less than or equal to four with this property.

The lemniscate may also be characterized as the unique curve in the above class
with Riemannian isometry group isomorphic to O; here, isometries are defined via
the Fubini-Study metric on CP 2 and are projective transformations represented by
unitary matrices.

For a more concrete picture of the complex curve ∞ and its octahedral sym-
metry, one would like to be able to identify all the familiar features of the octa-
hedron within the lemniscate. To do so, we will use the standard model of the
octahedron as a triangulation of the Riemann sphere x2

1 + x2
2 + x2

3 = 1: The six
vertices are (±1, 0, 0), (0,±1, 0), (0, 0,±1), the twelve edges lie in the three geodesics
C1, C2, C3 (great circles) obtained by intersection of the sphere with coordinate
planes x1 = 0, x2 = 0, x3 = 0, which subdivide the sphere into eight faces (octants).

Meanwhile, since the lemniscate is not quite embedded in CP 2, as a topological
copy of S2, the desired translation between sphere and lemniscate will often require



Vol.78 (2010) Refl ections on the Lemniscate of Bernoulli 645

us to identify the latter with its underlying Riemann surface CP 1. In this context, it
is helpful to know that the group of symmetries of ∞ may also be viewed intrinsically
as a subgroup of the Möbius group PGL(2, C), the full group of automorphisms of
CP 1.

Thus, to begin the translation, we note that the six octahedral vertices vj ∈ CP 1

correspond to the three double points of ∞, as one would expect. This is the easy
part! For these points stand out as the only singularities of the lemniscate. To take
the next step, we note that the vertices vj may also be identified, more intrinsically,
as the points in CP 1 whose O-orbits have length six. In fact, all but 26 points of CP 1

belong to orbits of length 24 (we’ll get to the other exceptional points in a moment).
In particular, most edge points “look like” face points from the standpoint of O—
which brings us to the question: How do we unambiguously identify the “octahedral
edges” in ∞?

The plane curve ∞R itself provides the key: As for any real algebraic curve
f(x, y) = 0, complex conjugation of the Cartesian coordinates x, y defines an anti-
holomorphic involution R of ∞ which fixes the real points ∞R = ∞ ∩ RP 2. The
mirror for this orientation-reversing, reflection symmetry of ∞ is the real (projec-
tive) plane M = RP 2 ⊂ CP 2. Turning things around, one could say that the mirror
M determines both the antiholomorphic involution R and the real one-dimensional
curve ∞R.

Returning to the search for octahedral edges, however, it turns out that ∞R

contains, not four, but only two of the vertices vj! Namely, we will eventually find
that the visible double point of ∞ at the origin corresponds to north and south
poles (0, 0,±1) ∈ S2, and ∞R corresponds to a fourth great circle C4—namely, the
one cut out by the plane x1 + x2 = 0. On the other hand, the reflection of S2 which
fixes C4 generates, together with O, the full octahedral group Ô; and this group of
48 elements contains nine reflection symmetries—including the three reflections in
coordinate planes.

The strategy for locating octahedral edges in the lemniscate is now at hand.
Let O act on ∞, and let Ô be the full group of (holomorphic/antiholomorphic)
symmetries generated by O and R. Then locate the curves in ∞ fixed by the three
antiholomorphic reflections R1,R2,R3 ∈ Ô, each of which fixes four of the points
vj. Each of the resulting curves is subdivided by its four vertices into the desired
octahedral edges. Problem solved! (Except for all the details.)

But if the real goal here is to visualize the lemniscate’s remarkable structure as
fully as possible—which it is—why stop now, at this coarse, octahedral triangulation
of the lemniscate? The real lemniscate ∞R is permuted by Ô among six curves,
each of which is fixed by one of the remaining six antiholomorphic reflections R =
R4,R5,R6,R7,R8,R9. The six curves by themselves triangulate ∞ as a tetrakis
hexahedron, with 24 faces, 36 edges and 14 vertices (see Figure 6). Taken together, the
9 = 3 + 6 curves of reflection symmetry triangulate ∞ as a disdyakis dodecahedron,
with 48 faces, 72 edges and 26 = 6 + 8 + 12 vertices (see Figure 7). In this case
the vertices are of three types, formed by the intersection of 4, 3, or 2 of the nine
curves. This fine triangulation, whose 48 faces are permuted simply transitively by
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Ô, provides the most satisfactory visualization of the lemniscate. Half of the faces
are shown in Figure 8, representing one of two sheets of ∞ in isotropic projection.

The Riemannian structure alluded to in Theorem 1.1 provides a concise lan-
guage for carrying the above discussion further. For example, the real lemniscate ∞R

is a simple closed geodesic in the Riemannian lemniscate, meaning the underlying
Riemann surface CP 1, together with the O-invariant Riemannian metric provided
by the theorem.

Theorem 1.2. The Riemannian lemniscate has (at least) 13 simple closed geodesics.
There are exactly 9 such geodesics of isometric reflection symmetry, and these de-
termine an Ô-invariant triangulation T = ∪48

n=1Tn of the lemniscate as a disdyakis
dodecahedron. Each geodesic triangle Tn has angles π

2 , π
3 , π

4 . Reflections Ri,Rj ,Rk in
the three geodesics bounding Tn generate the full octahedral group Ô, which permutes
the triangles of T simply transitively and defines vertex orbits V6,V8,V12.

The latter correspond to the three types of critical points of the lemniscate’s
Gaussian curvature K: On the six octahedral vertices V6, K = Kmax = 2; on V8,
K = Kmin = −7; on V12, K = Ksaddle = −1

4 . Accordingly, the gradient vectorfield
X = ∇K has critical point index sum: χ(S2) =

∑
indX(p) = 6 − 12 + 8 = 2.

Figure 1. Contours and critical points of Gaussian curvature; nine
geodesics of reflection symmetry (gray).



Vol.78 (2010) Refl ections on the Lemniscate of Bernoulli 647

One could say, to stretch the point only a little, such a theorem scarcely requires
proof. The Bernoulli lemniscate is what it is, a mathematical gem. It is also a won-
derful excuse for a leisurely tour, in the spirit of mathematical rediscovery, through
centuries and diverse branches of science and mathematics. We will return from our
excursions with numerous images of the gem, not to mention a veritable menagerie
of mappings and groups: Joukowski and spinor maps; stereographic, isotropic and
(two) Hopf projections; inversion, Cayley, and Cremona transformations; special
linear and projective groups; real and complex orthogonal groups; unitary and ex-
tended unitary groups. And yes, a proof. And yet, by journey’s end, we will hardly
have scratched the surface of the Bernoulli lemniscate.

2. Planets, steam engines and airplanes

The lemniscate is often derived geometrically as a special member of the family of
plane curves known as Cassinians (after the astronomer Cassini considered such
curves, in 1680, as candidates for planetary orbits). Fixing numbers a > c > 0 and
a pair of foci c± = (0,±c), the Cassinian is the locus of points (x, y) the product of
whose distances from c± has the constant value d+d− = a2 − c2. (The analogy to
conics, it will turn out, is more than just that.) The quartic equation of this curve
is (x2 + (y − c)2)(x2 + (y + c)2) = (a2 − c2)2, i.e.,

f(x, y) = (x2 + y2)2 + 2c2(x2 − y2) = a2(a2 − 2c2).

Observe in Figure 2 a) the level sets f(x, y) = a2(a2−2c2) belong to one of three
cases. For B = a2 − 2c2 < 0 the level set consists of a pair of smooth curves, each
with one focus in its interior; for B > 0 the level set is a single smooth curve, which
is non-convex as B first turns positive, becoming convex and increasingly round as
B increases (say, with c fixed). We are particularly interested in the critical level set
f(x, y) = 0, the lemniscate resembling 8—henceforth, our lemniscate stands upright!
The curve meets the y-axis at (x, y) = (0,±

√
2c) and twice at the origin (0, 0).

The angle of self-intersection at this double point (node) is 90◦; for small values of
r4 = (x2 + y2)2, 8 resembles its pair of tangent lines 0 = (x2 − y2) = (x− y)(x + y).

It is well-known that the lemniscate is inverse to a rectangular hyperbola with
respect to a circle—see Figure 2 b). Our (non-standard) use of the term derives from
complex notation, in which the inverse of a point z = x + iy with respect to the
circle |z|2 = x2 + y2 = c2 is given by

σ(z) =
c2

z
=

c2(x − iy)
(x2 + y2)

, (2.1)

with special definitions σ(0) = ∞, σ(∞) = 0. NOTE: We have reason, below, to
prefer the term reflection for the antiholomorphic map ρ(z) = c2

z̄ , standardly called
inversion!

Inversion z 	→ σ(z) is an involutive transformation (σ(σ(z)) = z) which takes
the circle © to itself and interchanges “inside” and “outside”. Let �

� denote the



648 J.C. Langer and D.A. Singer Vol.78 (2010)

Figure 2. a) The lemniscate as Cassinian d+d− = constant;
b) The trio O)(8: The circle, rectangular hyperbola and lemniscate.

hyperbola with equation y2 = x2 + c2/2, and let us rewrite this equation as 0 =
Re[z2] + c2/2. Then z ∈ σ(�

�) implies σ(z) ∈ �
�, i.e., 0 = Re[σ(z)2] + c2/2 =

c4 x2−y2

(x2+y2)2 +c2/2. Since this is just a rearrangement of the equation for 8, we conclude:

σ(�
�) = 8 and σ(8) = �

�. Because of the importance of this relationship, we will
use “O)(8” as typographical shorthand for the trio of curves in Figure 2 b).

Figure 3 shows a three-rod linkage attributed to James Watt (1784) (see [16]).
As the end rods pivot at foci, the middle rod’s midpoint traces out 8; thus, the linkage
could be thought of as a “lemniscate machine” for draftsmen—though Watt himself
had very different applications in mind. He considered a more general linkage, and
was especially interested in converting circular motion into linear motion.

We will explain the lemniscate machine as an application of inversion, the focal
property of 8 as a Cassinian, and Joukowski maps: j±(z) = 1

2(z± 1
z ). Here we invoke

yet another important scientific topic from another century; j± are named after the
Russian pioneer of aerodynamics, Nikolai Yegorovich Zhukovsky (1847–1921), who
studied airflow around obstacles. Before returning to the lemniscate machine, we
will take the time to thoroughly understand the maps j± since they will play an
important role in subsequent sections.

First we briefly explain the relevance to applications in 2-dimensional models of
fluid flow. Note j+(eiθ) = cos θ, so the unit circle is mapped by j+ onto the interval
[−1, 1], two-to-one except at z = ±1, where j

′
+ = 0. Since j+ has degree two and

inversion symmetry j+(z) = j+(1/z), it follows that the interior and exterior of the
unit disc each get mapped conformally onto the slit-plane C\[−1, 1]. Using the latter
mapping, the trivial flow to the right given by the constant velocity field dz

dt = ĉi,
say, is transformed to ideal (incompressible and irrotational) flow around a circular
obstacle.
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Figure 3. The lemniscate machine: The middle rod’s midpoint
traces out 8.

To build on this, one may then consider more complicated obstacles obtained
as j+-images of other circles—see Figure 4. (One can get a much better feel for
the full variety of circle images by running the simple Mathematica animation in
the Appendix.) One may verify, e.g., that circles |z| = r0 and rays arg(z) = θ0 are
mapped to orthogonal, confocal families of ellipses and hyperbolas with foci ±1.
More to the point, for the Joukowski model of airflow around a wing, circles passing
through exactly one of the two points ±1 are taken to cusped curves resembling
airfoils; as a conformal mapping of exteriors, j−1

+ transforms ideal flow around the
circle to ideal flow around such an airfoil.

Figure 4. Circles C and their Joukowski images j+(C).

To better understand j±, we consider two auxiliary mappings defined by linear
fractional transformations:
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h(z) =
z + 1
z − 1

, k(z) = h(iz) =
z − i

z + i
(2.2)

Like any Möbius transformation, h and k map circles to circles. In particular, h
(k) maps circles through z = 1 (z = −i) to lines (“circles through ∞”); circles
through the pair z = ±1 (z = ±i) are mapped to lines through the origin. We
note that the Cayley map k(z) restricts to a conformal map of the upper half-plane
H = {z = x + iy : y > 0} onto the unit disc D = {z = x + iy : x2 + y2 < 1}. (The
important equivalence k : H → D explains why k(z) deserves a name.) Likewise,
h(z) maps a half-plane (Re[z] < 0) to the unit disc. But there is an interesting
difference between the two maps: h is its own inverse, i.e., h has order two, while
k(z) has order three (more on this later).

Returning to the Joukowski maps, we find that j± may be understood as the
squaring function z 	→ z2, conjugated by h or k:

j+(z) =
1
2
(z +

1
z
) = h(h(z)2) = j+(1/z)

j−(z) =
1
2
(z − 1

z
) = k−1(k(z)2) = j−(−1/z)

Here we have also recorded the respective symmetries z 	→ ±1/z of these two-to-one
maps inherited from the symmetry z2 = (−z)2; the points 0,∞, which are both fixed
points and points of ramification (“wrapping”) for z 	→ z2, are replaced by ±1 for
j+ and ±i for j−.

Certain mapping properties of j± may now be easily understood. For instance,
since h exchanges circles through ±1 with lines through the origin, and z 	→ z2

“folds” the latter in half, it follows that j+ maps circular arcs joining ±1 onto arcs in
the same family. Explicitly, a circle through ±1 is divided by these points into upper
and lower arcs A±, with equations of the form arg(h(z)) = θ0 and arg(h(z)) = θ0+π.
The two arcs are inverse to each other: A+ = 1/A−. With w = j+(z), the identity
h(w) = h(z)2 implies the images j+(A±) satisfy equivalent conditions: arg(h(w)) =
2θ0 and arg(h(w)) = 2θ0 + 2π.

Finally, we return to the lemniscate machine. Let C± be the circles with centers
±i and radius

√
2. Then j+ maps C+ (C−) onto the upper (lower) half of C, the

unit circle |z| = 1. If z ∈ C+, say, then (j−(z) − i)(j−(z) + i) = j−(z)2 + 1 =
j+(z)2 ∈ C, and it follows that w = j−(z) lies on the lemniscate (special Cassinian)
d(w, i)d(w,−i) = 1. Further, z ∈ C+ ⇒ 1/z ∈ C+ ⇒ −1/z ∈ C−. Now the line
segment (“middle rod”) joining z ∈ C+ to −1/z ∈ C− has constant length |z+1/z| =
2|j+(z)| = 2, while its midpoint j−(z) lies on the lemniscate.

Suppose a motor rotates the upper rod with constant angular speed dθ
dt = 1.

Then the motions of the middle rod’s endpoints (on C±) and midpoint (on 8) are
given by:

c+(t) =
√

2eit + i, c−(t) = −1/c+(t),

j−(c+(t)) =
1
2
(
√

2eit + i − 1/(
√

2eit + i))
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This is the basis of the Mathematica animation of the lemniscate machine in the
Appendix.

3. The view from the north pole

Armed with an understanding of the Joukowski maps j±, we are within steps of
startling new views of the trio of curves O)(8. As we have just seen, j−(C+) = 8;
therefore, j−(C−) = j−(−1/C+) = 8 as well. Likewise, the two lines x ± y = 0 are
exchanged by z 	→ −1/z, and each is mapped by j− onto the rectangular hyperbola
�
�. Finally, j+(C±) = C, so j−(iC±) = −ij+(−C±) = C as well. However, iC+, iC−
are preserved, not exchanged, by z 	→ −1/z; that is, points ±i divide iC+ into
left/right arcs which are exchanged by z 	→ −1/z (and likewise for iC−). Thus, C is
double-covered by a pair of “folded circles” j−(iC±) meeting at foci ±i.

Putting all the pieces together, we see that O)(8 is the two-to-one image under
j− of the symmetric configuration of six circles/lines shown in Figure 5 a)—which
we denote, henceforth, by C6. The symmetry of C6 may be taken as a clue to the
high degree of symmetry of the lemniscate itself, but a full explanation will require
further background. In the meantime, we consider the geometric meaning of C6 itself,
and seek further clues to its relationship with 8.

Figure 5. a) C6 is mapped by j−(z), two-to-one onto O)(8.
b) A Möbius equivalent figure m(C6).

C6 has obvious fourfold rotational symmetry. But there is also an order three
symmetry, apparent in the Möbius equivalent Figure 5 b) (obtained by sending an
appropriate pair of threefold intersection points to the origin and infinity). If one
steps outside the Euclidean plane, in fact, both symmetries may be regarded as
rotational symmetries of the same figure.

All that is required is to place the configuration of circles on the standard unit
sphere x2

1 + x2
2 + x2

3 = 1 using stereographic projection from the north pole:

(x1, x2, x3)
π	−→ ζ =

x1 + ix2

1 − x3
(3.1)
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ζ = u + iv
π−1

	−→ (x1, x2, x3) =
(

2u
u2 + v2 + 1

,
2v

u2 + v2 + 1
,
u2 + v2 − 1
u2 + v2 + 1

)
(3.2)

To fit with complex notation, we have identified the equatorial x1, x2-plane with the
complex plane via (x1, x2) ↔ ζ = x1 + ix2. With this understanding, the projected
point π(x1, x2, x3) is pictured as the intersection of the equatorial plane with the
line through the north pole (0, 0, 1) and (x1, x2, x3). An important feature of the
construction is that π−1 has well-defined limit at infinity, limζ→∞ π−1(ζ) = (0, 0, 1),
and putting π(0, 0, 1) = ∞ extends π to a smooth bijection between the whole
Riemann sphere and the extended complex plane Ĉ = C ∪ {∞}. As explained in
any complex analysis textbook, π has the following additional nice properties: π is
conformal (angle-preserving), and maps a circle C on the Riemann sphere to a line
or circle in C, depending on whether C contains the north pole or not.

Of course, there is nothing sacred about the north pole in this geometric con-
struction; for instance, in place of π = πnp, we could use projection πsp from the
south pole (0, 0,−1) onto the equatorial plane, obtained by simply changing ‘−’ to
‘+’ in the above formula for π. (For π−1

sp , change sign of the third component of
π−1.) For that matter, one could project from any “pole” p ∈ S2 onto the plane P
through the origin, normal to the unit vector p̂; such a projection is conjugate to π
by a rotation of 3-space.

Figure 6. a) The (spherical) tetrakis hexahedron G6 = π−1(C6).
b) Octahedron in tetrakis hexahedron.

Now comes the payoff: Using the fact that three points determine a circle, one
can verify that C6 is the π-image of the configuration G6 of the six geodesics (great
circles) shown in Figure 6 a), b)—and the full symmetry leaps off the page! In
fact, G6 may be regarded as a (spherical) tetrakis hexahedron, whose vertices, edges,
and faces satisfy Euler’s formula, χ(S2) = V − E + F = 14 − 36 + 24 = 2. (For
counting, G6 may be viewed as the first barycentric subdivision of a tetrahedron, so
V = V T + ET + FT = 4 + 6 + 4, E = 2ET + 6FT = 12 + 24, F = 6FT = 24.)
Figure 6 b) shows G6 together with its inscribed octahedron, as visual proof of the
octahedral symmetry of G6.
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Before we embark on a more systematic investigation of octahedral symmetry,
let us pause to take stock of the relationships we have uncovered so far. We began by
noting that the lemniscate may be obtained by inversion of a hyperbola in the unit
circle. The trio O)(8 of curves just mentioned was seen to be the shadow (projected
image) of C6, which is itself the shadow of G6, that is:

O)(8 = j−(C6) = j−(π(G6))

Now let us focus on the three circles meeting at a point P ∈ S2 in the foreground
of Figure 6 a), b). Note p = π(P ) is the threefold intersection of line/circles to the
upper right of Figure 5 a), and j−(p) is the point to the upper right of Figure 2 b)
where lemniscate, circle, and hyperbola meet. In all three figures, the local picture
is that of six curvilinear sectors with angular measure 60◦. Since the three circles
meeting at P in Figure 6 are cyclically permuted by rotation of the sphere by 120◦

about the axis ±(1, 1, 1), it is tempting to suppose that the roles of the three curves
in O)(8 are entirely symmetric: Might the circle, lemniscate and hyperbola be three
coequal partners, each of which may be recovered from the other two?

4. Octahedral symmetry

Consider first the standard octahedron O = G3 with vertices:

î = (1, 0, 0), ĵ = (0, 1, 0), k̂ = (0, 0, 1),

and antipodes −î, −ĵ, −k̂. Using the basis î, ĵ, k̂, the 24-element octahedral sym-
metry group O is represented by the 3×3 matrices with determinant one and exactly
three non-zero entries, amn = ±1. The elements of O permute the edges of G3; any
vertex may be taken to any other and, fixing one vertex, the four adjacent vertices
may be (cyclically) permuted.

To enumerate all (non-identity) elements of O, there are: 6 elements of order
four (rotations by π/4 or 3π/4 about x1, x2, x3 coordinate axes; 8 elements of order
three (rotations by 2π/3 or 4π/3 about “dual-cube diagonals” ±(1, 1, 1), ±(−1, 1, 1),
±(1,−1, 1), ±(1, 1,−1)); 9 = 3 + 6 elements of order two (rotations by π about
coordinate axes or about axes joining midpoints of opposite edges). The 24 = 1 +
6+8+3+6 elements are grouped by this description into five conjugacy classes; two
equivalent elements a and b−1ab play essentially the same role, not just as elements
of an abstract group O, but as symmetries of G3 or G6.

As our notation O = G3 suggests, the octahedron may be viewed as a config-
uration of 3 geodesics (intersections of the sphere with coordinate planes), which
complement the six geodesics of G6. It is easy to see that G3 and G6 have the same
symmetry groups by considering vertices of the two polyhedra. In fact, G6 has the
6 vertices of G3, together with the 8 “dual vertices” (±1,±1,±1)/

√
3; a rotation

permuting the first 6 vertices automatically permutes the dual vertices.
As an abstract group, O is solvable, with normal series 1 � V � T � O. The

abelian subgroup V known as the Klein four group consists of the identity 1 and
the three 180◦-rotations about coordinate axes. The normal subgroup T may be
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described as the 12-element symmetry group of either of two associated tetrahe-
dra; namely, the stellated octahedron may be thought of as a dual pair of regular
tetrahedra, whose intersection gives the edges and vertices of the octahedron itself.
Whereas the tetrahedral group T takes each associated tetrahedron to itself, O may
also “swap” the two. It is also useful to compare the descriptions of O and T by
generators and relations: O = 〈a, b | a2 = b3 = (ab)4 = 1〉, while the tetrahedron
lacks symmetries of order four and is given by T = 〈a′, b | a′2 = b3 = (a′b)3 = 1〉.
Here, a′ ∈ V , and a ∈ O is an order two element which swaps tetrahedra (and fixes
no vertex or face of O).

As abstract groups, O and T are often identified, respectively, with the sym-
metric and alternating groups on four letters S4 and A4. (To interpret O � S4, we
note that the elements of O arbitrarily permute the above-mentioned diagonals of
the dual cube.) The fact that S4 is solvable is directly associated with the solvability
by radicals of quartic polynomial equations. Explicit procedures for solving cubics
and quartics make use of the key substitution 2w = z + 1

z —small world!

Now we return to the configuration of circles and lines C6. Note that π maps
the six octahedral vertices, ±1, ±i, 0, ∞, to the points of twofold intersection in
C6, and the 8 dual vertices to the threefold intersections. In terms of the Riemann
sphere parameter ζ = π(x1, x2, x3), the 24 “octahedral symmetries” of C6 are given
by the following Möbius transformations w = m(ζ):

ζ 	−→ inζ,
in

ζ
, inh(ζ),

in

h(ζ)
, ink(ζ),

in

k(ζ)
, n = 0, 1, 2, 3. (4.1)

For example, the Cayley map k(ζ) = ζ−i
ζ+i satisfies k(−i) = ∞, k(∞) = 1, k(1) =

−i, and corresponds to rotation by 120◦ about the axis through the pair of dual
vertices ±(1,−1, 1)/

√
3; in particular, k(ζ) cyclically permutes pre-images of the

three curves in O)(8. Likewise, h(ζ) = ζ+1
ζ−1 corresponds to rotation by 180◦ about the

axis through ±(1, 0, 1)/
√

2. Together, the two transformations h(ζ), k(ζ) generate
the whole group of 24 symmetries.

5. Mirrors and foci

Of the many objects possessing octahedral symmetry, we have thus far concentrated
on the octahedron G3 and the tetrakis hexahedron G6. In the present section we
indicate the important role of the disdyakis dodecahedron—see Figure 7a)—which is
determined by the 9 geodesics G9 = G3∪G6. As is the case for G3 and G6, the vertices
of the spherical polyhedron G9 are the points of intersection of the geodesics, and
the edges are the geodesic arcs between consecutive intersections. The intersection
G3 ∩ G6 adds 12 new vertices (midpoints of octahedral edges) to those of G3 and G6,
giving G9 a total of 26 = 6 + 8 + 12 vertices, of three types. The latter subdivide
each geodesic of G9 into eight parts, and Euler’s formula reads χ = 26−72+48 = 2.
(These numbers also follow by viewing G9 as the first barycentric subdivision of an
octahedron.)
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We have limited ourselves, till now, to symmetries given by rotations of S2;
but it is natural to consider also the orientation-reversing symmetries determined
by geodesics. A given geodesic is the intersection of the sphere S2 ⊂ R

3 with a plane
P through the origin, and reflection of points across the “mirror” P restricts to the
associated reflection symmetry of S2. Let G be the space of all geodesics in S2—note
this is the projective plane G � RP 2. Denote by R(G) the group generated by all
reflections in geodesics and let R2(G) be the subgroup generated by pairs of such
reflections (applied iteratively). We note that R(G) is the orthogonal group O(3),
and R2(G) = SO(3); in fact, any rotation is a product of two reflections and any
orthogonal transformation is a product of at most three reflections. Such conclusions
follow easily from the following basic fact: If P1 and P2 are two planes through the
origin with line of intersection L and forming dihedral angle θ, then consecutive
reflections in P1, P2 produce a rotation by angle 2θ with axis L.

Now if R(GN ) and R2(GN ) = R(GN ) ∩ SO(3) denote the corresponding groups
generated by reflecting only in the geodesics belonging to GN , then the three cases
yield familiar finite groups—the Klein four group, tetrahedral and octahedral groups:

R2(G3) = V, R2(G6) = T = A4, R2(G9) = O = S4

The last of these equations is the most important for us. One may consider the three
geodesics G1, G2, G3 bounding a given face F0 of G9, and observe that all faces of
G9 lie in the orbit of F0 under the group generated by reflections in G1, G2, G3. One
may thus convince oneself that G9 generates the full octahedral group Ô = R(G9),
and that this 48-element group acts simply transitively on faces of G9. Note that
the “checkerboard” coloring in Figure 7a) is helpful for distinguishing O from Ô
symmetries: An even number of reflections preserves the color of a tile, and the 48
tiles are divided into two color-coded O-orbits.

As the previous paragraph suggests, the disdyakis dodecahedron exhibits oc-
tahedral symmetry more satisfactorily than any other polyhedron. The assertion is
amplified by consideration of orbits of points p ∈ S2. First, the (three types of)
vertices of G9 are distinguished by having O-orbits of length 6, 8, or 12; any other
point belongs to an orbit of length 24. Expanding to the full octahedral group Ô
yields orbit lengths: 6, 8, 12, 24, 48. While the orbit of a face point has thus doubled
in length, the orbit of an edge point is unchanged, since it is fixed by reflection in
its geodesic. To summarize, the sets of vertices, edge points and face points of the
disdyakis dodecahedron p ∈ G9 ≈ S2 are characterized by their Ô-orbit lengths
|p| = |Ô · p| as follows:

V = {p : |p| ∈ {6, 8, 12}}, E = {p : |p| = 24}, F = {p : |p| = 48} (5.1)

It is interesting to view reflections in a slightly different context, where the
“mirrors” are no longer planes. Instead of the metric sphere S2 ⊂ R

3, consider the
Riemann sphere or extended complex plane Ĉ. Then reflection in the real line is
given by complex conjugation z ↔ z̄, while reflection in the unit circle “mirror” is
given by:

z 	→ z∗ = ρ(z) = 1/z̄ (5.2)
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Figure 7. a) Disdyakis dodecahedron G9; b) Stereographic image π(G9).

(The polar coordinate formula (r, θ)
ρ	−→ (1/r, θ) shows that reflection ρ actually

has a simpler geometric meaning than inversion σ.) More generally, letting C be the
space of all circles in the Riemann sphere, we may reflect in any circle C ∈ C: There
exists a unique anti-holomorphic involution RC : Ĉ → Ĉ which fixes points of C.

Now let R2(C) (R(C)) be the group generated by pairs of (any number of)
reflections in circles. It is well-known that one thus obtains the group of Möbius
transformations PSL(2, C) = R2(C) (R(C) includes all anti-automorphisms of Ĉ as
well); in fact, any m ∈ PSL(2, C) may be expressed as a product of (at most) four
reflections. We write R2(CN ) for the corresponding finite subgroups of the Möbius
group generated by reflections in pairs of circles of C3, C6 or C9 = C3 ∪ C6. The
groups R(C9) � Ô and R2(C9) � O may be visualized using Figure 7b), which
shows the stereographic image of the disdyakis dodecahedron.

This section began with circles playing a passive role, as objects on which
symmetries act. There is also an active role for circles, as the previous paragraphs
suggest, and this leads to a concise language for describing symmetries. One may
multiply circles by letting A · B = C be the circle obtained by reflecting the points
of B in A; by this (non-commutative, non-associative) multiplication, (C, ·) becomes
a three-dimensional manifold with multiplication, satisfying the symmetric space
axioms (as developed in [10]). The group of displacements G(C) is the group of
symmetries (automorphisms) of (C, ·) generated by pairs of left multiplications, C 	→
LALBC = A · (B ·C). Then G(C) � PSL(2, C); the fact that displacements generate
all symmetries (in the component of the identity) is a nice feature of C, shared
by other semi-simple symmetric spaces. Likewise, the symmetric subspace of great
circles C ⊃ G � RP 2 is semi-simple and satisfies the corresponding property G(G) �
SO(3).

Given finitely many circles in C, one may always generate a (countable) sym-
metric subspace of (C, ·); the theory of such examples is very rich (considering that
it includes, e.g., the theory of quasicircles). But one may check that C3, C6 and C9
are already closed under multiplication; and though their automorphism groups are
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all the same (Aut(CN ) = Ô), their displacement groups are not:

G(C3) � {Id}, G(C6) � T, G(C9) � O.

The above notation suggests an interesting generalization. Let C1, C2, C3 be the
three great circles meeting at P ∈ S2 in the foreground of Figure 6 a), b) (or the
three line/circles meeting at p = π(P ) to the upper right of Figure 5 a)) and observe:
C1 ·C2 = C3, C2 ·C3 = C1, C3 ·C1 = C2. (Order of multiplication does not matter
in this case.) Comparing the latter circle configurations again with Figure 2 b), it is
now tempting to ask if one can give similar meaning to the following equations:

© · �
� = 8,

�
� · 8 = ©, 8 · © = �

�

Actually, the first of these equations follows from σ(�
�) = 8, since �

� and 8 happen
to be symmetric with respect to the real axis. The other two equations involve
“multiplication” by the curves �

� and 8, which requires the notion of Schwarzian
reflection RA in an analytic curve A. The operation RA generalizes the reflection
already defined for circles: RA is defined, locally, as the antiholomorphic involution
fixing points of A.

Such a reflection may be expressed more explicitly as RA(z) = A(z), where
A(z) is the Schwarz function of A. As developed in [4], A(z) is the holomorphic
function defined near A whose restriction to A satisfies z̄ = A(z). In the case of an
algebraic curve f(x, y) = g(z,w) = 0, the Schwarz function is the algebraic function
w = A(z) defined by g(z,w) = 0; here, g is the polynomial obtained from f by
change of variables to conjugate coordinates z = x + iy, w = x − iy (which play an
important role below). Given curves A,B, multiplication A ·B gives a new curve C

with Schwarz function C(z) = A ◦ B−1 ◦ A(z). This locally defined multiplication
may be regarded as a formal symmetric space structure on analytic curves (see [3]).

The Schwarz functions for the unit circle, rectangular hyperbola and lemniscate
may be found by solving for w in their respective equations g(z,w) = 0:

©(z) =
1
z
,

�
�(z) = i

√
1 + z2, 8(z) =

iz√
1 + z2

One may put these expressions into the formula C(z) = A◦B−1◦A(z) and verify the
above multiplication table for the three curves—modulo the usual sign ambiguity
of square roots. As for any real algebraic curve (other than a circle or line), the
Schwarz functions �

�(z), 8(z) are multi-valued in the large; what’s unusual, here,
is that the two values differ only in sign. Because of this, and the symmetry of the
three curves, z 	→ −z, Schwarz reflections R©, R�

�, R8 give back only the same
curves. (But one could say each curve has been “doubled” in the process, much as
the trio O)(8 = j−(C6) is double covered by C6.)

Finally, we note the special role of the pair of points ±i in the figure O)(8, as
branch points of Schwarz functions �

�(z), 8(z) and reflections R�
�(z), R8(z). For

the purpose of discussing symmetry of the lemniscate, we ultimately choose to work
with planar mirrors; so we may avoid multi-valued functions and branches associated
with “algebraic mirrors”. But the branch points themselves are significant geometric
features of the hyperbola and lemniscate—these points are the foci.
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We remark that the sum, difference and product of distances to foci are constant
for the respective cases of ellipses, hyperbolas and Cassinians; yet the general defi-
nition of focus of a real algebraic curve belongs to the setting of projective geometry
and makes no reference to distances at all. (Some basic notions of projective geom-
etry will be reviewed briefly, below.) In the present context, here are the relevant
facts (see [8]):

1) The (real) foci of a real algebraic curve A may be described as the singularities
of the Schwarz function A(z).

2) Inversion z 	→ σ(z) = 1/z sends foci of A to foci of σ(A).
Thus, it is no coincidence that the foci of �

� and 8 = σ(�
�) coincide!

6. Projective symmetries of the lemniscate

The lemniscate 0 = f(x, y) = (x2 + y2)2 + 2c2(x2 − y2) has “reflection symmetries”
f(−x, y) = f(x,−y) = f(x, y) apparent in the real x, y-plane; but these will be seen
as half-turns when 8 is viewed as a complex curve. Likewise, the identity f(iy, ix) =
f(x, y) is a “hidden symmetry” when 8 is viewed in R

2, but a quarter-turn for the
complex curve.

More hidden is the “non-linear symmetry” f(x′, y′) = c4f(x, y)/(x−iy)4, where
x′ = c c+x+iy

2(x−iy) and y′ = c c−x−iy
2i(x−iy) . This identity shows that f(x′, y′) = 0 holds for finite

(x′, y′) (x �= iy), provided f(x, y) = 0. This order-three symmetry, together with one
of the above even-order symmetries, generates a transformation group abstractly
isomorphic to the octahedral group—but one should not waste the time to verify
this! It is evident that our study of symmetry of the lemniscate will require not
only complex points (x, y) ∈ C

2, but also the ideal points of 8 to be included, and
treated on an equal footing; that is, our discussion truly belongs to the setting of
complex algebraic curves in complex projective space CP 2. Here, everything will
become clearer.

We recall the projective plane is built from the ordinary (affine) plane by
adding ideal points (“points at infinity”) where parallel lines meet. We describe a
point in the projective plane by homogeneous coordinates [x, y, z] �= [0, 0, 0], where
[x, y, z] ∼ [(λx, λy, λz)] for any λ �= 0. A point (x, y) in the plane corresponds to the
point with projective coordinates [x, y, 1]. The ideal points are those whose third
coordinate is 0. We will allow the coordinates to be complex numbers. An invert-
ible linear transformation of C

3 induces a transformation of CP 2; the group of such
transformations is the projective group P = PGL(3, C). It is convenient to represent
an element of P as a matrix, with the understanding that any scalar multiple of the
matrix represents the same element.

A polynomial equation f(x, y) = 0 of degree n defining a plane curve is extended
to CP 2 by defining the homogeneous polynomial F [x, y, z] = znf(x/z, y/z). With
complex points and ideal points included in the solution set, a closed surface is
defined by the equation 0 = F [x, y, z]. For example, a circle (x−a)2+(y−b)2−r2 = 0
is extended to CP 2 by the equation (x − az)2 + (y − bz)2 − r2z2 = 0. We note that
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any circle thus passes through the circular points I = [1,−i, 0] and J = [1, i, 0],
whose inclusion will allow us to identify the circle with the Riemann sphere.

In the case of the lemniscate, the resulting equation is

0 = F (x, y, z) = z4f(x/z, y/z) = (x2 + y2)2 + 2c2z2(x2 − y2) (6.1)

This curve is a bicircular quartic, so called because it has a double point (“node”) at
each circular point. As it also has a node at the origin K = [0, 0, 1], the lemniscate
is an example of a trinodal quartic.

Like a circle, 8 is topologically equivalent to a sphere. The identification of an
algebraic curve with the Riemann sphere Ĉ is in fact accomplished, once a rational
parameterization of the curve is known. For example, the circle x2 + y2 − r2z2 = 0
has parameterization x(t) = r(t2 − 1), y(t) = 2rt, z(t) = t2 + 1, which maps Ĉ

one-to-one onto the circle in CP 2. The lemniscate has parameterization

x(t) =
√

2c(t3 − t), y(t) =
√

2c(t3 + t), z(t) = t4 + 1 (6.2)

Each double point I,J ,K is the image of a pair of t-values, respectively, t = ±eiπ/4,
t = ±ei3π/4, and t = 0,∞. For example, the two “copies” of the origin K0,K∞ locate
the crossing of two branches, on each of which t defines a valid local coordinate
near K0 or K∞; thus, from an intrinsic point of view, 8 may also be regarded as a
copy of Ĉ. (More generally, the Uniformization Theorem enables one to identify any
irreducible algebraic curve with a compact Riemann surface of some genus g ≥ 0, but
the situation for g > 0 is much more complicated because there are many Riemann
surfaces with a given positive genus.)

Now let us return to the issue of symmetry. As a Riemann surface, a genus
zero curve A such as 8 always has the Möbius group PGL(2, C) = Aut(Ĉ) acting
by automorphisms; so “intrinsic symmetry” of 8 is uninteresting. (The situation is
entirely different for curves of higher genus since g(A) > 1 implies Aut(A) is finite.)
On the other hand, a symmetry of an algebraic curve A ⊂ CP 2 will be understood
here to be a projective transformation taking A to itself. One may still use the
Riemann surface structure to identify such a symmetry with the automorphism
which it induces; but (for a curve of degree d > 2) the resulting group of symmetries
Sym(A) ⊂ Aut(A) is typically finite even for g = 0 or g = 1. For example, a
nonsingular cubic curve A (here, g(A) = 1) has nine inflection points, which must be
permuted by any symmetry. As a consequence, it can be shown that |Sym(A)| = 18
(see [2], p. 298).

Likewise, the three double points of 8 (which happen to be the inflection points!)
are necessarily permuted by any symmetry. The induced Möbius transformation
permutes the six t-values t = ±eiπ/4,±ei3π/4, 0,∞ in pairs. Since a Möbius trans-
formation is determined by what it does to three points, it follows that Sym(8) ⊂
PGL(2, C) has order at most 48. Since the finite subgroups of PGL(2, C) are known
to be isomorpic to one of Zn,Dn, A4, S4 or A5 (see [6], p. 49), very few possibilities
remain for Sym(8) as an abstract group.

In fact, the octahedral symmetry group Sym(8) � O appears at a glance, once
we adopt the following trilinear coordinates (see, e.g., [5]) associated to the double
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points I,J ,K:

α = x + iy, β = x − iy, γ = cz (6.3)

x =
α + β

2
, y =

α − β

2i
, z =

γ

c
(6.4)

From now on we will make extensive use of α, β, γ, either as new coordinates for
C

3 or as homogeneous coordinates in CP 2. Also, we will use the corresponding non-
homogeneous coordinates z = α/γ,w = β/γ for C

2; these are known as isotropic (or
conjugate) coordinates (where usually c = 1).

A particularly symmetric form of the lemniscate equation follows:

0 = F (x, y, z) = G(α, β, γ) = β2γ2 + α2γ2 + α2β2 (6.5)

Since G is symmetric under all permutations and sign changes of the three variables
α, β, γ, it follows that the octahedral group O acts on the lemniscate. As an overall
sign change in homogeneous coordinates has no effect on points p ∈ CP 2, the above
symmetries are represented one-to-one by the 24 matrices M ∈ O ⊂ SO(3). Since
O � S4 does not occur as a subgroup of Z48 or D24, it follows that Sym(8) � O.

For a more concrete mental image, O may be allowed to act instead on the real
linear span of the new basis vectors:

Î =
1
2
(1,−i, 0), Ĵ =

1
2
(1, i, 0), K̂ = (0, 0,

1
c
) (6.6)

[NOTE: Triples (α, β, γ) will be understood, henceforth, to represent points in C
3

with respect to the new coordinates, except where explicitly noted to the contrary;
likewise for [α, β, γ] ∈ CP 2. Thus, Î = (1, 0, 0), Ĵ = (0, 1, 0), K̂ = (0, 0, 1). (Our use
of pair notation, such as (x, y) or (z,w), will usually be clear from the context.)]
Specialization to α, β, γ ∈ R gives our “standard copy” of Euclidean 3-space:

L0 = {p = (α, β, γ) = αÎ + βĴ + γK̂ : α, β, γ ∈ R} (6.7)

The “standard octahedron” in L0 has vertices ±Î,±Ĵ ,±K̂ (not ±î,±ĵ,±k̂), and
the 24 octahedral symmetries of the lemniscate are easily recognized.

For instance, the symmetry f(x, y) = f(−x,−y) is equivalent to the projec-
tive transformation [α, β, γ] 	→ [α, β,−γ], which in turn corresponds to π-rotation
about the γ-axis in L0. This is one of the three tetrahedral half-turns in O. Likewise,
f(x, y) = f(−x, y) is equivalent to [α, β, γ] 	→ [−β,−α, γ] = [β, α,−γ], which cor-
responds to π-rotation about axis α = β, γ = 0. This is one of six non-tetrahedral
half-turns in O (which fix no vertex); recall that any one of these and, say, the
2π/3-rotation (α, β, γ) 	→ (γ, α, β) generate O.

So far we have considered only holomorphic (projective) symmetries of 8. But
the previous section’s discussion of the disdyakis dodecahedron suggests that certain
antiholomorphic symmetries are what we need for triangulation of 8. We now de-
scribe the required antiholomorphic symmetries explicitly. If our explanations com-
pound the confusion of real/complex and projective/vector spaces, the meanings of
our constructions will be fleshed out in subsequent sections.
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Let R0 denote the “complex conjugation operator” (real structure) on C
3 =

{(α, β, γ)}: (α, β, γ) R0	−→ (ᾱ, β̄, γ̄). Then −R0 also preserves Equation 6.5, and gen-
erates with O the group of holomorphic/antiholomorphic symmetries:

Ô = O ∪ {−R0M : M ∈ O} (6.8)

The reason for the minus sign is to give Ô a remarkable, dual role: Ô may be viewed
either as the full symmetry group of 8 ⊂ CP 2 or as the full symmetry group of the
standard disdyakis dodecahedron G9 ⊂ S2 ⊂ L0. On the one hand, Ô acts on CP 2,
and the “−” in the operator −R0 plays no role. On the other hand, Ô acts on L0
and R0 does nothing.

For triangulation, the “mirror symmetries” in Ô are the essential ones. Observe
that ord(−R0M) = ord(M) if M ∈ O has even order, and ord(−R0M) = 2 ord(M) if
M has odd order. It follows that Ô contains precisely 10 antiholomorphic, involutive
symmetries. The order-two elements M2 ∈ O give the desired 9 mirror symmetries
−R0M2; while M2 takes a 2-plane P ⊂ L0 to itself by π-rotation, −R0M2 fixes
the plane pointwise. We list the 9 = 3 + 6 “outputs” (the fourth of which gives the
involution R discussed in the introduction):

(−ᾱ, β̄, γ̄), (ᾱ,−β̄, γ̄), (ᾱ, β̄,−γ̄) (6.9)

(β̄, ᾱ, γ̄), (γ̄, β̄, ᾱ), (ᾱ, γ̄, β̄), (−β̄,−ᾱ, γ̄), (−γ̄, β̄,−ᾱ), (ᾱ,−γ̄,−β̄) (6.10)

By setting any of these equal to (α, β, γ), one can read off the corresponding mirror
P, whose intersection with S2 ⊂ L0 is one of the 9 geodesics of G9.

Remark 6.1. The tenth involution is −R0Id = −R0, which is not a “mirror sym-
metry” (of 8 or G9). We note that there are two non-equivalent real structures on
the complex projective line CP 1 = {[z1, z2]}; that is, up to conjugation by auto-
morphisms, an antiholomorphic involution is given either by complex conjugation
[z1, z2] ↔ [z̄1, z̄2] or by the antipodal map [z1, z2] ↔ [−z̄2, z̄1]. The latter corresponds
to −R0, via stereographic projection, and has empty fixed point set. On the other
hand, the fixed point set of an involution of the first type is a simple closed curve
in CP 1. In particular, −R0M2 fixes the points of a geodesic in G9, as already noted.
Likewise, it will be seen below that −R0M2 may be regarded as a Riemannian sym-
metry of 8 (with respect to the metric referred to in Theorem 1.1) and fixes the
points of a geodesic in 8 .

7. Inversion: quadrics and trinodal quartics

Above, Sym(8) appears as a subgroup O ⊂ SO(3, R) ⊂ SO(3, C). Just as SO(3, R)
may be viewed as acting on Euclidean 3-space L0 � R

3 by (orientation-preserving)
linear isometries, the larger group SO(3, C) preserves the complex extension of the
Euclidean form—the fundamental form on C

3 = {v = (α, β, γ)}:

Φ(v) = v · v = α2 + β2 + γ2 (7.1)
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In particular, SO(3, C) preserves the light cone Φ0 = Φ−1(0), as do scalar matrices
λId, λ ∈ C

×. Projectivization of the light cone gives the standard quadric Q ⊂ CP 2,
which is topologically a sphere, with Sym(Q) = SO(3, C). In x, y, z-coordinates, we
recognize Q as a rectangular hyperbola: 2x2 − 2y2 + c2z2 = 0.

This brings us almost full circle; for one of our first observations about the
lemniscate was that it may be obtained by applying inversion z 	→ 1/z to a rectan-
gular hyperbola. The relationship σ(�

�) = 8 may now be understood more fully in
the setting of projective geometry, where inversion is realized as the basic quadratic
transformation—which we will also denote by σ. As geometers have long known
(see, e.g., [5], Chapter XVII), the trinodal quartics Q are associated one-to-one with
quadrics Q via σ. We will describe the construction as it applies to any real, trinodal
quartic Q with double points placed at I,J ,K (as may always be done by projective
transformation), then return to the lemniscate.

First consider the fundamental triangle � with “vertices” I,J ,K and “edges”
IJ , JK, KI. In associated trilinear coordinates α, β, γ, the equation for � is
αβγ = 0. Inversion with respect to � is defined by:

σ[α, β, γ] = [
1
α

,
1
β

,
1
γ

] = [βγ, αγ, αβ] (7.2)

The precise relationship between σ[α, β, γ] and σ(z) = 1/z will be explained below.
For now we observe that σ is well-defined, as a mapping, except at the vertices
I,J ,K. On the complement of the fundamental triangle, CP 2 \ �, σ defines an
involution. On the other hand, σ collapses each edge of � to its opposite point;
specifically, the preimage of K is the ideal line γ = 0. We mention that σ plays an
important role among birational transformations of CP 2. Though the Cremona group
consisting of birational transformations of CPn is not well understood in general, it
is known that for n = 2, the full group is generated by σ and projective transfor-
mations. As a consequence, σ is essential to the classical theory of singularities of
algebraic curves.

Now it is easy to see why Q = σQ has degree two. The two points at K of the
trinodal quartic Q = σQ are the σ-images of a pair of points c± = Q ∩ IJ ; i.e., Q
has two ideal points and must be a quadric. (Likewise, the double points of Q at I
and J are the respective σ-images of pairs a± = Q ∩ JK, b± = Q ∩ KI; it follows
that the quartics Q with double points at I,J ,K determine and are determined by
the six points of intersection Q∩� = {a±, b±, c±}.) Turning things around, we may
produce a trinodal quartic by inversion of a quadric (if it is irreducible and does
not contain I,J , or K). In particular, inversion of the standard quadric Q gives the
lemniscate equation 0 = σ∗Φ = (βγ)2 + (αγ)2 + (αβ)2.

Regarding the lemniscate as 8 = σ(Q) gives insight into its octahedral symme-
try. If M is a projective transformation, then σ−1Mσ is defined and analytic almost
everywhere; M extends to a projective transformation precisely when M preserves
the fundamental triangle �. (If M does not preserve �, then σ−1Mσ = σMσ fails
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to be one-to-one; conversely, any M ∈ Sym(�) ⊂ GL(3, C) may be factored as a
product PD of permutation and diagonal matrices, and σPDσ = PσDσ = PD−1.)

In particular, M ∈ Sym(8) ⊂ Sym(�) defines a symmetry M = σ−1Mσ of Q,
as we already knew: Sym(8) ⊂ SO(3, R) ⊂ SO(3, C) = Sym(Q). On the other hand,
suppose M is a symmetry of Q and also preserves �. Then M = σMσ−1 defines
a symmetry of 8 (note that a diagonal matrix D ∈ SO(3, C) satisfies D = D−1).
Thus, the explanation of octahedral symmetry of 8 may be summarized:

Sym(8) = SO(3, C) ∩ Sym(�) = O (7.3)

To include orientation-reversing symmetries, we need only make the further
observation that σ commutes with the generating antiholomorphic operator −R0
(see Equation 6.8). Then we recover the full symmetry group of 8 as:

FullSym(8) = ŜO(3, C) ∩ ˆSym(�) = Ô (7.4)

As above, the hat denotes the group generated by −R0, together with the original
group. In particular, note that Ô belongs to ŜO(3, C)—not O(3, C)—though it is
isomorphic to a subgroup of the latter.

In the classical theory of algebraic curves, trilinear coordinates and quadratic
transformation are two important constructions based on a fundamental triangle �.
Choosing the vertices of � to coincide with the nodes I,J ,K of the lemniscate,
one may hardly be surprised that the resulting coordinates α, β, γ and quadratic
transformation σ shed light on the lemniscate’s geometry.

It is helpful to have a mental picture relating these constructions to our earlier
discussion of the lemniscate. We recall that an isotropic line in CP 2 is a complex
line passing though one of the circular points I,J . A line through J , e.g., has
equation of the form α − α0γ = 0 and intersects the (“traditional”) real plane
R

2 = {[x, y, 1] : x, y ∈ R} = {[α, ᾱ, 1] : α ∈ C} at [α0, ᾱ0, 1]. Let A be a real
algebraic curve 0 = F (x, y, z) (F has real coefficients with respect to the original
coordinates x, y, z). Isotropic projection from J assigns to P ∈ A the corresponding
intersection point of its isotropic line JP with the real plane (πI is defined similarly):

πJ (P ) = JP ∩ R
3 (7.5)

Note that a real point P ∈ AR = A ∩ R
3 projects to itself, πJ (P ) = P . This is

important for visualization of A, since it allows the complex points of A to be viewed
in planar projection, filling in the “missing points” around AR. Interesting features
of A are thus displayed; for example, the (real) foci of A stand out as ramification
points of πJ (since they correspond to isotropic tangent lines to A).

Further, it now emerges that complex notation z = x+iy—utilized almost from
the beginning of our study of the lemniscate—was no mere convenience. Viewing z

as one of two isotropic coordinates z = x + iy, w = x − iy on C
2 = {(z,w)}, the

redundant representation of planar points (z, z̄) ∈ R
2 enables us to leave the real

plane simply by replacing z, z̄ with independent variables z,w. Thus, for instance,
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if f(z) is analytic on some domain D ⊂ C � R
2, then f extends to an analytic

mapping of two complex variables by the formula:

F (z,w) = (f(z), f(w̄)) (7.6)

In particular, f(z) = 1/z extends to F (z,w) = (1/z, 1/w). With z = α/γ,w = β/γ,
the homogeneous coordinate expression for inversion follows, and the new meaning
of σ is seen to be an extension of the old.

Remark 7.1. We are now in a position to straighten out a curious turn in our
graphical exploration of the lemniscate. Recall that the mapping j−(π(z)) takes a
certain pair of circles in G6 to 8 and �

�; the circles are related by 2π/3-rotation of
S2, while 8 and �

� are interchanged by σ(z) = 1/z.
Here’s how the imposter σ mimics a symmetry in O. First note that the order-

three symmetry [α, β, γ] 	→ [γ, α, β] may be re-expressed in non-homogeneous coor-
dinates as (α, β) m3	→ (1/β, α/β), while inversion is given by (α, β) σ	→ (1/α, 1/β). Now
if (α, β) parameterize s the original real curve 8, then so does (β, α) (because of the
real symmetry (x, y) ↔ (x,−y)), and so σ(8) = �

� has parameterization (1/β, 1/α).
Viewed in isotropic projection, the latter cannot be distinguished from (1/β, α/β),
both being represented by 1/β as curves in the complex plane.

8. Triangulation of the lemniscate

In this section we describe the triangulation T of the lemniscate. First we sketch
how the lemniscate’s nine mirrors of reflection symmetry may be used to determine
T abstractly. Then we use a simple, equivariant parameterization of the lemniscate
to describe 8, more concretely, as the topological image of the disdyakis do-
decahedron G9 ≈ S2 (triangulated sphere). In order to present the main ideas
without further delay we defer much of the relevant background to Appendix A
(for mirrors) and Appendix B (for equivariant parameterization).

The 9 mirrors of 8 distinguish the face points, edge points, and vertices
of T as follows. A point p lies on 0, 1, 2, 3 or 4 mirrors and is stabilized by
a subgroup Ôp of order 1, 2, 4, 6 or 16. (The groups Ôp are generated by the
incident mirrors, except in the last case, where there is also a mirror swapping
the two copies of a double point.) In particular, face points have Ô-orbit lengths
|p| = 48, edge points are characterized by |p| = 24, and |p| = 3, 8 and 12 for
the three types of vertices. (Note that these lengths agree with Equation 5.1,
except that the six octahedral vertices, which are double points, now have orbit
length 3 instead of 6.)

To describe the faces of 8, it suffices to describe their interiors. Namely,
any face point p lies in a face interior int(Fp), the union of all connected open
subsets of 8 containing p whose points q all have orbit length |q| = 48. Recall
from Section 6 that each mirror divides 8� CP 1 into two “halves”. Thus,
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int(Fp) may be described, alternatively, as the set of all face points q lying
on the same “side” of each mirror as p. The face Fp, defined as the closure of
int(Fp), is bounded by edges Epj

= Fp∩Mj, one for each mirror Fp intersects.

The vertices of Fp are the pairwise intersections of edges Epj
∩ Epk

. Since Ô
permutes the 9 mirrors of 8 it also permutes the faces, edges and vertices just
described; T is Ô-invariant in the sense that Ô acts by simplicial maps.

We have not yet fully described T ; e.g., we have not shown that the faces
Fp are “triangular”. There is in fact enough data to determine a simplicial
map from G9 to T , owing to the fact that the mirrors of G9 and 8 come from
the same involutions −R0M2, listed in Equations 6.9, 6.10. However, a more
concrete explanation of the equivalence G9 � T follows directly from a simple
parameterization of the lemniscate which we now describe.

We start with the standard parameterization of the quadric Q, the embed-
ding ψ : CP 1 → CP 2 given by the formula:

[μ, ν]
ψ	−→ [α, β, γ] = [μ2 − ν2, i(μ2 + ν2),−2μν] (8.1)

Alternatively, the sphere a2 + b2 + c2 = 1 may be taken as domain in place
of CP 1. That is, a point r = (a, b, c) ∈ S2 corresponds, via stereographic
projection (from the south pole), to [μ, ν] = [1 + c, a + ib] ∈ CP 1; so we may
regard the standard parameterization instead as a map ϕ : S2 → CP 2, namely,
ϕ(a, b, c) = ψ(1 + c, a + ib).

Equation 8.1 satisfies α2 +β2 + γ2 = 0 and, in fact, ψ and ϕ parameterize
the quadric. These maps are also suitably equivariant—a property we now de-
scribe in the case of ϕ. As observed in Section 6, rotation matrices M ∈ SO(3)
may be allowed to act on L0 � R

3 and also, as projective transformations, on
CP 2. Then ϕ and M commute: ϕ ◦ M = M ◦ ϕ. The corresponding property
for ψ is equivariance with respect to the adjoint map Ad : SU(2) → SO(3). A
fuller account of these results is developed in Appendix B.

Note that the equivariance properties of ψ and ϕ extend to orientation-
reversing symmetries. Here it suffices to consider a single instance; namely, if
ψ(μ, ν) = [α, β, γ], then ψ(μ̄, ν̄) = [ᾱ,−β̄, γ̄], so ψ intertwines the canonical
antiholomorphic involution in CP 1 with the second of the “octahedral reflec-
tions” of CP 2 given by Equation 6.9. As for ϕ, note that complex conjugation
of [μ, ν] = [1 + c, a+ ib] corresponds to reflection of R

3 in the α, γ-plane. Since

the latter corresponds to the same element of ŜO(3, R) as the above octahedral
reflection of CP 2, we may summarize the situation in the simplest terms:

Proposition 8.1. The standard parameterization of Q is ŜO(3, R)-equivariant,

i.e., ϕ ◦ T = T ◦ ϕ, for each T ∈ ŜO(3, R).
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The natural parameterization of the lemniscate, σ ◦ϕ : G9 → 8, is likewise
equivariant—but with respect to the smaller group Ô. This follows from the
fact, already observed, that the inversion σ commutes with elements of Ô. As
a consequence of equivariance, σ ◦ ϕ : G9 → 8 is necessarily a simplicial map;
here we note that σ◦ϕ is 1−1 except on octahedral vertices, and maps faces of
G9 homeomorphically onto faces of T . Intrinsically, the triangulated lemniscate
is indeed a copy of G9, with octahedral symmetry now realized as a subgroup
of the projective group.

The previous paragraph completes our description of the symmetrical em-
bedding and Ô-invariant triangulation of 8⊂ CP 2 as a disdyakis dodecahedron
(modulo the discussion of equivariance in Appendix B). This is the main con-
tent of Theorem 1.2, lacking only the translation into Riemannian language,
the discussion of geodesics, critical points of Gaussian curvature, etc. (the sub-
ject of the next section).

Along the way, we have touched on a variety of topics in our exploration
of “hidden” structure of 8. Let us now work our way back to the description of
8 in simplest terms and take a fresh look at our earliest graphical observations.
We begin by expressing ψ and ϕ in non-homogeneous coordinates. That is, we
write (z, w) = ϕ(r) = ψ(ζ), with r = (a, b, c) ∈ S2, ζ = μ

ν
= 1+c

a+ib
∈ CP 1, and

(z, w) = (α/γ, β/γ) ∈ CP 2. Comparing Equations 8.1, 2.3, brings us back to
the Joukowski maps, z = −j−(ζ), w = −ij+(ζ)—whose special role we are
finally in a position to understand.

All that remains is to apply inversion to parameterize 8:

(z, w) = σ ◦ ψ(ζ) =

(
−1

j−(ζ)
,

−1

ij+(ζ)

)
=

(
2ζ

1 − ζ2 ,
2iζ

1 + ζ2

)
(8.2)

Points on 8 are viewed in C � R
2 via isotropic projection πJ , that is, using

the first coordinate function z(ζ) = 2ζ
1−ζ2 . In this sense, the real lemniscate 8R

turns out to be the z-image of the line ζ(t) = (1 − i)t, t ∈ R—one of the
nine “circles” of π(G9). The image of the full disdyakis dodecahedron z(π(G9))
is identical to j−(π(G9)) (because of the symmetry z(π(G9)) = −1/z(π(G9))),
and is a familiar-looking figure.

Specifically, applying z(ζ) to Figure 7 b) (or z( 1+c
a+ib

) to Figure 7 a)) results
in two identical sheets, each of which resembles Figure 8. We may understand
the branched double covering z = πJ ◦ σ ◦ ψ : CP 1 → CP 1 as follows. Since
8 is a bicircular quartic, most isotropic lines through the circular point J also
meet 8 in two finite points. The exceptions are the two tangent lines to 8 at
J which mark the pair of foci ±i; these are the ramification points of z. The
interior of the unit circle |ζ | < 1 is mapped by z(ζ) (the upper hemisphere
is mapped by z( 1+c

a+ib
)) onto the slit domain obtained by removing the vertical
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Figure 8. Interior of disk (left) maps by z(ζ) = 2ζ
1−ζ2 to one of two

identical sheets (right) of πJ (8).

rays z = iy, |y| ≥ 1; likewise for the exterior of the unit circle. Noting also that
z(±1) = ∞ makes Figure 8 easier to understand. Because of the symmetry
z(ζ) = z(−1/ζ), the interior and exterior of the circle yield two identical sheets,
each containing half of the 48 triangles of the lemniscate. Finally, note that
only half of the real lemniscate 8R lies on each sheet, though the familiar curve
seems complete in the figure. Keep in mind that the two lines ζ(t) = (1 ± i)t
are the preimages of two distinct curves in 8—the real lemniscate 8R and the
imaginary lemniscate 8iR = i8R!

9. The Riemannian lemniscate

Theorems 1.1, 1.2 refer to the Riemannian metric on the lemniscate induced
by the Fubini-Study metric g on CP 2. For our purposes, the most important
property of g is that it is invariant under the action induced by the group
Û(3) of unitary/anti-unitary transformations on C

3; the unitary group U(3)

preserves the Hermitian scalar product 〈 , 〉, and Û(3) is generated by U(3)
together with the operation of complex conjugation of coordinates. For more
background on Û(3), 〈 , 〉, etc., see Appendix A. For the moment, we note that

by our definition of 〈 , 〉, the basis Î, Ĵ , K̂ is orthonormal (not necessarily so

for the original basis î, ĵ, k̂).
One way to describe the geometry of CP 2 uses the Hopf projection on the

five-sphere π : S5 → CP 2 (which plays a role also in Appendix B). A point
p ∈ CP 2 (complex line L ⊂ C

3) corresponds to a great circle π−1(p) ⊂ S5

(L∩S5). Then the distance between two points p, q ∈ CP 2 may be defined to be
the distance between circles π−1(p) and π−1(q) in S5. The required invariance

property then follows from the fact that Û(3) acts isometrically on S5.
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However, we will require explicit formulas describing the geometry of
(CP 2, g) on the infinitesimal level. In order to define the length

√
g(v, v) of

a tangent vector v ∈ CP 2, we work with homogeneous coordinates. That is,
we let P = (α, β, γ) ∈ C

3 represent p = π(P ) = [α, β, γ] ∈ CP 2. If now
P (t) is a curve passing through P = P (0) with velocity vector V = P ′(0),
then p(t) = π(P (t)) is a curve passing through p = p(0) with velocity vector
v = π∗V = (π ◦ P )′(0) ∈ TpCP 2. If likewise w = π∗W ∈ TpCP 2, then the
Hermitian scalar product of v and w may be defined by the formula:

〈v, w〉p = 2
〈V, W 〉〈P, P 〉 − 〈V, P 〉〈P, W 〉

〈P, P 〉2 (9.1)

The Fubini-Study metric is the real part gp(v, w) = Re[〈v, w〉p]. Again, since

Û(3) acts by Euclidean isometries of C
3, it follows that g defines a Û(3)-

invariant Riemannian metric on CP 2.

Now consider an algebraic curve C ⊂ CP 2. Lengths of (and angles be-
tween) tangent vectors to C may be measured using g( , )—this is the induced
Riemannian structure on C. Further, a convenient formula due to Linda Ness
(see [11]) expresses the Gaussian curvature of (C, g) in terms of partial deriva-
tives with respect to homogeneous coordinates. That is, if a curve C of degree
d > 1 is defined by homogeneous polynomial G(α, β, γ), the curvature at a
nonsingular point p = π(P ) is given in terms of the norms of P and the gradi-
ent of G at P and the Hessian determinant of second order partial derivatives
of G at P :

K(p) = 2 − ‖P‖6 |Hessian(G)|2

(d − 1)6 ‖grad(G)‖6 (9.2)

For example, the quadric Q has equation G(P ) = α2 + β2 + γ2 = 0, and we

obtain grad(G) = 2P , |Hessian(G)| = 8, and K(p) = 2 − ‖P‖6 82

‖2P‖6 = 1. The

standard quadric is indeed the standard unit sphere!

Having warmed up on Q, let us now return to the lemniscate 8 = σ(Q).
Our first conclusion depends only on the invariance property of g.

Proposition 9.1. Let the lemniscate α2β2 + β2γ2 + γ2α2 = 0 be regarded as
a Riemannian manifold with metric g induced by the Fubini-Study metric on
CP 2. Then there are exactly 9 simple closed geodesics in the lemniscate which
are fixed-point sets of an isometry.

Proof. We have already identified the subgroup of the unitary/antiunitary

transformations Ô ⊂ ŜO(3, R) ⊂ Û(3) preserving the lemnsicate (Equation
6.8), and within this subgroup we have identified the 9 reflection symme-
tries (Equations 6.9, 6.10). We can now say these reflections are (orientation-
reversing) isometries of 8.
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The fixed-point set of any such reflection −R0M2 is a simple closed curve
in 8 � CP 1 (though it has one or two self-intersections in CP 2). Such a curve
must be a geodesic, since there is a unique shortest geodesic joining any suf-
ficiently nearby points p, q on the curve: A competing path joining p, q has
a mirror image of the same length. Besides the nine geodesics already found,
no other geodesic could be the fixed point set of an isometry since we have
already accounted for all nine antiholomorphic involutions in Ô which have
fixed points. �

Figure 9. Contours and sign of K (region K < 0 shaded).

To proceed further, we again make use of the Ô-equivariant parameteriza-
tion of the lemniscate σ ◦ ψ. In the proposition below, we use this parameter-
ization to pull back the metric and curvature to C; we thus compute lengths
of the 9 geodesics, the curvature at all vertices of the triangulation and, above
all, are able to produce the appropriately symmetrical contour plot for K,
as shown in Figure 1. The level set diagram within a given geodesic triangle
must be reproduced throughout the triangulation by iterated reflection in the
9 (light gray) circles/lines of the figure. The structure of level sets is shown
in greater detail in Figure 9, which shows a bit more than six complete tiles.
Note for instance that the level sets K = constant, except for the critical level
set K = −1/4, must meet geodesics orthogonally.

Figure 9 also shows regions of negative curvature (shaded) and positive
curvature (unshaded). For this purpose, we have taken advantage of the re-
markable circumstance that the significant K-values are so simply related: By
choosing a uniform increment ΔK = 1/4, our contour plot is able to accurately



670 J.C. Langer and D.A. Singer Vol.78 (2010)

show not only the demarcation curves K = 0, but also all three critical level
sets K = −1/4, K = 2, K = −7 (the latter two consisting of finitely many
points). Also striking are the rather large spherical caps around 0, 1, i (and
−1,−i,∞), where K lies in the narrow range 7/4 ≤ K ≤ 2. The fact that
each of the 9 geodesics cuts through at least two of these already hints at the
existence of shorter closed geodesics.

Meanwhile, the negatively curved portion of the lemniscate is connected,
and one is tempted to picture it as a “soap film” (minimal surface) spanning
six symmetrically arranged wire hoops. But one should not suppose the en-
tire lemniscate is isometrically and O-symmetrically embedded in R

3—this is
impossible! The contradiction arises when one considers the lines of principal
curvature, say, at one of the minima K = −7, and the fact that such a point
has non-trivial isotropy.

Proposition 9.2. Let K be the Gaussian curvature of the lemniscate, and let
a, b, c denote the three types of vertices of the triangulation; specifically, a ge-
odesic triangle has angles π/4 at a, π/3 at b, and π/2 at c.

a) K has critical points at the 26 = 6+12+8 disdyakis-dodecahedral vertices
with respective K-values:

Kmax = K(a) = 2, Kmin = K(b) = −7, Ksaddle = K(c) = −1/4

b) The opposite sides A, B, C of a geodesic triangle have lengths:

|A| ≈ .69, |B| ≈ 1.27, |C| ≈ 1.40

c) The three geodesics of type B8 have length L1 = 8|B| ≈ 10.16, and the six
geodesics (CA)4 have length L0 = 4(|A|+ |C|) ≈ 8.41. The four piecewise
geodesics A12, which zig-zag through the K < 0 region and divide the
lemniscate into two congruent (but not reflection-symmetric) halves, have
length L−1 = 12|A| ≈ 8.38 < 8.41!

Proof. Since a vertex v has nontrivial stabilizer in O, the point v is automati-
cally critical for the O-invariant function K. Equation 9.2 shows that K ≤ 2,
with equality only at inflection points. Even though the inflection points of
the lemniscate (e.g., a = [0, 0, 1]) are singular, the curvature is well-behaved
on each branch of such a node, with limiting value K = 2.

We pull back K to C using our equivariant parameterization of the lem-
niscate, γ(u) = σ(ψ(u)) = [2(u + u3), 2i(u − u3), 1 − u4]. In terms of u and its
complex conjugate v = ū, we compute the pulled-back function k = K(γ(u)):

k = 2 − 9uv(1 − u4)(1 − v4)(1 + 8uv + 8u3v3 − v4 − u4 + u4v4)3

2(1 + 3u4 + 3v4 + 32u3v3 + 9u4v4 + u2v2(3 + v4)(3 + u4))3 (9.3)
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We note γ(0) = a = [0, 0, 1], so the above claim K(a) = k(0, 0) = 2 is obvious.

Likewise, letting ω8 = 1+i√
2

and r = 1+
√

3√
2

, we may write γ(ω8) = c and γ(ω8r) =

b. We thus obtain the following remarkable critical values:

K(b) = k(rω8, rω
−1
8 ) = 2 − 15925248(70226 + 40545

√
3)

1769472(70226 + 40545
√

3)
= −7

K(c) = k(ω8, ω
−1
8 ) = 2 − 147456000(3880899 + 2744210

√
2)

65536000(3880899 + 2744210
√

2)
= −1

4

The gradient X = gradK has indices indX(a) = indX(b) = 1 and indX(c) =
−1, consistent with the above data and evident in Figure 9.

Finally, the edge lengths |A|, |B|, |C| are computed by substituting conve-
nient parameterization s into Equation 9.1. For example, using u = t,

|B| =
1

2

∫ 1

0

√
g(γ′, γ′))dt =

1

2

∫ 1

0
4

√
1 + 15t4 + 32t6 + 15t8 + t12

1 + 8t2 − 2t4 + 8t6 + t8
dt ≈ 1.270

Similarly, γ(ω8t) has speed v(t) = 4

√
1 + 3t4 + 32t6 + 3t8 + t12

1 + 8t2 + 2t4 + 8t6 + t8
, and gives

|C| =

∫ 1/r

0
v(t)dt ≈ 1.404, , |A| =

∫ 1

1/r

v(t)dt ≈ 0.698 �

Remark 9.3. It is known that any Riemannian 2-sphere has at least three
simple closed geodesics, for topological reasons. In the case of the lemniscate,
symmetry enabled us to locate nine. The previous proposition suggests that
there might exist four more simple geodesics. Namely, the piecewise geodesics
of type A12 lie in the “soap film” region of negative curvature. One can imagine

deforming A12, say, by the negative gradient of energy E(γ) =
∫ 1
0 g(γ′, γ′))dt,

defined on an appropriate space of loops in the lemniscate. One would not
be surprised that such a deformation would converge to a locally minimiz-
ing, simple geodesic—see Figure 10 a). In the following proposition we use
instead another symmetry argument, which very likely produces the same four
geodesics.

Proposition 9.4. In addition to the 9 geodesics of reflection symmetry, there
are 4 simple closed geodesics in the lemniscate. Each of these is fixed by a
subgroup of Ô of order 12, and is shorter than any of the 9 geodesics. Numer-
ical computation shows that the 4 geodesics are locally length minimizing, with
length L ≈ 7.65.

Proof. Consider one of the geodesic triangles �abc, with right angle at c and
“hypotenuse” C which is part of a geodesic Γ = (CA)4. Along Γ, the point p
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Figure 10. a) Piecewise geodesic (dashed) shortens to smooth geo-
desic (solid). b) Thirteen simple closed geodesics in the Riemannian
Lemniscate.

closest to c is connected to c by a simple geodesic γ1 of length l1. This geo-
desic meets Γ perpendicularly (one of the local principles we invoke, for which
Euclidean reasoning is valid), so γ1 may be reflected “across the hypotenuse”
to a new geodesic RCγ1. Then the union γ2 = γ1 ∪ RCγ1 is a smooth geo-
desic of length 2l0. Next, since c is one of the two fixed points of a π-rotation
rc ∈ O, we may again double γ2 and form a smooth geodesic γ4 = γ2 ∪ rcγ2

of length 4l0. The last operation can be iterated, using the new endpoint as
fixed point of a π-rotation. The procedure produces a closed geodesic γ of
length 12l0; in fact, γ may be described as the orbit of γ1 under the order
12 subgroup of Ô generated by RC and rc. This subgroup is best understood
as the group generated by RC and a dihedral subgroup D3 ⊂ Ô. Namely,
D3 = 〈F, T : F 2 = T 3 = FTFT = 1〉 is generated by F = RCrcRC and
T = RCrcRCrc.

By construction, γ is shorter than the piecewise geodesics A12 of the pre-
vious proposition, hence, shorter than the nine geodesics (CA)4 and B8. It
remains to show that γ is simple. We already know γ1 is simple; the question
is whether the 12 images of γ1 might intersect each other. Intuitively, γ1 ought
to lie within its triangle �abc, and the conclusion should follow.

A simple argument shows that this is in fact the case. Suppose, to the
contrary, that γ1 does not lie in �abc. Then γ1 can be replaced by a piecewise-
smooth “billiard path” γ̃1 ⊂ �abc of the same length. One may think of the
rule: Angle of incidence equals angle of reflection. Put another way, since Ô
acts simply transitively on the 48 triangles, each leg of γ1 passing through
another triangle is mapped by a unique element of Ô to its congruent image
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in �abc, and the resulting collection of images γ̃1 is easily seen to form a
piecewise-smooth path of the same length. But in fact, γ̃1 cannot “bounce”
even once, since a shortest path between two points cannot have “corners”; a
local detour which cuts off a corner decreases length. Nor can γ̃1 meet A or B
tangentially, by uniqueness for geodesics. Except for its endpoints, γ1 actually
lies entirely in the interior of �abc.

Finally, the ODE system for geodesics may be solved with high precision,
and the expected periodic solutions may be numerically found by a shooting
method. The resulting graphical output is shown in Figure 10. In Figure 10
a), one such geodesic is shown, together with a plot of the region K < 0.
Since the geodesic clearly lies inside the region K < 0, it follows by a standard
result of Riemannian geometry that this geodesic is shorter than nearby closed
curves. �

Appendix A. Reflections in R
3, C

3 and CP 2

In this section we discuss first Lagrangian subspaces L ⊂ C
3; these mirrors

are copies of R
3 and are fixed-point sets of antiholomorphic involutions (real

structures) RL : C
3 → C

3. The latter take complex lines to complex lines, and
define Lagrangian reflections of CP 2. Using the original coordinates, one of
these mirrors is given by L1 = {p ∈ C

3 : x, y, z ∈ R}, corresponding to the
usual real structure RL1(x, y, z) = (x̄, ȳ, z̄) on C

3. For any real algebraic curve
F (x, y, z) = 0 (F has real coefficients), R1 = RL1 induces an antiholomorphic
symmetry.

Mirrors and their reflections will be expressed in terms of the “base” La-
grangian subspace L0. We subsequently restrict our attention to certain La-
grangian subspaces L which, like L1, have 2-dimensional real part, P = L∩L0.
In fact, each linear 2-plane in Euclidean 3-space R

3 = L0 is the real part of
such a Lagrangian subspace L = LP . In particular, the reflection symmetries of
the disdyakis dodecahedron will be seen to extend to the Lagrangian reflection
symmetries of 8 required for triangulation.

Considering the role of L0, we let α, β, γ ∈ C serve as “standard coor-
dinates” for C

3 = {v = (α, β, γ)} = L0 ⊕ JL0. The decomposition of C
3 is

expressed via the complex structure J(α, β, γ) = (iα, iβ, iγ), but may also be
described in terms of the Hermitian scalar product

〈v1, v2〉 = α1ᾱ2 + β1β̄2 + γ1γ̄2 = g(v1, v2) + iω(v1, v2) (A.1)

We recall that a Hermitian scalar product determines a positive definite met-
ric g(v1, v2) and symplectic form ω(v1, v2) as the real and imaginary parts
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of 〈v1, v2〉, and that these are related by ω(v1, v2) = g(v1, Jv2). The vectors

Î, Ĵ , K̂ form the “standard orthonormal basis” for L0 = R
3.

A Lagrangian subspace L ⊂ C
3 is a real, three-dimensional subspace

satisfying ω(v1, v2) = 0 for vj ∈ L; thus, L is totally real in the sense that
〈v1, v2〉 ∈ R, vj ∈ L. Further, L determines a g-orthogonal decomposition

C
3 = L ⊕ JL = L ⊕ L⊥ (A.2)

with summands the ±1-eigenspaces of the corresponding real-linear reflection:

RL(v1 + Jv2) = v1 − Jv2, vj ∈ L (A.3)

The identity RLJv = −JRLv holds, i.e., RL is antiholomorphic, and it follows

that RL takes complex lines to complex lines.
All this is most transparent for L0, the orthogonal decomposition C

3 =
L0 ⊕ JL0, and RL0(α, β, γ) = (ᾱ, β̄, γ̄). However, L0 itself is not one of the
mirrors we seek. A “real mirror” in C

3 may be constructed directly from a
given Euclidean mirror (linear 2-plane) P ⊂ R

3, as follows. Let P⊥ ⊂ R
3

denote the orthogonal complement of the given mirror. Then the vector space
sum L = P⊕iP⊥ is a Lagrangian subspace of C

3 with L∩L0 = P. We note also
that L⊥ = JL = P⊥⊕iP has 1-dimensional real part L⊥∩L0 = P⊥. If we define
a “real mirror” to be a Lagrangian subspace L ⊂ C

3 with dim(L0∩L) = 2 and
dim(L0 ∩ JL) = 1, then our construction sets up a one-to-one correspondence
between such real mirrors and Euclidean mirrors P ⊂ R

3. In fact, it will follow
from remarks below that we have thus defined a symmetric space embedding
of the Grassmannian of 2-planes in R

3 (equivalently, RP 2 with its standard
symmetric space structure) into the Lagrangian Grassmanian Λ(3).

To discuss the above more concretely, consider a unitary matrix U ∈ U(3)

as a transformation of C
3 with respect to the standard basis Î, Ĵ , K̂. Since

U preserves the Hermitian form 〈 , 〉, U maps one L to another. In fact,
U(3) acts transitively on the six dimensional homogeneous space of Lagrangian
subspaces, Λ(3) = U(3)/SO(3, R), known as the Lagrangian Grassmanian.
The U(3)-action provides a concrete representation of reflections RL in terms
of R0 = RL0 . Namely, if L = UL0 = {Ua : a ∈ L0}, then

RL = UR0U
−1 = R0U

∗U−1 = R0L (A.4)

Here, U∗ denotes the complex conjugate of U, and we have introduced the
boldface letter L to denote the unitary matrix L = U∗U−1 associated with the
Lagrangian subspace L = UL0. However, Equation A.4 must be understood
in the sense of operator notation, since R0, RL are anti-linear operators on C

3.
Observe that a ∈ L ⇔ a = RLa = R0La ⇔ R0a = La. Because of

this relationship between L and L, we refer to the latter as the Schwarz ma-
trix associated with the Lagrangian subspace L, by direct analogy with the
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Schwarz function of an analytic curve in C, described earlier. We note that
Schwarz functions are special holomorphic functions used to represent special
antiholomorphic functions, via composition with complex conjugation.

With the last comment in mind, we take a moment to provide some context
for the operators RL and Schwarz matrices L. In general, operators of the
form R = R0U, U ∈ U(3) satisfy 〈Rv1, Rv2〉 = 〈v1, v2〉, and make up the
non-identity component of the group of unitary/anti-unitary operators:

Û(3) = U(3) ∪ {R0U : U ∈ U(3)} (A.5)

Reflections RL ∈ Û(3) are special, since the Schwarz matrices L ∈ U(3) are. In
the terminology of symmetric spaces (see [10] for the abstract theory), Schwarz
matrices are symmetric elements g∗g−1 in a group-with-involution (G, ∗); here,
G = U(3) and the involution is given by complex conjugation, U ↔ U∗. In
this situation, one may define a symmetric space multiplication on the subset
of symmetric elements by the formula: L · M = LM−1L = LM∗L.

Translating back to Lagrangian subspaces, K = L ·M (reflection of M in
L is K) defines a symmetric space multiplication on the homogeneous space
Λ(3). In this setting, the natural U(3)-action, λUL = UL, is geometrically
self-evident and clearly defines a homomorphism of U(3) into the group of
symmetric space automorphisms Aut(Λ(3)). It is useful to note that the cor-
responding action on Schwarz matrices is given by Hermitian conjugation:
λUL = U∗LU−1.

Let us apply the above formalism to describe real mirrors and their reflec-
tions. For the first mirror L1 = {p ∈ C

3 : x, y, z ∈ R}, we write L1 = U1L0,
with unitary matrix U1 and Schwarz matrix L1 given by:

U1 =

⎡
⎣

1√
2

i√
2

0
1√
2

− i√
2

0

0 0 1

⎤
⎦ , L1 = U∗

1U
−1
1 =

⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦

Now observe that the matrix L1 ∈ O(3, R) = O(3, C) ∩ U(3) may be allowed

to play more than one role. First, R1 = R0L1 gives the reflection (α, β, γ) 	→
(β̄, ᾱ, γ̄); the first mirror L1 satisfies the (redundant) equations α = β̄, β =
ᾱ, γ = γ̄ (i.e., x = x̄, y = ȳ, z = z̄). Second, restriction of R1 to L0 is given by
L1 ∈ O(3), which may be interpreted as the matrix for reflection of L0 = R

3

in the 2-plane L1 ∩ L0 = {(α, α, γ) : α, γ ∈ R}; namely, (α, β, γ) 	→ (β, α, γ).

Likewise, a general real mirror may be expressed as L = ML1, with
M ∈ SO(3, R), and the corresponding Schwarz matrix L = λML1 = ML1M

−1

again belongs to O(3, R). By these two roles for L, we recover the 1 − 1 cor-
respondence between 2-planes P ⊂ R

3 and real mirrors L ⊂ C
3. The group of
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transformations of C
3 generated by such real mirrors is the following subgroup

of Û(3):

ŜO(3, R) = SO(3, R) ∪ {−R0M : M ∈ SO(3, R)} (A.6)

This group must not be confused with O(3, R) ⊂ O(3, C), though the two
groups are abstractly isomorphic, and both act isometrically on the light cone
Φ0 with respect to the Hermitian metric in C

3.

Acting now projectively, ŜO(3, R) may be regarded as the isometry group
of Q. This is to be expected, since the metric on Q induced by the Fubini-Study
metric on CP 2 was seen, in the previous section, to make Q isometric to the
standard sphere of radius one. Then real mirrors are to Q as planes through
the origin are to S2—generators of the full isometry group.

In either case, a reflection has fixed point set consisting of a geodesic; this
is obvious for S2 and for Q follows by the simple geometric argument used in
the proof of Proposition 9.1. While a geodesic in S2 is the intersection of S2

with a plane, a real mirror in C
3 has to be considered projectively in order to

be intersected with Q. If this seems imperfectly parallel to the situation for S2,
we note that the projectivized real mirror may be described more intrinsically
as a Lagrangian real projective plane; it is a special Lagrangian submanifold of
CP 2 which is topologically RP 2. The most familiar example, of course, is the
usual real x, y-plane (appropriately compactified).

Appendix B. Equivariant parameterization of the quadric

The standard quadric Q has a standard parameterization . Actually, we will
use this term to refer to either of two maps, ψ : CP 1 → Q or ϕ : S2 →
Q, depending on whether we wish to regard CP 1 or S2 as the domain of
the parameterization . Either way, the parameterization deserves to be called
“standard” because it is equivariant with respect to the relevant group actions
in domain and range. This key property is inherited from corresponding results
for related 3-dimensional spaces, which we consider first.

The standard parameterization of the light cone Ψ : C
2 → Φ0 is given by:

(μ, ν)
Ψ	−→ (α, β, γ) = (μ2 − ν2, i(μ2 + ν2),−2μν) (B.1)

Some features of Ψ follow trivially from the formula. For (μ, ν) ∈ C
2, w =

Ψ(μ, ν) satisfies w ·w = 0. Conversely, if w = (α, β, γ) ∈ C
3 satisfies w ·w = 0

(w �= (0, 0, 0)), there are exactly two solutions ±(μ, ν) to the system

μ2 =
α − iβ

2
, ν2 = −α + iβ

2
, μν = −γ

2
.
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Further, μμ̄+νν̄ = 1 precisely when w = Ψ(μ, ν) satisfies 〈w, w〉 = 2. Thus, by

restricting Ψ to S3 and normalizing, we obtain a double covering Ψ̂ =
1√
2
Ψ :

S3 → RP 3, which is explicitly invertible, locally, via extraction of square roots.

On the other hand, points in the light cone may be represented in terms
of certain pairs of real 3-vectors. To any pair of real vectors p, q ∈ L0, we may
associate the complex vector w = p + iq ∈ C

3. Any complex vector w ∈ C
3

may be so represented in terms of its real and imaginary parts, p = Re[w], q =
Im[w] ∈ L0. Thus, the fundamental and Hermitian forms may be expressed:
w ·w = p ·p−q ·q+2ip ·q and 〈w, w〉 = p ·p+q ·q. The first equation shows that
w belongs to the light cone Φ0 = Φ−1(0) if and only if p, q are perpendicular
and of equal length. In this case, p and q are unit vectors exactly when the
normalized vector v = 1√

2
(p + iq) belongs to the 5-sphere S5 ⊂ C

3. Thus, the

1 − 1 correspondence (p, q) ↔ v satisfies:

p, q ∈ L0 are orthonormal ⇔ v =
1√
2
(p + iq) ∈ Φ0 ∩ S5 ≈ RP 3 (B.2)

Here, Φ0∩S5 ≈ RP 3 denotes topological equivalence, to be described presently.
Using the basis Î, Ĵ , K̂, the orthonormal vectors p, q, r = p × q form

the columns of a rotation matrix M ∈ SO(3) ≈ RP 3. Thus, the above corre-
spondence implies Φ0 ∩ S5 ≈ SO(3). But the homeomorphism SO(3) ≈ RP 3

is well-known, e.g., as a byproduct of the spinor theory of rotations. That is,
the special unitary group SU(2) is topologically the three sphere S3, and the
adjoint representation Ad : SU(2) → SO(3) is a double cover which identifies
antipodal points of S3. To summarize, Equation B.2 defines an embedding

τ : SO(3) → RP 3 ⊂ C
3,

where the notational shorthand RP 3 = Φ0∩S5 is understood. The role of τ will
be more fully explained after we recall formulas for the adjoint representation.

Let us begin by recalling the adjoint action of the special linear group
SL(2, C) on its Lie algebra sl(2, C) � C

3. Elements of the former will be

written m =

[
a b
c d

]
with det(m) = ad − bc = 1. The latter may be identified

with the space of traceless, 2 × 2 complex matrices, sl(2, C) � {X = Ae1 +
Be2 + Ce3 : A, B, C ∈ C}. Here we are using the basis of Pauli matrices:

e1 =

[
0 1
1 0

]
, e2 =

[
0 −i
i 0

]
, e3 =

[
1 0
0 −1

]

The adjoint action is given by conjugation: AdmX = mXm−1. Note X ∈
sl(2, C) ⇒ AdmX ∈ sl(2, C) (since tr(mXm−1) = tr(m−1mX) = tr(X)) and
Ad defines a linear action on sl(2, C).
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In fact, AdmAdn = Admn, and Ad defines a homomorphism onto a sub-
group of GL(3, C), which may be identified as follows. Consider the bilinear
form (X,Y) = 1

2Tr(XY) on sl(2, C); note that it agrees with the fundamental
form Φ(X) = (X,X) on C

3. Since ( , ) is Ad-invariant ((AdgX, AdgY) =
1
2Tr(gXg−1gYg−1) = 1

2Tr(XY) = (X,Y)), it follows that Adg ∈ SO(3, C). In
fact, Ad : SL(2, C) → SO(3, C) defines a homomorphism whose kernel may
be shown to be {±Id}.

To be explicit, the matrix representing Adm with respect to the Pauli basis
is:

M =

⎡
⎣

1
2(a

2 − b2 − c2 + d2) −i
2 (a2 + b2 − c2 − d2) −ab + cd

i
2(a

2 − b2 + c2 − d2) 1
2(a

2 + b2 + c2 + d2) −i(ab + cd)
−ac + bd i(ac + bd) ad + bc

⎤
⎦ (B.3)

With ad − bc = 1, the given matrix satisfies MMT = MTM = Id, i.e.,
M ∈ SO(3, C).

Remark B.1. We have taken the time to recall Ad : SL(2, C) → SO(3, C)
because we view it as the “source” of most of the relevant symmetry and
equivariance properties, as will be seen below. For the moment, we note that
it is now easy to see why the symmetry group of a quadric is the Möbius
group. We have already discussed the symmetry group of the standard quadric,
Sym(Q) = SO(3, C), and the last paragraph gives the identification with the
Möbius group PSL(2, C) � SL(2, C)/{±Id} � SO(3, C). Since any (irre-
ducible) quadric C is projectively equivalent to Q, it follows that Sym(C) �
PSL(2, C).

Restriction of Ad gives the famous “spinor map” Ad : SU(2) → SO(3, R).

Writing m ∈ SU(2) as m =

[
μ −ν̄
ν μ̄

]
, μμ̄ + νν̄ = 1, Equation B.3 specializes

as follows:

M =

⎡
⎣ Re[μ2 − ν2] Im[μ2 − ν2] Re[2μ̄ν]
Re[i(μ2 + ν2)] Im[i(μ2 + ν2)] Im[2μ̄ν]

Re[−2μν] Im[−2μν] |μ|2 − |ν|2

⎤
⎦ (B.4)

The columns of M = [p q r] are, of necessity, orthonormal and p × q = r. We
express M in this particular form to make the following observations:

• The first two columns are, respectively, the real and imaginary parts of the
isotropic vector w = p+ iq = Ψ(μ, ν) ∈ Φ0; normalizing, v = 1√

2
(p+ iq) ∈

RP 3 = Φ0 ∩ S5.
• The third column maps to πsp(r) = ν/μ by stereographic projection πsp :

S2 → C from the south pole.
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The second observation (which will play a role later) follows by a simple
computation from πsp(r) = πsp(a, b, c) = a+ib

1+c
. The first observation, which is

self-evident, easily gives an important conclusion. Note that m ∈ SU(2) may

be identified with its first column u =

[
μ
ν

]
, which may be regarded as an

element of S3. With this understanding, we have the factorization Ψ̂ = τ ◦Ad.
Then the equivariance property of Ψ̂,

Ψ̂(nu) = AdnΨ̂(u), n ∈ SU(2), u ∈ S3, (B.5)

follows from corresponding properties of the factors τ, Ad.

Let us now bring projective geometry back into the mix. Ψ : C
2 → C

3

takes complex lines to complex lines, so Ψ induces a projective space mapping
ψ : CP 1 → CP 2. (Re-interpret Equation B.1, replacing Ψ by ψ and using
homogeneous coordinates on CP 1 and CP 2.) Equivalently, ψ is induced by

Ψ̂ : S3 → S5. Recall, the circle group U(1) = {eiθ} acts on S2n+1 ⊂ C
n+1 via

multiplication of components by eiθ, and the Hopf projection π : S2n+1 → CP n

identifies points of the same circle-orbit. The sphere S2n+1 is thus pictured as a
union of circles (bundle of fibers), one for each point in CP n. (S2n+1 is in fact a

principal U(1)-bundle.) Now observe that Ψ̂ relates the circle actions on S3 and

S5 according to Ψ̂(ueiθ) = Ψ̂(u)ei2θ, u ∈ S3; that is, Hopf fibers in S3 doubly-

cover their image fibers in S5. Thus, the double covering Ψ̂ : S3 → RP 3 ⊂ S5

yields an injection ψ : CP 1 → CP 2.

At this point one may refer to Figure 11 for the inter-relationships and
equivariance properties of the various maps of interest. After a few further
remarks, the diagram should be self-explanatory (we omit details). Regarding
vertical arrows: Aside from Hopf projections π, we use the third column projec-
tion π(M) = π([p q r]) = r. On bottom: The Riemann sphere parameterization
r = ρ(μ/ν) = (a, b, c) is the one required to complete the outer rectangle in
the commutative diagram; it is the inverse of r 	→ μ

ν
= 1

πsp(r) = 1+c
a+ib

. (To verify,

use the second observation after Equation B.4).

Of primary interest are the maps ψ and ϕ = ψ ◦ ρ−1; either may be called
the standard parameterization of Q (but it will be seen that they admit quite
different descriptions). Like all other “non-vertical maps” in the diagram, ψ
and ϕ are equivariant with respect to the relevant group actions. For example,
note that the circle actions on S3 and S5 commute with the respective SU(2)
and SU(3) actions on these spheres. It follows that the induced actions on
CP 1 and CP 2 are intertwined by ψ : CP 1 → CP 2—see the left trapezoid in
the diagram. That is, Equation B.5 holds, with ψ substituted for Ψ̂ and CP 1

in place of S3.
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SU(2) SO(3)Ad ��
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Figure 11. Equivariant mappings (non-vertical arrows).

Likewise, equivariance of ϕ is best explained via the right trapezoid. Name-
ly, ϕ can be described as follows. Given r ∈ S2, choose p, q to complete an
orthonormal frame M = [p q r] ∈ SO(3), and note that π(τ(M)) = [p+iq] ∈ Q

is independent of the choice just made. Thus, r
ϕ	→ [p + iq] is not only well-

defined, it is also obviously equivariant with respect to the SO(3, R) actions
on S2 and Q. Finally, Proposition 8.1 now follows by extension to orientation-
reversing symmetries, as explained in Section 8.

Appendix C. Two Mathematica animations

C.1. Manipulation of Joukowski airfoil

The following Mathematica code creates a manipulate window with two sliders.
As one varies the center and radius of a circle C with these sliders, one sees
what happens to the image “airfoil” j+(C).

j[z_] = (z + 1/z)/2;

c[t_, z_, r_] = r Exp[I t] + z;

jofc[z_, r_]:= ParametricPlot[{Re[j[c[t, z, r]]], Im[j[c[t, z, r]]]},
{t, 0, 2 Pi}, PlotRange -> {{-2, 2}, {-2, 2}},

Axes -> False, PlotStyle -> {Thickness[.006], Blue}];
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circ[c_, r_] = Graphics[{Red, Thickness[.002], Circle[c, r]}];

points = Graphics[{PointSize[.015], Point[{{-1, 0}, {1, 0}}]}];

z[{x_, y_}] = x + I y;

Manipulate[Show[jofc[z[xy], r], circ[xy, r], points],
{xy, {0, 0}, {3, 1}}, {r, .5, 3}]

C.2. Animation of the Watt linkage

The following animation shows how a lemniscate is traced out by the midpoint
of a three-rod linkage, as the upper rod pivots at a constant rate.

cplus[t_] = Sqrt[2] Exp[I t] + I; cminus[t_] = -1/cplus[t];
lemniscate[t_] = (cplus[t] + cminus[t])/2; xy[z_] = {Re[z], Im[z]};

plot8 = ParametricPlot[xy[lemniscate[t]], {t, -Pi, Pi},
PlotRange -> {{-2, 2}, {-5/2, 5/2}}, Axes -> False,
PlotStyle -> {Thickness[.005], Blue}];

rods[t_] = Graphics[{Thickness[.005], Line[{{{0, 1}, xy[cplus[t]]},
{{0, -1}, xy[cminus[t]]}, {xy[cplus[t]], xy[cminus[t]]}}]}];

joints[t_] = Graphics[{EdgeForm[Thick], FaceForm[White],
Disk[xy[cplus[t]], .04], Disk[xy[cminus[t]], .04],
Disk[{0, 1}, .04], Disk[{0, -1}, .04],
FaceForm[Red], Disk[xy[lemniscate[t]], .05]}];

circles = Graphics[{Thickness[.0027], Circle[{0, 1}, Sqrt[2]],
Circle[{0, -1}, Sqrt[2]], Circle[{0, 0}, 1]}];

Watthinge[t_] := Show[plot8, circles, rods[t], joints[t]]
Animate[Watthinge[t], {t, 0, 2 Pi}]

References

[1] A.B. Basset, An Elementary Treatise on Cubic and Quartic Curves, Merchant Books,
2007. (original copyright, 1901)

[2] E. Brieskorn and H. Knörrer, Plane Algebraic Curves, Birkhäuser, 1986.
[3] Annalisa Calini and Joel Langer, Schwarz reflection geometry I: continuous iteration of

reflection, Math. Z., 244 (2003), pp. 775–804.

[4] Philip J. Davis, The Schwarz Function and its Applications, The Carus Mathematical
Monographs, No. 17, The Mathematical Association of America, 1974.

[5] H. Hilton, Plane Algebraic Curves, second edition, London, Oxford University Press,
1932.



682 J.C. Langer and D.A. Singer Vol.78 (2010)

[6] G. Jones and D. Singerman, Complex Functions an algebraic and geometric viewpoint,
Cambridge University Press, 1997.

[7] Felix Klein, The icosahdron and the solution of equations of the fifth degree, Dover
Publications, 1956.

[8] Joel Langer and David Singer, Foci and foliations of real algebraic curves, Milan J.
Math., 75 (2007) No. 1, pp. 225–271.

[9] , When is a curve an octahedron?, Amer. Math. Monthly (to appear).
[10] Ottmar Loos, Symmetric Spaces I: General Theory, W. A. Benjamin, Inc. (1969).
[11] Linda Ness, Curvature on algebraic plane curves. I, Compositio Mathematica, 35 (1977),

pp. 57–63.
[12] Victor Prasolov and Yuri Solovyev, Elliptic Functions and Elliptic Integrals, Transla-

tions of Mathematical Monographs, Vol. 170, 1997. American Mathematical Society.
[13] M. Rosen, Abel’s theorem on the lemniscate, Amer. Math. Monthly, 88 (1981), pp. 387–

395.
[14] George Salmon, A Treatise on the Higher Plane Curves, Third Edition, G. E. Stechert

& Co., New York, 1934.
[15] J. Stillwell, Mathematics and Its History, 2nd ed., Springer, 2002.
[16] C. Zwikker, The Advanced Geometry of Plane Curves and their Applications, Dover

Publications, 1963.

Joel C. Langer and David A. Singer
Department of Mathematics
Case Western Reserve University
Cleveland, OH 44106-7058
USA
e-mail: joel.langer@case.edu

david.singer@case.edu

Received: January 21, 2010.


	Reflections on the Lemniscate of Bernoulli: The Forty-Eight Faces of a Mathematical Gem  
	Abstract
	1. Introduction
	2. Planets, steam engines and airplanes
	3. The view from the north pole
	4. Octahedral symmetry
	5. Mirrors and foci
	6. Projective symmetries of the lemniscate
	7. Inversion: quadrics and trinodal quartics
	8. Triangulation of the lemniscate
	9. The Riemannian lemniscate
	Appendix A. Reflections in R3, C3 and CP2
	Appendix B. Equivariant parameterization of the quadric
	Appendix C. Two Mathematica animations
	C.1. Manipulation of Joukowski airfoil
	C.2. Animation of the Watt linkage

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


