Linear Projections of High-Dimensional Data

Elizabeth Meckes

Case Western Reserve University

LDHD Summer School SAMSI
August, 2013

Why project?

Why project?

- To make expensive computations/algorithms feasible -so-called Dimension reduction

Why project?

- To make expensive computations/algorithms feasible -so-called Dimension reduction
- To visualize the data and look for global structure

Why project?

- To make expensive computations/algorithms feasible -so-called Dimension reduction
- To visualize the data and look for global structure

2-D projection of expression levels of 100 genes for samples from four tumor types

A quick word from our sponsor: Random Subspaces

A quick word from our sponsor: Random Subspaces
Definition: The Stiefel manifold $\mathfrak{W}_{d, k}$ is the set of ordered k-tuples of orthonormal vectors in \mathbb{R}^{d} :

$$
\mathfrak{W}_{d, k}:=\left\{\left(v_{1}, \ldots, v_{k}\right) \in\left(\mathbb{R}^{d}\right)^{k} \mid\left\langle v_{i}, v_{j}\right\rangle=\delta_{i j}\right\} .
$$

A quick word from our sponsor: Random Subspaces

Definition: The Stiefel manifold $\mathfrak{W}_{d, k}$ is the set of ordered k-tuples of orthonormal vectors in \mathbb{R}^{d} :

$$
\mathfrak{W}_{d, k}:=\left\{\left(v_{1}, \ldots, v_{k}\right) \in\left(\mathbb{R}^{d}\right)^{k} \mid\left\langle v_{i}, v_{j}\right\rangle=\delta_{i j}\right\} .
$$

How to pick a random element of $\mathfrak{W}_{d, k}$:

- Pick v_{1} uniformly from \mathbb{S}^{d-1}.
- Pick v_{2} uniformly from the unit sphere in v_{1}^{\perp}.
- Continue in the obvious way.

A quick word from our sponsor: Random Subspaces

Definition: The Stiefel manifold $\mathfrak{W}_{d, k}$ is the set of ordered k-tuples of orthonormal vectors in \mathbb{R}^{d} :

$$
\mathfrak{W}_{d, k}:=\left\{\left(v_{1}, \ldots, v_{k}\right) \in\left(\mathbb{R}^{d}\right)^{k} \mid\left\langle v_{i}, v_{j}\right\rangle=\delta_{i j}\right\} .
$$

How to pick a random element of $\mathfrak{W}_{d, k}$:

- Pick v_{1} uniformly from \mathbb{S}^{d-1}.
- Pick v_{2} uniformly from the unit sphere in v_{1}^{\perp}.
- Continue in the obvious way.

The probability measure (called Haar measure) constructed this way is the unique rotation-invariant probability on $\mathfrak{W}_{d, k}$: if $U \in \mathbb{O}(d)$ is fixed, then

$$
\left(v_{1}, \ldots, v_{k}\right) \stackrel{\mathcal{L}}{=}\left(U v_{1}, \ldots, U v_{k}\right)
$$

Concentration of measure on $\mathfrak{W}_{d, k}$

$\mathfrak{W}_{d, k}$ is a metric space: if $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right)$ and $\theta^{\prime}=\left(\theta_{1}^{\prime}, \ldots, \theta_{k}^{\prime}\right)$, then we define the distance $\rho\left(\theta, \theta^{\prime}\right)$ between them by

$$
\rho\left(\theta, \theta^{\prime}\right):=\sqrt{\sum_{i=1}^{k}\left\|\theta_{i}-\theta_{i}^{\prime}\right\|^{2}}
$$

Concentration of measure on $\mathfrak{W}_{d, k}$

$\mathfrak{W}_{d, k}$ is a metric space: if $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right)$ and $\theta^{\prime}=\left(\theta_{1}^{\prime}, \ldots, \theta_{k}^{\prime}\right)$, then we define the distance $\rho\left(\theta, \theta^{\prime}\right)$ between them by

$$
\rho\left(\theta, \theta^{\prime}\right):=\sqrt{\sum_{i=1}^{k}\left\|\theta_{i}-\theta_{i}^{\prime}\right\|^{2}}
$$

Theorem (Milman-Schechtman)
There are constants C, c (independent of d and k) such that if $F: \mathfrak{W}_{d, k} \rightarrow \mathbb{R}$ is Lipschitz with Lipschitz constant L and Θ is a random point of $\mathfrak{W}_{d, k}$, then

$$
\mathbb{P}[|F(\Theta)-\mathbb{E} F(\Theta)|>L \epsilon] \leq C e^{-c d \epsilon^{2}}
$$

The Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss Lemma

If you have n high-dimensional data points and project them onto a random subspace of dimension $\sim \log (n)$, the pairwise distances between the points is approximately preserved.

The Johnson-Lindenstrauss Lemma

If you have n high-dimensional data points and project them onto a random subspace of dimension $\sim \log (n)$, the pairwise distances between the points is approximately preserved.

Practical conclusion: If your problem is about the metric structure of the data (finding the closest pair, most separated pair, minimum spanning tree of a graph,etc.), there is no need to work in the high-dimensional space that the data naturally live in.

The Johnson-Lindenstrauss Lemma

Lemma (J-L)
Let $\left\{x_{j}\right\}_{j=1}^{n} \subseteq \mathbb{R}^{d}$, and let U be a random $k \times d$ matrix, constructed by taking $U=V^{\top}$ where the columns of V are the entries of a random point of $\mathfrak{W}_{d, k}$; that is,
U is a projection of \mathbb{R}^{d} onto a random k-dimensional subspace.

The Johnson-Lindenstrauss Lemma

Lemma (J-L)
Let $\left\{x_{j}\right\}_{j=1}^{n} \subseteq \mathbb{R}^{d}$, and let U be a random $k \times d$ matrix, constructed by taking $U=V^{\top}$ where the columns of V are the entries of a random point of $\mathfrak{W}_{d, k}$; that is,
U is a projection of \mathbb{R}^{d} onto a random k-dimensional subspace.
If $k=\frac{a \log (n)}{\epsilon^{2}}$, then with probability $1-\frac{C}{n^{\frac{c}{9}-2}}$ (with C, c coming from the concentration inequality),

$$
(1-\epsilon)\left\|x_{i}-x_{j}\right\|^{2} \leq\left(\frac{d}{k}\right)\left\|U x_{i}-U x_{j}\right\|^{2} \leq(1+\epsilon)\left\|x_{i}-x_{j}\right\|^{2}
$$

for all $i, j \in\{1, \ldots, n\}$.

Application: Finding the closest point

Application: Finding the closest point

Consider the following problem: You are given a reference set \mathcal{X} of n points in \mathbb{R}^{d}. Now given a query point $q \in \mathbb{R}^{d}$, find the closest point in \mathcal{X} to q.

dimension $=$ number of pixels

Application: Finding the closest point

Consider the following problem: You are given a reference set \mathcal{X} of n points in \mathbb{R}^{d}. Now given a query point $q \in \mathbb{R}^{d}$, find the closest point in \mathcal{X} to q.

dimension $=$ number of pixels
The naïve approach - calculate each distance and keep track of the best so far - runs in $O(n d)$ steps.

Application: Finding the closest point

Surely you can relax a little \sim let Bill and Joram help you out.

Application: Finding the closest point

Surely you can relax a little \sim let Bill and Joram help you out.

If you project onto a random subspace of dimension about $\log (n)$, distances are approximately preserved.

This means that while the algorithm might not return the absolute closest point, the point that it returns will be almost as close to q as the true
 closest point is.

More carefully, suppose that U is one of the good random projections so that

$$
(1-\epsilon)\left\|q-x_{i}\right\|^{2} \leq\left(\frac{d}{k}\right)\left\|U q-U x_{i}\right\|^{2} \leq(1+\epsilon)\left\|q-x_{i}\right\|^{2}
$$

for each i.

More carefully, suppose that U is one of the good random projections so that

$$
(1-\epsilon)\left\|q-x_{i}\right\|^{2} \leq\left(\frac{d}{k}\right)\left\|U q-U x_{i}\right\|^{2} \leq(1+\epsilon)\left\|q-x_{i}\right\|^{2}
$$

for each i.
If $U x_{i}$ is the closest point to $U q$ (and so our randomized algorithm returns x_{i}), but the true closest point to q is x_{j}, then

$$
\left\|q-x_{i}\right\| \leq(1+\epsilon)\left\|q-x_{j}\right\| ;
$$

that is, the wrong answer isn't that wrong.

More carefully, suppose that U is one of the good random projections so that

$$
(1-\epsilon)\left\|q-x_{i}\right\|^{2} \leq\left(\frac{d}{k}\right)\left\|U q-U x_{i}\right\|^{2} \leq(1+\epsilon)\left\|q-x_{i}\right\|^{2}
$$

for each i.
If $U x_{i}$ is the closest point to $U q$ (and so our randomized algorithm returns x_{i}), but the true closest point to q is x_{j}, then

$$
\left\|q-x_{i}\right\| \leq(1+\epsilon)\left\|q-x_{j}\right\| ;
$$

that is, the wrong answer isn't that wrong.
And after projecting, the naïve approach runs in $O(n \log (n))$ steps, instead of $O\left(n^{2}\right)$.

Proof

We want to show that for each pair (i, j),

$$
(1-\epsilon)\left\|x_{i}-x_{j}\right\|^{2} \leq\left(\frac{d}{k}\right)\left\|U x_{i}-U x_{j}\right\|^{2} \leq(1+\epsilon)\left\|x_{i}-x_{j}\right\|^{2}
$$

with high probability,

Proof

We want to show that for each pair (i, j),

$$
(1-\epsilon)\left\|x_{i}-x_{j}\right\|^{2} \leq\left(\frac{d}{k}\right)\left\|U x_{i}-U x_{j}\right\|^{2} \leq(1+\epsilon)\left\|x_{i}-x_{j}\right\|^{2}
$$

with high probability, or equivalently,

$$
\sqrt{1-\epsilon} \leq \sqrt{\frac{d}{k}}\|U x\| \leq \sqrt{1+\epsilon}
$$

for $x:=\frac{x_{i}-x_{j}}{\left\|x_{i}-x_{j}\right\|}$.

Proof

We want to show that for each pair (i, j),

$$
(1-\epsilon)\left\|x_{i}-x_{j}\right\|^{2} \leq\left(\frac{d}{k}\right)\left\|U x_{i}-U x_{j}\right\|^{2} \leq(1+\epsilon)\left\|x_{i}-x_{j}\right\|^{2}
$$

with high probability, or equivalently,

$$
\sqrt{1-\epsilon} \leq \sqrt{\frac{d}{k}}\|U x\| \leq \sqrt{1+\epsilon}
$$

for $x:=\frac{x_{i}-x_{j}}{\left\|x_{i}-x_{j}\right\|}$.
By construction of U, this is the same as

$$
\sqrt{1-\epsilon} \leq \sqrt{\frac{d}{k}}\left\|\left(\left\langle\theta_{1}, x\right\rangle, \ldots,\left\langle\theta_{k}, x\right\rangle\right)\right\| \leq \sqrt{1+\epsilon}
$$

where $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right)$ is a random point of $\mathfrak{W}_{d, k}$.

Proof, ctd.

For $x \in \mathbb{S}^{d-1}$ fixed, consider the function $F_{x}: \mathfrak{W}_{d, k} \rightarrow \mathbb{R}$ defined by

$$
F_{x}\left(\theta_{1}, \ldots, \theta_{k}\right)=\sqrt{\frac{d}{k}}\left\|\left(\left\langle\theta_{1}, x\right\rangle, \ldots,\left\langle\theta_{k}, x\right\rangle\right)\right\|
$$

Proof, ctd.

For $x \in \mathbb{S}^{d-1}$ fixed, consider the function $F_{x}: \mathfrak{W}_{d, k} \rightarrow \mathbb{R}$ defined by

$$
F_{x}\left(\theta_{1}, \ldots, \theta_{k}\right)=\sqrt{\frac{d}{k}}\left\|\left(\left\langle\theta_{1}, x\right\rangle, \ldots,\left\langle\theta_{k}, x\right\rangle\right)\right\|
$$

Now, if $\theta, \theta^{\prime} \in \mathfrak{W}_{d, k}$, then

$$
\left|\left\|\left(\left\langle\theta_{1}, x\right\rangle, \ldots,\left\langle\theta_{k}, x\right\rangle\right)\right\|-\left\|\left(\left\langle\theta_{1}^{\prime}, x\right\rangle, \ldots,\left\langle\theta_{k}^{\prime}, x\right\rangle\right)\right\|\right|
$$

Proof, ctd.

For $x \in \mathbb{S}^{d-1}$ fixed, consider the function $F_{x}: \mathfrak{W}_{d, k} \rightarrow \mathbb{R}$ defined by

$$
F_{x}\left(\theta_{1}, \ldots, \theta_{k}\right)=\sqrt{\frac{d}{k}}\left\|\left(\left\langle\theta_{1}, x\right\rangle, \ldots,\left\langle\theta_{k}, x\right\rangle\right)\right\|
$$

Now, if $\theta, \theta^{\prime} \in \mathfrak{W}_{d, k}$, then

$$
\begin{gathered}
\left|\left\|\left(\left\langle\theta_{1}, x\right\rangle, \ldots,\left\langle\theta_{k}, x\right\rangle\right)\right\|-\left\|\left(\left\langle\theta_{1}^{\prime}, x\right\rangle, \ldots,\left\langle\theta_{k}^{\prime}, x\right\rangle\right)\right\|\right| \\
\leq\left\|\left(\left\langle\theta_{1}-\theta_{1}^{\prime}, x\right\rangle, \ldots,\left\langle\theta_{k}-\theta_{k}^{\prime}, x\right\rangle\right)\right\|
\end{gathered}
$$

Proof, ctd.

For $x \in \mathbb{S}^{d-1}$ fixed, consider the function $F_{x}: \mathfrak{W}_{d, k} \rightarrow \mathbb{R}$ defined by

$$
F_{x}\left(\theta_{1}, \ldots, \theta_{k}\right)=\sqrt{\frac{d}{k}}\left\|\left(\left\langle\theta_{1}, x\right\rangle, \ldots,\left\langle\theta_{k}, x\right\rangle\right)\right\|
$$

Now, if $\theta, \theta^{\prime} \in \mathfrak{W}_{d, k}$, then

$$
\begin{gathered}
\left|\left\|\left(\left\langle\theta_{1}, x\right\rangle, \ldots,\left\langle\theta_{k}, x\right\rangle\right)\right\|-\left\|\left(\left\langle\theta_{1}^{\prime}, x\right\rangle, \ldots,\left\langle\theta_{k}^{\prime}, x\right\rangle\right)\right\|\right| \\
\leq\left\|\left(\left\langle\theta_{1}-\theta_{1}^{\prime}, x\right\rangle, \ldots,\left\langle\theta_{k}-\theta_{k}^{\prime}, x\right\rangle\right)\right\| \\
=\sqrt{\sum_{j=1}^{k}\left\langle\theta_{j}-\theta_{j}^{\prime}, x\right\rangle^{2}}
\end{gathered}
$$

Proof, ctd.

For $x \in \mathbb{S}^{d-1}$ fixed, consider the function $F_{X}: \mathfrak{W}_{d, k} \rightarrow \mathbb{R}$ defined by

$$
F_{x}\left(\theta_{1}, \ldots, \theta_{k}\right)=\sqrt{\frac{d}{k}}\left\|\left(\left\langle\theta_{1}, x\right\rangle, \ldots,\left\langle\theta_{k}, x\right\rangle\right)\right\|
$$

Now, if $\theta, \theta^{\prime} \in \mathfrak{W}_{d, k}$, then

$$
\begin{array}{r}
\left|\left\|\left(\left\langle\theta_{1}, x\right\rangle, \ldots,\left\langle\theta_{k}, x\right\rangle\right)\right\|-\left\|\left(\left\langle\theta_{1}^{\prime}, x\right\rangle, \ldots,\left\langle\theta_{k}^{\prime}, x\right\rangle\right)\right\|\right| \\
\leq\left\|\left(\left\langle\theta_{1}-\theta_{1}^{\prime}, x\right\rangle, \ldots,\left\langle\theta_{k}-\theta_{k}^{\prime}, x\right\rangle\right)\right\| \\
=\sqrt{\sum_{j=1}^{k}\left\langle\theta_{j}-\theta_{j}^{\prime}, x\right\rangle^{2}} \leq \sqrt{\sum_{j=1}^{k}\left\|\theta_{j}-\theta_{j}^{\prime}\right\|^{2}}
\end{array}
$$

Proof, ctd.

For $x \in \mathbb{S}^{d-1}$ fixed, consider the function $F_{x}: \mathfrak{W}_{d, k} \rightarrow \mathbb{R}$ defined by

$$
F_{x}\left(\theta_{1}, \ldots, \theta_{k}\right)=\sqrt{\frac{d}{k}}\left\|\left(\left\langle\theta_{1}, x\right\rangle, \ldots,\left\langle\theta_{k}, x\right\rangle\right)\right\|
$$

Now, if $\theta, \theta^{\prime} \in \mathfrak{W}_{d, k}$, then

$$
\begin{aligned}
& \left|\left\|\left(\left\langle\theta_{1}, x\right\rangle, \ldots,\left\langle\theta_{k}, x\right\rangle\right)\right\|-\left\|\left(\left\langle\theta_{1}^{\prime}, x\right\rangle, \ldots,\left\langle\theta_{k}^{\prime}, x\right\rangle\right)\right\|\right| \\
& \leq\left\|\left(\left\langle\theta_{1}-\theta_{1}^{\prime}, x\right\rangle, \ldots,\left\langle\theta_{k}-\theta_{k}^{\prime}, x\right\rangle\right)\right\| \\
& \quad=\sqrt{\sum_{j=1}^{k}\left\langle\theta_{j}-\theta_{j}^{\prime}, x\right\rangle^{2}} \leq \sqrt{\sum_{j=1}^{k}\left\|\theta_{j}-\theta_{j}^{\prime}\right\|^{2}}=\rho\left(\theta, \theta^{\prime}\right) .
\end{aligned}
$$

Proof, ctd.

That is, the function

$$
F_{x}\left(\theta_{1}, \ldots, \theta_{k}\right)=\sqrt{\frac{d}{k}}\left\|\left(\left\langle\theta_{1}, x\right\rangle, \ldots,\left\langle\theta_{k}, x\right\rangle\right)\right\|
$$

is $\sqrt{\frac{d}{k}}$-Lipschitz on $\mathfrak{W}_{d, k}$.

Proof, ctd.

That is, the function

$$
F_{x}\left(\theta_{1}, \ldots, \theta_{k}\right)=\sqrt{\frac{d}{k}}\left\|\left(\left\langle\theta_{1}, x\right\rangle, \ldots,\left\langle\theta_{k}, x\right\rangle\right)\right\|
$$

is $\sqrt{\frac{d}{k}}$-Lipschitz on $\mathfrak{W}_{d, k}$.
It follows immediately from concentration of measure that

$$
\mathbb{P}\left[\left|F_{x}(\theta)-\mathbb{E} F_{x}(\theta)\right| \geq \epsilon\right] \leq C e^{-c \kappa \epsilon^{2}} .
$$

Proof, ctd.

That is, the function

$$
F_{x}\left(\theta_{1}, \ldots, \theta_{k}\right)=\sqrt{\frac{d}{k}}\left\|\left(\left\langle\theta_{1}, x\right\rangle, \ldots,\left\langle\theta_{k}, x\right\rangle\right)\right\|
$$

is $\sqrt{\frac{d}{k}}$-Lipschitz on $\mathfrak{W}_{d, k}$.
It follows immediately from concentration of measure that

$$
\mathbb{P}\left[\left|F_{x}(\theta)-\mathbb{E} F_{x}(\theta)\right| \geq \epsilon\right] \leq C e^{-c k \epsilon^{2}}
$$

Remember that $k=\frac{a \log (n)}{\epsilon^{2}}$, so we have that

$$
\mathbb{P}\left[\left|F_{X}(\theta)-\mathbb{E} F_{X}(\theta)\right| \geq \epsilon\right] \leq \frac{C}{n^{a c}}
$$

Proof, ctd.

We need that $\mathbb{E} F_{X}(\theta) \approx 1$.

Proof, ctd.

We need that $\mathbb{E} F_{X}(\theta) \approx 1$.
By the invariance of Haar measure under translation and transposition,

$$
\left(\left\langle\theta_{1}, x\right\rangle, \ldots,\left\langle\theta_{k}, x\right\rangle\right) \stackrel{\mathcal{L}}{=}\left(\left\langle\theta_{1}, e_{1}\right\rangle, \ldots,\left\langle\theta_{k}, e_{1}\right\rangle\right)
$$

Proof, ctd.

We need that $\mathbb{E} F_{X}(\theta) \approx 1$.
By the invariance of Haar measure under translation and transposition,

$$
\left(\left\langle\theta_{1}, x\right\rangle, \ldots,\left\langle\theta_{k}, x\right\rangle\right) \stackrel{\mathcal{L}}{=}\left(\left\langle\theta_{1}, e_{1}\right\rangle, \ldots,\left\langle\theta_{k}, e_{1}\right\rangle\right) \stackrel{\mathcal{L}}{=}\left(v_{1}, \ldots, v_{k}\right)
$$

where v is distributed uniformly on $\mathbb{S}^{d-1} \subseteq \mathbb{R}^{d}$.

Proof, ctd.

We need that $\mathbb{E} F_{X}(\theta) \approx 1$.
By the invariance of Haar measure under translation and transposition,

$$
\left(\left\langle\theta_{1}, x\right\rangle, \ldots,\left\langle\theta_{k}, x\right\rangle\right) \stackrel{\mathcal{L}}{=}\left(\left\langle\theta_{1}, e_{1}\right\rangle, \ldots,\left\langle\theta_{k}, e_{1}\right\rangle\right) \stackrel{\mathcal{L}}{=}\left(v_{1}, \ldots, v_{k}\right),
$$

where v is distributed uniformly on $\mathbb{S}^{d-1} \subseteq \mathbb{R}^{d}$.
That is,

$$
F_{x}(\theta) \stackrel{\mathcal{L}}{=} \sqrt{\left(\frac{d}{k}\right)\left(v_{1}^{2}+\cdots+v_{k}^{2}\right)}
$$

Proof, ctd.

We need that $\mathbb{E} F_{X}(\theta) \approx 1$.
By the invariance of Haar measure under translation and transposition,

$$
\left(\left\langle\theta_{1}, x\right\rangle, \ldots,\left\langle\theta_{k}, x\right\rangle\right) \stackrel{\mathcal{L}}{=}\left(\left\langle\theta_{1}, e_{1}\right\rangle, \ldots,\left\langle\theta_{k}, e_{1}\right\rangle\right) \stackrel{\mathcal{L}}{=}\left(v_{1}, \ldots, v_{k}\right),
$$

where v is distributed uniformly on $\mathbb{S}^{d-1} \subseteq \mathbb{R}^{d}$.
That is,

$$
F_{x}(\theta) \stackrel{\mathcal{L}}{=} \sqrt{\left(\frac{d}{k}\right)\left(v_{1}^{2}+\cdots+v_{k}^{2}\right)}
$$

It is an easy excercise that $\mathbb{E} v_{i}^{2}=\frac{1}{d}\left(\right.$ so $\mathbb{E}\left[F_{x}(\theta)\right]^{2}=1$) and the concentration we already have for $F_{X}(\theta)$ then implies that $\mathbb{E} F_{X}(\theta) \approx 1$.

Proof, ctd.

So: returning to the original formulation, we have that

$$
(1-\epsilon)\left\|x_{i}-x_{j}\right\|^{2} \leq\left(\frac{d}{k}\right)\left\|U x_{i}-U x_{j}\right\|^{2} \leq(1+\epsilon)\left\|x_{i}-x_{j}\right\|^{2}
$$

with probability at least $1-\frac{C}{n^{\frac{a C}{9}}}$.

Proof, ctd.

So: returning to the original formulation, we have that

$$
(1-\epsilon)\left\|x_{i}-x_{j}\right\|^{2} \leq\left(\frac{d}{k}\right)\left\|U x_{i}-U x_{j}\right\|^{2} \leq(1+\epsilon)\left\|x_{i}-x_{j}\right\|^{2}
$$

with probability at least $1-\frac{C}{n^{\frac{3 C}{9}}}$.
There are fewer than n^{2} pairs (i, j), so a simple union bound gives that the above statement holds for all pairs (i, j) with probability at least $1-\frac{C}{n^{\frac{2 C}{9}-2}}$.

The Diaconis-Freedman Effect

The Diaconis-Freedman Effect

If you project a large, high-dimensional data set onto one or two dimensions, what you get nearly always looks Gaussian, no matter what structure you started with.

The Diaconis-Freedman Effect

If you project a large, high-dimensional data set onto one or two dimensions, what you get nearly always looks Gaussian, no matter what structure you started with.

Practical conclusion: When looking for projections that tell you something interesting about the data, look for something that is very different from Gaussian.

The Diaconis-Freedman Effect

Figure from Buja, Cook, and Swayne "Interactive High-dimensional Data Visualization", 1996.

The Diaconis-Freedman Effect

Many authors have proved rigorous results that capture the D-F effect; e.g.,

- Sudakov (1978)
- Diaconis-Freedman (1984)
- von Weiszäcker (1997)
- Bobkov (2003)
- Klartag (2007)
- Dümbgen-Zerial (2011)
- ...

We'll focus on:
Theorem (E.M.)
Let $\left\{x_{j}\right\}_{j=1}^{n}$ be data points in \mathbb{R}^{d}

We'll focus on:
Theorem (E.M.)
Let $\left\{x_{j}\right\}_{j=1}^{n}$ be data points in \mathbb{R}^{d}, satisfying

- $\frac{1}{n} \sum_{j=1}^{n} x_{j}=\mathbf{0}$, and $\frac{1}{n} \sum_{j=1}^{n}\left|x_{j}\right|^{2}=\sigma^{2} d$,

We'll focus on:
Theorem (E.M.)
Let $\left\{x_{j}\right\}_{j=1}^{n}$ be data points in \mathbb{R}^{d}, satisfying

- $\frac{1}{n} \sum_{j=1}^{n} x_{j}=\mathbf{0}$, and $\frac{1}{n} \sum_{j=1}^{n}\left|x_{j}\right|^{2}=\sigma^{2} d$,
$-\sup _{\xi \in \mathbb{S}^{d-1}} \frac{1}{n} \sum_{j=1}^{n}\left\langle\xi, x_{j}\right\rangle^{2} \leq L^{\prime}$

We'll focus on:

Theorem (E.M.)
Let $\left\{x_{j}\right\}_{j=1}^{n}$ be data points in \mathbb{R}^{d}, satisfying

- $\frac{1}{n} \sum_{j=1}^{n} x_{j}=\mathbf{0}$, and $\frac{1}{n} \sum_{j=1}^{n}\left|x_{j}\right|^{2}=\sigma^{2} d$,
$-\sup _{\xi \in \mathbb{S}^{d-1}} \frac{1}{n} \sum_{j=1}^{n}\left\langle\xi, x_{j}\right\rangle^{2} \leq L^{\prime}$
- $\frac{1}{n} \sum_{j=1}^{n}\left|\frac{\left|x_{j}\right|^{2}}{d}-\sigma^{2}\right| \leq \frac{L}{\sqrt{d}}$.

We'll focus on:

Theorem (E.M.)
Let $\left\{x_{j}\right\}_{j=1}^{n}$ be data points in \mathbb{R}^{d}, satisfying

- $\frac{1}{n} \sum_{j=1}^{n} x_{j}=\mathbf{0}$, and $\frac{1}{n} \sum_{j=1}^{n}\left|x_{j}\right|^{2}=\sigma^{2} d$,
$-\sup _{\xi \in \mathbb{S}^{d-1}} \frac{1}{n} \sum_{j=1}^{n}\left\langle\xi, x_{j}\right\rangle^{2} \leq L^{\prime}$
- $\frac{1}{n} \sum_{j=1}^{n}\left|\frac{\left|x_{j}\right|^{2}}{d}-\sigma^{2}\right| \leq \frac{L}{\sqrt{d}}$.

Let $E \subseteq \mathbb{R}^{d}$ be a random k-dimensional subspace and let μ_{E} denote the empirical measure of the projection of the $\left\{x_{j}\right\}$ onto E.

We'll focus on:
Theorem (E.M.)
Let $\left\{x_{j}\right\}_{j=1}^{n}$ be data points in \mathbb{R}^{d}, satisfying

- $\frac{1}{n} \sum_{j=1}^{n} x_{j}=\mathbf{0}$, and $\frac{1}{n} \sum_{j=1}^{n}\left|x_{j}\right|^{2}=\sigma^{2} d$,
$-\sup _{\xi \in \mathbb{S}^{d-1}} \frac{1}{n} \sum_{j=1}^{n}\left\langle\xi, x_{j}\right\rangle^{2} \leq L^{\prime}$
- $\frac{1}{n} \sum_{j=1}^{n}\left|\frac{\mid x j^{2}}{d}-\sigma^{2}\right| \leq \frac{L}{\sqrt{d}}$.

Let $E \subseteq \mathbb{R}^{d}$ be a random k-dimensional subspace and let μ_{E} denote the empirical measure of the projection of the $\left\{x_{j}\right\}$ onto
E. Then
(1)

$$
\mathbb{E} d_{B L}\left(\mu_{E}, \sigma Z\right) \leq C \frac{k+\log (d)}{k^{\frac{2}{3}} d^{\frac{2}{3 k+4}}}
$$

We'll focus on:

Theorem (E.M.)
Let $\left\{x_{j}\right\}_{j=1}^{n}$ be data points in \mathbb{R}^{d}, satisfying

- $\frac{1}{n} \sum_{j=1}^{n} x_{j}=\mathbf{0}$, and $\frac{1}{n} \sum_{j=1}^{n}\left|x_{j}\right|^{2}=\sigma^{2} d$,
- $\sup _{\xi \in \mathbb{S}^{d-1}} \frac{1}{n} \sum_{j=1}^{n}\left\langle\xi, x_{j}\right\rangle^{2} \leq L^{\prime}$
- $\frac{1}{n} \sum_{j=1}^{n}\left|\frac{\left|x_{j}\right|^{2}}{d}-\sigma^{2}\right| \leq \frac{L}{\sqrt{d}}$.

Let $E \subseteq \mathbb{R}^{d}$ be a random k-dimensional subspace and let μ_{E} denote the empirical measure of the projection of the $\left\{x_{j}\right\}$ onto E. Then

$$
\begin{equation*}
\mathbb{E} d_{B L}\left(\mu_{E}, \sigma Z\right) \leq C \frac{k+\log (d)}{k^{\frac{2}{3}} d^{\frac{2}{3 k+4}}} \tag{1}
\end{equation*}
$$

(2)

$$
\mathbb{P}\left[\left|d_{B L}\left(\mu_{E}, \sigma Z\right)-\mathbb{E} d_{B L}\left(\mu_{E}, \sigma Z\right)\right|>\epsilon\right] \leq C e^{-c d \epsilon^{2}} .
$$

Preliminaries to the proof

Let X be distributed uniformly in $\left\{x_{1}, \ldots, x_{n}\right\}$;
i.e., X is a randomly chosen data point.

Preliminaries to the proof

Let X be distributed uniformly in $\left\{x_{1}, \ldots, x_{n}\right\}$;
i.e., X is a randomly chosen data point.

For a k-dimensional subspace $E \subseteq \mathbb{R}^{d}$, let X_{E} be distributed uniformly in $\left\{\pi_{E}\left(x_{1},\right), \ldots, \pi_{E}\left(x_{n}\right)\right\}$;
i.e., X_{E} is the projection of X onto the subspace E.

Preliminaries to the proof

Let X be distributed uniformly in $\left\{x_{1}, \ldots, x_{n}\right\}$;
i.e., X is a randomly chosen data point.

For a k-dimensional subspace $E \subseteq \mathbb{R}^{d}$, let X_{E} be distributed uniformly in $\left\{\pi_{E}\left(x_{1},\right), \ldots, \pi_{E}\left(x_{n}\right)\right\}$; i.e., X_{E} is the projection of X onto the subspace E.

There are two ways we might like to understand X_{E} :

1. "Annealed" behavior: X and E are both random and independent.
2. "Quenched" behavior: X is random but E is fixed; what is "typical"?

Outline of the proof

Step 1: The annealed projection X_{E}, when both X and E are random and independent, is approximately Gaussian.

This is done via Stein's method.

Outline of the proof

Step 1: The annealed projection X_{E}, when both X and E are random and independent, is approximately Gaussian.

This is done via Stein's method.
Step 2:The average distance to average $\mathbb{E}\left[d_{B L}\left(X_{E}, X_{F}\right)\right]$, where E is random inside the distance, but F is averaged over after measuring the distance, is small.

The bounded-Lipschitz distance is interpreted as the supremum of a stochastic process indexed by a class of test functions. Concentration of measure and entropy methods can then be used to derive a bound.

Outline of the proof

Step 1: The annealed projection X_{E}, when both X and E are random and independent, is approximately Gaussian.

This is done via Stein's method.
Step 2:The average distance to average $\mathbb{E}\left[d_{B L}\left(X_{E}, X_{F}\right)\right]$, where E is random inside the distance, but F is averaged over after measuring the distance, is small.

The bounded-Lipschitz distance is interpreted as the supremum of a stochastic process indexed by a class of test functions. Concentration of measure and entropy methods can then be used to derive a bound.

Step 3:The (random) bounded-Lipschitz distance $d_{B L}\left(X_{E}, X_{F}\right)$ is tightly concentrated near its mean.

This also follows from concentration of measure.

Outline of the proof - Stiefel manifold formulation

Step 1: The annealed projection X_{Θ}, when both X and Θ are random and independent, is approximately Gaussian.

This is done via Stein's method.
Step 2:The mean bounded-Lipschitz distance $\mathbb{E}_{\theta} d_{B L}\left(X_{\theta}, X_{\ominus}\right)$ is small.

The bounded-Lipschitz distance is interpreted as the supremum of a stochastic process indexed by a class of test functions. Concentration of measure and entropy methods can then be used to derive a bound.

Step 3:The (random) bounded-Lipschitz distance $d_{B L}\left(X_{\theta}, X_{\ominus}\right)$ is tightly concentrated near its mean.

This also follows from concentration of measure.

Outline of the proof - Stiefel manifold formulation

Step 3:The (random) bounded-Lipschitz distance $d_{B L}\left(X_{\theta}, X_{\Theta}\right)$ is tightly concentrated near its mean.

This also follows from concentration of measure.

More about Step 3

Consider the function $F: \mathfrak{W}_{d, k} \rightarrow \mathbb{R}$ defined by

$$
F(\theta):=d_{B L}\left(X_{\theta}, Y\right)=\sup _{\substack{|f|_{\mid<1,} \\ f 1-L i p s c h i t z}}\left|\mathbb{E} f\left(X_{\theta}\right)-\mathbb{E} f(Y)\right|,
$$

where Y is any reference distribution.

More about Step 3

Consider the function $F: \mathfrak{W}_{d, k} \rightarrow \mathbb{R}$ defined by

$$
F(\theta):=d_{B L}\left(X_{\theta}, Y\right)=\sup _{\substack{|f| \leq 1, f 1-L i p s c h i t z}}\left|\mathbb{E} f\left(X_{\theta}\right)-\mathbb{E} f(Y)\right|
$$

where Y is any reference distribution. Then
$\left|\left|\mathbb{E} f\left(X_{\theta}\right)-\mathbb{E} f(Y)\right|-\left|\mathbb{E} f\left(X_{\theta^{\prime}}\right)-\mathbb{E} f(Y)\right|\right|$

More about Step 3

Consider the function $F: \mathfrak{W}_{d, k} \rightarrow \mathbb{R}$ defined by

$$
F(\theta):=d_{B L}\left(X_{\theta}, Y\right)=\sup _{\substack{|f| \leq 1, f 1-L i p s c h i t z}}\left|\mathbb{E} f\left(X_{\theta}\right)-\mathbb{E} f(Y)\right|
$$

where Y is any reference distribution. Then

$$
\begin{aligned}
\left|\mid \mathbb{E} f\left(X_{\theta}\right)\right. & -\mathbb{E} f(Y)\left|-\left|\mathbb{E} f\left(X_{\theta^{\prime}}\right)-\mathbb{E} f(Y)\right|\right| \\
& \leq\left|\mathbb{E} f\left(\left\langle X, \theta_{1}\right\rangle, \ldots,\left\langle X, \theta_{k}\right\rangle\right)-\mathbb{E} f\left(\left\langle X, \theta_{1}^{\prime}\right\rangle, \ldots,\left\langle X, \theta_{k}^{\prime}\right\rangle\right)\right|
\end{aligned}
$$

More about Step 3

Consider the function $F: \mathfrak{W}_{d, k} \rightarrow \mathbb{R}$ defined by

$$
F(\theta):=d_{B L}\left(X_{\theta}, Y\right)=\sup _{\substack{|f| \leq 1, f 1-L i p s c h i t z}}\left|\mathbb{E} f\left(X_{\theta}\right)-\mathbb{E} f(Y)\right|
$$

where Y is any reference distribution. Then

$$
\begin{aligned}
\left|\mid \mathbb{E} f\left(X_{\theta}\right)\right. & -\mathbb{E} f(Y)\left|-\left|\mathbb{E} f\left(X_{\theta^{\prime}}\right)-\mathbb{E} f(Y)\right|\right| \\
& \leq\left|\mathbb{E} f\left(\left\langle X, \theta_{1}\right\rangle, \ldots,\left\langle X, \theta_{k}\right\rangle\right)-\mathbb{E} f\left(\left\langle X, \theta_{1}^{\prime}\right\rangle, \ldots,\left\langle X, \theta_{k}^{\prime}\right\rangle\right)\right| \\
& \leq \mathbb{E}\left|\left(\left\langle X, \theta_{1}-\theta_{1}^{\prime}\right\rangle, \ldots,\left\langle X, \theta_{k}-\theta_{k}^{\prime}\right\rangle\right)\right|
\end{aligned}
$$

More about Step 3

Consider the function $F: \mathfrak{W}_{d, k} \rightarrow \mathbb{R}$ defined by

$$
F(\theta):=d_{B L}\left(X_{\theta}, Y\right)=\sup _{\substack{|f| \leq 1, f 1-L i p s c h i t z}}\left|\mathbb{E} f\left(X_{\theta}\right)-\mathbb{E} f(Y)\right|,
$$

where Y is any reference distribution. Then

$$
\begin{aligned}
\left|\mid \mathbb{E} f\left(X_{\theta}\right)-\right. & \mathbb{E} f(Y)\left|-\left|\mathbb{E} f\left(X_{\theta^{\prime}}\right)-\mathbb{E} f(Y)\right|\right| \\
& \leq\left|\mathbb{E} f\left(\left\langle X, \theta_{1}\right\rangle, \ldots,\left\langle X, \theta_{k}\right\rangle\right)-\mathbb{E} f\left(\left\langle X, \theta_{1}^{\prime}\right\rangle, \ldots,\left\langle X, \theta_{k}^{\prime}\right\rangle\right)\right| \\
\leq & \mathbb{E}\left|\left(\left\langle X, \theta_{1}-\theta_{1}^{\prime}\right\rangle, \ldots,\left\langle X, \theta_{k}-\theta_{k}^{\prime}\right\rangle\right)\right| \\
& \leq \sqrt{\sum_{j=1}^{k}\left|\theta_{j}-\theta_{j}^{\prime}\right|^{2} \mathbb{E}\left\langle X, \frac{\theta_{j}-\theta_{j}^{\prime}}{\left|\theta_{j}-\theta_{j}^{\prime}\right|}\right\rangle^{2}}
\end{aligned}
$$

More about Step 3

Consider the function $F: \mathfrak{W}_{d, k} \rightarrow \mathbb{R}$ defined by

$$
F(\theta):=d_{B L}\left(X_{\theta}, Y\right)=\sup _{\substack{|f| \leq 1, f 1-L i p s c h i t z}}\left|\mathbb{E} f\left(X_{\theta}\right)-\mathbb{E} f(Y)\right|,
$$

where Y is any reference distribution. Then

$$
\begin{aligned}
\left|\mid \mathbb{E} f\left(X_{\theta}\right)-\right. & \mathbb{E} f(Y)\left|-\left|\mathbb{E} f\left(X_{\theta^{\prime}}\right)-\mathbb{E} f(Y)\right|\right| \\
& \leq\left|\mathbb{E} f\left(\left\langle X, \theta_{1}\right\rangle, \ldots,\left\langle X, \theta_{k}\right\rangle\right)-\mathbb{E} f\left(\left\langle X, \theta_{1}^{\prime}\right\rangle, \ldots,\left\langle X, \theta_{k}^{\prime}\right\rangle\right)\right| \\
\leq & \mathbb{E}\left|\left(\left\langle X, \theta_{1}-\theta_{1}^{\prime}\right\rangle, \ldots,\left\langle X, \theta_{k}-\theta_{k}^{\prime}\right\rangle\right)\right| \\
& \leq \sqrt{\sum_{j=1}^{k}\left|\theta_{j}-\theta_{j}^{\prime}\right|^{2} \mathbb{E}\left\langle X, \frac{\theta_{j}-\theta_{j}^{\prime}}{\left|\theta_{j}-\theta_{j}^{\prime}\right|}\right\rangle^{2}} \leq \rho\left(\theta, \theta^{\prime}\right) \sqrt{L^{\prime}}
\end{aligned}
$$

That is,

$$
\left|\left|\mathbb{E} f\left(X_{\theta}\right)-\mathbb{E} f(Y)\right|-\left|\mathbb{E} f\left(X_{\theta^{\prime}}\right)-\mathbb{E} f(Y)\right|\right| \leq \rho\left(\theta, \theta^{\prime}\right) \sqrt{L^{\prime}}
$$

That is,

$$
\left|\left|\mathbb{E} f\left(X_{\theta}\right)-\mathbb{E} f(Y)\right|-\left|\mathbb{E} f\left(X_{\theta^{\prime}}\right)-\mathbb{E} f(Y)\right|\right| \leq \rho\left(\theta, \theta^{\prime}\right) \sqrt{L^{\prime}}
$$

so that

$$
\begin{aligned}
\mid F(\theta) & -F\left(\theta^{\prime}\right) \mid \\
& =\left|\sup _{f}\right| \mathbb{E} f\left(X_{\theta}\right)-\mathbb{E} f(Y)\left|-\sup _{f}\right| \mathbb{E} f\left(X_{\theta^{\prime}}\right)-\mathbb{E} f(Y)| |
\end{aligned}
$$

That is,

$$
\left|\left|\mathbb{E} f\left(X_{\theta}\right)-\mathbb{E} f(Y)\right|-\left|\mathbb{E} f\left(X_{\theta^{\prime}}\right)-\mathbb{E} f(Y)\right|\right| \leq \rho\left(\theta, \theta^{\prime}\right) \sqrt{L^{\prime}}
$$

so that

$$
\begin{aligned}
\mid F(\theta) & -F\left(\theta^{\prime}\right) \mid \\
& =\left|\sup _{f}\right| \mathbb{E} f\left(X_{\theta}\right)-\mathbb{E} f(Y)\left|-\sup _{f}\right| \mathbb{E} f\left(X_{\theta^{\prime}}\right)-\mathbb{E} f(Y)| | \\
& \leq \sup _{f}| | \mathbb{E} f\left(X_{\theta}\right)-\mathbb{E} f(Y)\left|-\left|\mathbb{E} f\left(X_{\theta^{\prime}}\right)-\mathbb{E} f(Y)\right|\right|
\end{aligned}
$$

That is,

$$
\left|\left|\mathbb{E} f\left(X_{\theta}\right)-\mathbb{E} f(Y)\right|-\left|\mathbb{E} f\left(X_{\theta^{\prime}}\right)-\mathbb{E} f(Y)\right|\right| \leq \rho\left(\theta, \theta^{\prime}\right) \sqrt{L^{\prime}}
$$

so that

$$
\begin{aligned}
\mid F(\theta) & -F\left(\theta^{\prime}\right) \mid \\
& =\left|\sup _{f}\right| \mathbb{E} f\left(X_{\theta}\right)-\mathbb{E} f(Y)\left|-\sup _{f}\right| \mathbb{E} f\left(X_{\theta^{\prime}}\right)-\mathbb{E} f(Y)| | \\
& \leq \sup _{f}| | \mathbb{E} f\left(X_{\theta}\right)-\mathbb{E} f(Y)\left|-\left|\mathbb{E} f\left(X_{\theta^{\prime}}\right)-\mathbb{E} f(Y)\right|\right| \\
& \leq \rho\left(\theta, \theta^{\prime}\right) \sqrt{L^{\prime}} ;
\end{aligned}
$$

i.e., $F(\theta)=d_{B L}\left(X_{\theta}, Y\right)$ is a $\sqrt{L^{\prime}}$-Lipschitz function of $\theta \in \mathfrak{W}_{d, k}$.

Since $d_{B L}\left(X_{\theta}, X_{\Theta}\right)$ is $\sqrt{L^{\prime}}$-Lipschitz, concentration of measure on $\mathfrak{W}_{d, k}$ immediately yields

$$
\mathbb{P}_{\theta}\left[\left|d_{B L}\left(X_{\theta}, X_{\Theta}\right)-\mathbb{E} d_{B L}\left(X_{\theta}, X_{\Theta}\right)\right|>\epsilon\right] \leq C e^{\frac{c d \epsilon^{2}}{L^{\prime}}}
$$

Since $d_{B L}\left(X_{\theta}, X_{\Theta}\right)$ is $\sqrt{L^{\prime}}$-Lipschitz, concentration of measure on $\mathfrak{W}_{d, k}$ immediately yields

$$
\mathbb{P}_{\theta}\left[\left|d_{B L}\left(X_{\theta}, X_{\Theta}\right)-\mathbb{E} d_{B L}\left(X_{\theta}, X_{\Theta}\right)\right|>\epsilon\right] \leq C e^{\frac{c d \epsilon^{2}}{L^{\prime}}}
$$

That is, the random distance $d_{B L}\left(X_{\theta}, X_{\Theta}\right)$ is usually within about $\frac{1}{\sqrt{d}}$ of the "average distance to average" $\mathbb{E} d_{B L}\left(X_{\theta}, X_{\Theta}\right)$.

Outline of the proof - Stiefel manifold formulation

Step 1: The annealed projection X_{Θ}, when both X and Θ are random and independent, is approximately Gaussian.

This is done via Stein's method.
Step 2:The mean bounded-Lipschitz distance $\mathbb{E}_{\theta} d_{B L}\left(X_{\theta}, X_{\ominus}\right)$ is small.

The bounded-Lipschitz distance is interpreted as the supremum of a stochastic process indexed by a class of test functions. Concentration of measure and entropy methods can then be used to derive a bound.

Step 3:The (random) bounded-Lipschitz distance $d_{B L}\left(X_{\theta}, X_{\ominus}\right)$ is tightly concentrated near its mean.

This also follows from concentration of measure.

Outline of the proof - Stiefel manifold formulation

Step 2:The mean bounded-Lipschitz distance $\mathbb{E}_{\theta} d_{B L}\left(X_{\theta}, X_{\Theta}\right)$ is small.

The bounded-Lipschitz distance is interpreted as the supremum of a stochastic process indexed by a class of test functions. Concentration of measure and entropy methods can then be used to derive a bound.

Step 2 - Average distance to average

Step 2 - Average distance to average

We need to estimate

$$
\mathbb{E}_{\theta} d_{B L}\left(X_{\theta}, X_{\Theta}\right)=\mathbb{E}\left(\sup _{\|f\|_{B L} \leq 1}\left|\mathbb{E}\left[f\left(X_{\theta}\right) \mid \theta\right]-\mathbb{E} f\left(X_{\Theta}\right)\right|\right)
$$

Step 2 - Average distance to average

We need to estimate

$$
\mathbb{E}_{\theta} d_{B L}\left(X_{\theta}, X_{\Theta}\right)=\mathbb{E}\left(\sup _{\|f\|_{B L} \leq 1}\left|\mathbb{E}\left[f\left(X_{\theta}\right) \mid \theta\right]-\mathbb{E} f\left(X_{\Theta}\right)\right|\right)
$$

If the stochastic process $\left\{X_{f}\right\}_{\|f\|_{B L \leq 1}}$ is defined by

$$
X_{f}:=\mathbb{E}\left[f\left(X_{\theta}\right) \mid \theta\right]-\mathbb{E} f\left(X_{\ominus}\right)
$$

then what we want is $\mathbb{E} \sup _{\|f\|_{B L} \leq 1} X_{f}$.

Step 2 - Average distance to average

We need to estimate

$$
\mathbb{E}_{\theta} d_{B L}\left(X_{\theta}, X_{\Theta}\right)=\mathbb{E}\left(\sup _{\|f\|_{B L} \leq 1}\left|\mathbb{E}\left[f\left(X_{\theta}\right) \mid \theta\right]-\mathbb{E} f\left(X_{\Theta}\right)\right|\right)
$$

If the stochastic process $\left\{X_{f}\right\}_{\|f\|_{B L} \leq 1}$ is defined by

$$
X_{f}:=\mathbb{E}\left[f\left(X_{\theta}\right) \mid \theta\right]-\mathbb{E} f\left(X_{\Theta}\right)
$$

then what we want is $\mathbb{E} \sup _{\|f\|_{B L} \leq 1} X_{f}$.
Applying measure concentration this time to $F(\theta):=\mathbb{E}\left[(f-g)\left(X_{\theta}\right) \mid \theta\right]$ shows that the process has the property:

$$
\mathbb{P}\left[\left|X_{f}-X_{g}\right|>\epsilon\right] \leq C e^{-\frac{c d \epsilon^{2}}{\|f-g\|_{B L}^{2}}}
$$

Theorem (usually attributed to Dudley; probably actually due to Pisier)
If a stochastic process $\left\{X_{t}\right\}_{t \in T}$ indexed by the metric space (T, δ) satisfies the a sub-Gaussian increment condition

$$
\mathbb{P}\left[\left|X_{t}-X_{s}\right|>\epsilon\right] \leq C e^{-\frac{\epsilon^{2}}{2 \delta^{2}(s, t)}} \quad \forall \epsilon>0,
$$

then

$$
\mathbb{E} \sup _{t \in T} X_{t} \leq C \int_{0}^{\infty} \sqrt{\log N(T, \delta, \epsilon)} d \epsilon
$$

where $N(T, \delta, \epsilon)$ is the ϵ-covering number of T with respect to the distance δ.

Theorem (usually attributed to Dudley; probably actually due to Pisier)
If a stochastic process $\left\{X_{t}\right\}_{t \in T}$ indexed by the metric space (T, δ) satisfies the a sub-Gaussian increment condition

$$
\mathbb{P}\left[\left|X_{t}-X_{s}\right|>\epsilon\right] \leq C e^{-\frac{\epsilon^{2}}{2 \delta^{2}(s, t)}} \quad \forall \epsilon>0,
$$

then

$$
\mathbb{E} \sup _{t \in T} X_{t} \leq C \int_{0}^{\infty} \sqrt{\log N(T, \delta, \epsilon)} d \epsilon
$$

where $N(T, \delta, \epsilon)$ is the ϵ-covering number of T with respect to the distance δ.

Recall that our process satisfies

$$
\mathbb{P}\left[\left|X_{f}-X_{g}\right|>\epsilon\right] \leq C e^{-\frac{c d \epsilon^{2}}{\|f-g\|_{B L}^{2}}}
$$

The question, then, is: if $B L_{1}^{k}:=\left\{f: \mathbb{R}^{k} \rightarrow \mathbb{R} \mid\|f\|_{B L} \leq 1\right\}$, what is $N\left(B L_{1}^{k}, \frac{\|\cdot\|_{B L}}{\sqrt{d}}, \epsilon\right)$?

The question, then, is: if $B L_{1}^{k}:=\left\{f: \mathbb{R}^{k} \rightarrow \mathbb{R} \mid\|f\|_{B L} \leq 1\right\}$, what is $N\left(B L_{1}^{k}, \frac{\|\cdot\|_{B L}}{\sqrt{d}}, \epsilon\right)$?

Bad news: $N\left(B L_{1}^{k}, \frac{\|\cdot\|_{B L}}{\sqrt{d}}, \epsilon\right)=\infty$.

The question, then, is: if $B L_{1}^{k}:=\left\{f: \mathbb{R}^{k} \rightarrow \mathbb{R} \mid\|f\|_{B L} \leq 1\right\}$, what is $N\left(B L_{1}^{k}, \frac{\| \| \| b L}{\sqrt{d}}, \epsilon\right)$?

Bad news: $N\left(B L_{1}^{k}, \frac{\|\cdot\|_{B L}}{\sqrt{d}}, \epsilon\right)=\infty$.
But not to worry: approximating Lipschitz functions by piecewise affine functions and using volumetric estimates in the resulting finite-dimensional normed space of approximating functions does the job, and ultimately we get

$$
\mathbb{E}_{\theta} d_{B L}\left(X_{\theta}, X_{\ominus}\right) \leq C \frac{k+\log (d)}{k^{\frac{2}{3}} d^{\frac{2}{3 k+4}}} .
$$

