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Why project?

I To make expensive computations/algorithms feasible –

so-called Dimension reduction

I To visualize the data and look for global structure

J. Faith

2-D projection of expression levels
of 100 genes for samples from
four tumor types
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A quick word from our sponsor: Random Subspaces

Definition: The Stiefel manifold Wd ,k is the set of ordered
k -tuples of orthonormal vectors in Rd :

Wd ,k :=
{

(v1, . . . , vk ) ∈ (Rd )k
∣∣∣ 〈vi , vj

〉
= δij

}
.

How to pick a random element of Wd ,k :
I Pick v1 uniformly from Sd−1.
I Pick v2 uniformly from the unit sphere in v⊥1 .
I Continue in the obvious way.

The probability measure (called Haar measure) constructed
this way is the unique rotation-invariant probability on Wd ,k : if
U ∈ O (d) is fixed, then

(v1, . . . , vk )
L
= (Uv1, . . . ,Uvk ).
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Concentration of measure on Wd ,k

Wd ,k is a metric space: if θ = (θ1, . . . , θk ) and θ′ = (θ′1, . . . , θ
′
k ),

then we define the distance ρ(θ, θ′) between them by

ρ(θ, θ′) :=

√√√√ k∑
i=1

‖θi − θ′i‖2.

Theorem (Milman–Schechtman)
There are constants C, c (independent of d and k) such that if
F : Wd ,k → R is Lipschitz with Lipschitz constant L and Θ is a
random point of Wd ,k , then

P
[∣∣F (Θ)− EF (Θ)

∣∣ > Lε
]
≤ Ce−cdε2 .
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The Johnson–Lindenstrauss Lemma

If you have n high-dimensional data points and project
them onto a random subspace of dimension ∼ log(n), the
pairwise distances between the points is approximately
preserved.

Practical conclusion: If your problem is about the metric
structure of the data (finding the closest pair, most separated
pair, minimum spanning tree of a graph,etc.), there is no need
to work in the high-dimensional space that the data naturally
live in.
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The Johnson–Lindenstrauss Lemma

Lemma (J–L)
Let {xj}nj=1 ⊆ Rd , and let U be a random k × d matrix,
constructed by taking U = V T where the columns of V are the
entries of a random point of Wd ,k ; that is,
U is a projection of Rd onto a random k-dimensional subspace.

If k = a log(n)
ε2

, then with probability 1− C
n

ac
9 −2 (with C, c coming

from the concentration inequality),

(1− ε)‖xi − xj‖2 ≤
(

d
k

)
‖Uxi − Uxj‖2 ≤ (1 + ε)‖xi − xj‖2

for all i , j ∈ {1, . . . ,n}.
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Application: Finding the closest point

Consider the following problem: You are given a reference set
Xof n points in Rd . Now given a query point q ∈ Rd , find the
closest point in X to q.

P. Indyk

dimension = number of pixels

The naı̈ve approach – calculate each distance and keep track
of the best so far – runs in O(nd) steps.
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Application: Finding the closest point

Surely you can relax a little
∼ let Bill and Joram help you out.

If you project onto a random subspace
of dimension about log(n), distances
are approximately preserved.

This means that while the algorithm
might not return the absolute closest
point, the point that it returns will be
almost as close to q as the true
closest point is.

P. Indyk
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More carefully, suppose that U is one of the good random
projections so that

(1− ε)‖q − xi‖2 ≤
(

d
k

)
‖Uq − Uxi‖2 ≤ (1 + ε)‖q − xi‖2

for each i .

If Uxi is the closest point to Uq (and so our randomized
algorithm returns xi ), but the true closest point to q is xj , then

‖q − xi‖ ≤ (1 + ε)‖q − xj‖;

that is, the wrong answer isn’t that wrong.

And after projecting, the naı̈ve approach runs in O(n log(n))
steps, instead of O(n2).
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Proof

We want to show that for each pair (i , j),

(1− ε)‖xi − xj‖2 ≤
(

d
k

)∥∥Uxi − Uxj
∥∥2 ≤ (1 + ε)‖xi − xj‖2

with high probability,

or equivalently,

√
1− ε ≤

√
d
k
∥∥Ux

∥∥ ≤ √1 + ε

for x :=
xi−xj
‖xi−xj‖

.

By construction of U, this is the same as

√
1− ε ≤

√
d
k

∥∥∥( 〈θ1, x〉 , . . . , 〈θk , x〉
)∥∥∥ ≤ √1 + ε,

where θ = (θ1, . . . , θk ) is a random point of Wd ,k .
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Proof, ctd.

For x ∈ Sd−1 fixed, consider the function Fx : Wd ,k → R defined
by

Fx (θ1, . . . , θk ) =

√
d
k

∥∥∥( 〈θ1, x〉 , . . . , 〈θk , x〉
)∥∥∥.

Now, if θ, θ′ ∈Wd ,k , then∣∣∣∥∥( 〈θ1, x〉 , . . . , 〈θk , x〉
)∥∥− ∥∥( 〈θ′1, x〉 , . . . , 〈θ′k , x〉 )∥∥∣∣∣

≤
∥∥∥( 〈θ1 − θ′1, x

〉
, . . . ,

〈
θk − θ′k , x

〉 )∥∥∥
=

√√√√ k∑
j=1

〈
θj − θ′j , x

〉2
≤

√√√√ k∑
j=1

‖θj − θ′j‖2 = ρ(θ, θ′).
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Proof, ctd.

That is, the function

Fx (θ1, . . . , θk ) =

√
d
k

∥∥∥( 〈θ1, x〉 , . . . , 〈θk , x〉
)∥∥∥

is
√

d
k -Lipschitz on Wd ,k .

It follows immediately from concentration of measure that

P [|Fx (θ)− EFx (θ)| ≥ ε] ≤ Ce−ckε2 .

Remember that k = a log(n)
ε2

, so we have that

P [|Fx (θ)− EFx (θ)| ≥ ε] ≤ C
nac .
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Proof, ctd.

We need that EFx (θ) ≈ 1.

By the invariance of Haar measure under translation and
transposition,(
〈θ1, x〉 , . . . , 〈θk , x〉

) L
=
(
〈θ1,e1〉 , . . . , 〈θk ,e1〉

) L
= (v1, . . . , vk ),

where v is distributed uniformly on Sd−1 ⊆ Rd .

That is,

Fx (θ)
L
=

√(
d
k

)(
v2

1 + · · ·+ v2
k

)
.

It is an easy excercise that Ev2
i = 1

d (so E
[
Fx (θ)

]2
= 1) and the

concentration we already have for Fx (θ) then implies that
EFx (θ) ≈ 1.
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Proof, ctd.

So: returning to the original formulation, we have that

(1− ε)‖xi − xj‖2 ≤
(

d
k

)∥∥Uxi − Uxj
∥∥2 ≤ (1 + ε)‖xi − xj‖2

with probability at least 1− C
n

ac
9

.

There are fewer than n2 pairs (i , j), so a simple union bound
gives that the above statement holds for all pairs (i , j) with
probability at least 1− C

n
ac
9 −2 .



Proof, ctd.

So: returning to the original formulation, we have that

(1− ε)‖xi − xj‖2 ≤
(

d
k

)∥∥Uxi − Uxj
∥∥2 ≤ (1 + ε)‖xi − xj‖2

with probability at least 1− C
n

ac
9

.

There are fewer than n2 pairs (i , j), so a simple union bound
gives that the above statement holds for all pairs (i , j) with
probability at least 1− C

n
ac
9 −2 .



The Diaconis–Freedman Effect

If you project a large, high-dimensional data set onto one
or two dimensions, what you get nearly always looks
Gaussian, no matter what structure you started with.

Practical conclusion: When looking for projections that tell you
something interesting about the data, look for something that is
very different from Gaussian.
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The Diaconis–Freedman Effect

Figure from Buja, Cook, and Swayne “Interactive High-dimensional Data Visualization”, 1996.



The Diaconis–Freedman Effect

Many authors have proved rigorous results that
capture the D-F effect; e.g.,

I Sudakov (1978)
I Diaconis–Freedman (1984)
I von Weiszäcker (1997)
I Bobkov (2003)
I Klartag (2007)
I Dümbgen–Zerial (2011)
I ...



We’ll focus on:

Theorem (E.M.)
Let {xj}nj=1 be data points in Rd

, satisfying

I 1
n
∑n

j=1 xj = 0, and 1
n
∑n

j=1 |xj |2 = σ2d,

I supξ∈Sd−1
1
n
∑n

j=1
〈
ξ, xj

〉2 ≤ L′

I 1
n
∑n

j=1

∣∣∣ |xj |2
d − σ

2
∣∣∣ ≤ L√

d
.

Let E ⊆ Rd be a random k-dimensional subspace and let µE
denote the empirical measure of the projection of the {xj} onto
E. Then

(1) EdBL(µE , σZ ) ≤ C
k + log(d)

k
2
3 d

2
3k+4

(2) P
[∣∣∣dBL(µE , σZ )− EdBL(µE , σZ )

∣∣∣ > ε
]
≤ Ce−cdε2 .
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Preliminaries to the proof

Let X be distributed uniformly in {x1, . . . , xn};
i.e., X is a randomly chosen data point.

For a k -dimensional subspace E ⊆ Rd ,

let XE be distributed uniformly in {πE (x1, ), . . . , πE (xn)};
i.e., XE is the projection of X onto the subspace E .

There are two ways we might like to understand XE :
1. “Annealed” behavior: X and E are both random and

independent.
2. “Quenched” behavior: X is random but E is fixed; what is

“typical”?
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Outline of the proof

Step 1: The annealed projection XE , when both X and E are
random and independent, is approximately Gaussian.

This is done via Stein’s method.

Step 2:The average distance to average E
[
dBL(XE ,XF )

]
,

where E is random inside the distance, but F is averaged over
after measuring the distance, is small.

The bounded-Lipschitz distance is interpreted as the
supremum of a stochastic process indexed by a class
of test functions. Concentration of measure and
entropy methods can then be used to derive a bound.

Step 3:The (random) bounded-Lipschitz distance dBL(XE ,XF )
is tightly concentrated near its mean.

This also follows from concentration of measure.
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Step 1: The annealed projection XΘ, when both X and Θ are
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This is done via Stein’s method.

Step 2:The mean bounded-Lipschitz distance EθdBL(Xθ,XΘ) is
small.

The bounded-Lipschitz distance is interpreted as the
supremum of a stochastic process indexed by a class
of test functions. Concentration of measure and
entropy methods can then be used to derive a bound.

Step 3:The (random) bounded-Lipschitz distance dBL(Xθ,XΘ)
is tightly concentrated near its mean.

This also follows from concentration of measure.
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More about Step 3

Consider the function F : Wd ,k → R defined by

F (θ) := dBL(Xθ,Y ) = sup
|f |≤1,

f 1-Lipschitz

∣∣∣Ef (Xθ)− Ef (Y )
∣∣∣,

where Y is any reference distribution.

Then∣∣∣∣∣Ef (Xθ)− Ef (Y )
∣∣− ∣∣Ef (Xθ′)− Ef (Y )

∣∣∣∣∣
≤
∣∣∣Ef (〈X , θ1〉 , . . . , 〈X , θk 〉)− Ef

(〈
X , θ′1

〉
, . . . ,

〈
X , θ′k

〉) ∣∣∣
≤ E

∣∣ (〈X , θ1 − θ′1
〉
, . . . ,

〈
X , θk − θ′k

〉) ∣∣∣
≤

√√√√√ k∑
j=1

|θj − θ′j |2 E

〈
X ,

θj − θ′j
|θj − θ′j |

〉2

≤ ρ(θ, θ′)
√

L′
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i.e., F (θ) = dBL(Xθ,Y ) is a
√

L′-Lipschitz function of θ ∈Wd ,k .
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Since dBL(Xθ,XΘ) is
√

L′-Lipschitz, concentration of measure
on Wd ,k immediately yields

Pθ
[∣∣∣dBL(Xθ,XΘ)− EdBL(Xθ,XΘ)

∣∣∣ > ε
]
≤ Ce

cdε2

L′ .

That is, the random distance dBL(Xθ,XΘ) is usually within about
1√
d

of the “average distance to average” EdBL(Xθ,XΘ).
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Step 2 – Average distance to average

We need to estimate

EθdBL(Xθ,XΘ) = E

(
sup
‖f‖BL≤1

∣∣∣E [f (Xθ)
∣∣θ]− Ef (XΘ)

∣∣∣).
If the stochastic process {Xf}‖f‖BL≤1 is defined by

Xf := E
[
f (Xθ)

∣∣θ]− Ef (XΘ),

then what we want is E sup‖f‖BL≤1 Xf .

Applying measure concentration this time to
F (θ) := E

[
(f − g)(Xθ)

∣∣θ] shows that the process has the
property:

P
[∣∣Xf − Xg

∣∣ > ε
]
≤ Ce

− cdε2

‖f−g‖2BL .
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Theorem (usually attributed to Dudley; probably actually
due to Pisier)
If a stochastic process {Xt}t∈T indexed by the metric space
(T , δ) satisfies the a sub-Gaussian increment condition

P
[∣∣Xt − Xs

∣∣ > ε
]
≤ Ce

− ε2

2δ2(s,t) ∀ε > 0,

then
E sup

t∈T
Xt ≤ C

∫ ∞
0

√
log N(T , δ, ε)dε,

where N(T , δ, ε) is the ε-covering number of T with respect to
the distance δ.

Recall that our process satisfies

P
[∣∣Xf − Xg

∣∣ > ε
]
≤ Ce

− cdε2

‖f−g‖2BL .
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The question, then, is: if BLk
1 :=

{
f : Rk → R

∣∣∣‖f‖BL ≤ 1
}
, what

is N
(

BLk
1,
‖·‖BL√

d
, ε
)

?

Bad news: N
(

BLk
1,
‖·‖BL√

d
, ε
)

=∞.

But not to worry: approximating Lipschitz functions by
piecewise affine functions and using volumetric estimates in the
resulting finite-dimensional normed space of approximating
functions does the job, and ultimately we get

EθdBL(Xθ,XΘ) ≤ C
k + log(d)

k
2
3 d

2
3k+4

.
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