### **Random Unitary Matrices and Friends**

Elizabeth Meckes

Case Western Reserve University

LDHD Summer School SAMSI August, 2013

▲□▶▲□▶▲□▶▲□▶ □ ● ○ ●

► A unitary matrix is an *n* × *n* matrix *U* with entries in C, such that

$$UU^* = I$$
,

▲□▶▲□▶▲□▶▲□▶ □ ● ○ ●

where  $U^*$  is the conjugate transpose of U.

► A unitary matrix is an *n* × *n* matrix *U* with entries in C, such that

$$UU^* = I$$
,

where  $U^*$  is the conjugate transpose of U.

That is, a unitary matrix is an  $n \times n$  matrix over  $\mathbb{C}$  whose columns (or rows) are orthonormal in  $\mathbb{C}^n$ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

► A unitary matrix is an *n* × *n* matrix *U* with entries in C, such that

$$UU^*=I,$$

where  $U^*$  is the conjugate transpose of U.

That is, a unitary matrix is an  $n \times n$  matrix over  $\mathbb{C}$  whose columns (or rows) are orthonormal in  $\mathbb{C}^n$ .

► The set of all n × n unitary matrices is denoted U (n); this set is a group and a manifold.

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

- Metric Structure:
  - ► U(n) sits inside C<sup>n<sup>2</sup></sup> and inherits a geodesic metric d<sub>g</sub>(·, ·)
    from the Euclidean metric on C<sup>n<sup>2</sup></sup>.

ション・「「・・・・・・・」 シック

- Metric Structure:
  - U(n) sits inside C<sup>n<sup>2</sup></sup> and inherits a geodesic metric d<sub>g</sub>(·, ·)
     from the Euclidean metric on C<sup>n<sup>2</sup></sup>.
  - $\mathbb{U}(n)$  also has its own Euclidean (Hilbert-Schmidt) metric from the inner product  $\langle U, V \rangle = \text{Tr}(UV^*)$ .

- Metric Structure:
  - U(n) sits inside C<sup>n<sup>2</sup></sup> and inherits a geodesic metric d<sub>g</sub>(·, ·)
     from the Euclidean metric on C<sup>n<sup>2</sup></sup>.
  - U(n) also has its own Euclidean (Hilbert-Schmidt) metric
     from the inner product ⟨U, V⟩ = Tr(UV\*).
  - The two metrics are equivalent:

$$d_{HS}(U, V) \leq d_g(U, V) \leq \frac{\pi}{2} d_{HS}(U, V).$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

- Metric Structure:
  - U(n) sits inside C<sup>n<sup>2</sup></sup> and inherits a geodesic metric d<sub>g</sub>(·, ·)
     from the Euclidean metric on C<sup>n<sup>2</sup></sup>.
  - ▶ U(n) also has its own Euclidean (Hilbert-Schmidt) metric from the inner product  $\langle U, V \rangle = \text{Tr}(UV^*)$ .
  - The two metrics are equivalent:

$$d_{HS}(U, V) \leq d_g(U, V) \leq rac{\pi}{2} d_{HS}(U, V).$$

Randomness:

There is a unique translation-invariant probability measure called Haar measure on  $\mathbb{U}(n)$ : if *U* is a Haar-distributed random unitary matrix, so are *AU* and *UA*, for *A* a fixed unitary matrix.

◆□▶ ◆□▶ ★ □▶ ★ □▶ □ □ ○ ○ ○ ○

1. Pick the first column  $U_1$  uniformly from  $\mathbb{S}^1_{\mathbb{C}} \subseteq \mathbb{C}^n$ .

1. Pick the first column  $U_1$  uniformly from  $\mathbb{S}^1_{\mathbb{C}} \subseteq \mathbb{C}^n$ .

▶ Pick the second column  $U_2$  uniformly from  $U_1^{\perp} \subseteq \mathbb{S}^1_{\mathbb{C}}$ .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

1. • Pick the first column  $U_1$  uniformly from  $\mathbb{S}^1_{\mathbb{C}} \subseteq \mathbb{C}^n$ .

• Pick the second column  $U_2$  uniformly from  $U_1^{\perp} \subseteq \mathbb{S}^1_{\mathbb{C}}$ .

くしゃ 不良 そうやく ひゃくしゃ

▶ Pick the last column  $U_n$  uniformly from  $(span{U_1, ..., U_{n-1}})^{\perp} \subseteq \mathbb{S}^1_{\mathbb{C}}$ .

1. • Pick the first column  $U_1$  uniformly from  $\mathbb{S}^1_{\mathbb{C}} \subseteq \mathbb{C}^n$ .

- ▶ Pick the second column  $U_2$  uniformly from  $U_1^{\perp} \subseteq S_{\mathbb{C}}^1$ .
- ▶ Pick the last column  $U_n$  uniformly from  $(span{U_1, ..., U_{n-1}})^{\perp} \subseteq \mathbb{S}^1_{\mathbb{C}}.$

Fill an *n* × *n* array with i.i.d. standard complex Gaussian random variables.

1. • Pick the first column  $U_1$  uniformly from  $\mathbb{S}^1_{\mathbb{C}} \subseteq \mathbb{C}^n$ .

- Pick the second column  $U_2$  uniformly from  $U_1^{\perp} \subseteq \mathbb{S}^1_{\mathbb{C}}$ .
- ▶ Pick the last column  $U_n$  uniformly from  $(span{U_1, ..., U_{n-1}})^{\perp} \subseteq \mathbb{S}^1_{\mathbb{C}}$ .

- Fill an n × n array with i.i.d. standard complex Gaussian random variables.
  - Stick the result into the *QR* algorithm; the resulting *Q* is Haar-distributed on U(*n*).

・ロト・(四ト・(日下・(日下・(日下)))

▲ロト▲圖ト▲国ト▲国ト 国 のへの

► An orthogonal matrix is an  $n \times n$  matrix U with entries in  $\mathbb{R}$ , such that

 $UU^T = I$ ,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where  $U^T$  is the transpose of U.

► An orthogonal matrix is an  $n \times n$  matrix U with entries in  $\mathbb{R}$ , such that

$$UU^T = I,$$

where  $U^T$  is the transpose of U. That is, a unitary matrix is an  $n \times n$  matrix over  $\mathbb{R}$  whose columns (or rows) are orthonormal in  $\mathbb{R}^n$ .

► An orthogonal matrix is an  $n \times n$  matrix U with entries in  $\mathbb{R}$ , such that

$$UU^T = I,$$

where  $U^T$  is the transpose of U. That is, a unitary matrix is an  $n \times n$  matrix over  $\mathbb{R}$  whose columns (or rows) are orthonormal in  $\mathbb{R}^n$ .

The set of all *n* × *n* unitary matrices is denoted 
○(*n*); this set is a subgroup and a submanifold of U(*n*).

・ロト・(四ト・(日下・(日下・(日下)))

An orthogonal matrix is an  $n \times n$  matrix U with entries in  $\mathbb{R}$ , such that

$$UU^T = I,$$

where  $U^T$  is the transpose of U. That is, a unitary matrix is an  $n \times n$  matrix over  $\mathbb{R}$  whose columns (or rows) are orthonormal in  $\mathbb{R}^n$ .

- The set of all *n* × *n* unitary matrices is denoted (*n*); this set is a subgroup and a submanifold of U (*n*).
- O (*n*) has two connected components: SO (*n*) (det(U) = 1) and SO<sup>−</sup> (*n*) (det(U) = −1).
- ► There is a unique translation-invariant (Haar) probability measure on each of O (n), SO (n) and SO<sup>-</sup> (n).

▲ロト ▲圖 ト ▲国 ト ▲国 ト 一国 - のへぐ

► A symplectic matrix is an 2n × 2n matrix with entries in C, such that

$$UJU^* = J,$$

where  $U^*$  is the conjugate transpose of U and

$$J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

► A symplectic matrix is an 2n × 2n matrix with entries in C, such that

$$UJU^* = J,$$

where  $U^*$  is the conjugate transpose of U and

$$J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

(It is really the quaternionic unitary group.)

► A symplectic matrix is an 2n × 2n matrix with entries in C, such that

$$UJU^* = J,$$

where  $U^*$  is the conjugate transpose of U and

$$J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}.$$

<ロ> < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(It is really the quaternionic unitary group.)

• The group of  $2n \times 2n$  symplectic matrices is denoted  $\mathbb{S}_{\mathbb{P}}(2n)$ .

### Concentration of measure

#### Theorem (G/M;B/E;L;M/M)

Let G be one of SO(n),  $SO^{-}(n)$ , SU(n), U(n),  $S_{\mathbb{P}}(2n)$ , and let  $F: G \to \mathbb{R}$  be L-Lipschitz (w.r.t. the geodesic metric or the HS-metric). Let U be distributed according to Haar measure on G. Then there are universal constants C, c such that

# $\mathbb{P}\left[\left|F(U)-\mathbb{E}F(U)\right|>Lt\right]\leq Ce^{-cnt^2},$

for every t > 0.

Note: permuting the rows or columns of a random orthogonal matrix *U* corresponds to left- or right-multiplication by a permutation matrix (which is itself orthogonal).

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Note: permuting the rows or columns of a random orthogonal matrix *U* corresponds to left- or right-multiplication by a permutation matrix (which is itself orthogonal).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\implies$  The entries  $\{u_{ij}\}$  of *U* all have the same distribution.

Note: permuting the rows or columns of a random orthogonal matrix *U* corresponds to left- or right-multiplication by a permutation matrix (which is itself orthogonal).

 $\implies$  The entries  $\{u_{ij}\}$  of *U* all have the same distribution.

Classical fact: A coordinate of a random point on the sphere in  $\mathbb{R}^n$  is approximately Gaussian, for large *n*.

うしん 山田 ・山田・山田・山田・

Note: permuting the rows or columns of a random orthogonal matrix *U* corresponds to left- or right-multiplication by a permutation matrix (which is itself orthogonal).

 $\implies$  The entries  $\{u_{ij}\}$  of *U* all have the same distribution.

Classical fact: A coordinate of a random point on the sphere in  $\mathbb{R}^n$  is approximately Gaussian, for large *n*.

 $\implies$  The entries  $\{u_{ij}\}$  of *U* are

individually approximately Gaussian

・ロト・(四ト・(日下・(日下・(日下)))

if U is large.

A more modern fact (Diaconis–Freedman): If X is a randomly distributed point on the sphere of radius  $\sqrt{n}$  in  $\mathbb{R}^n$ , and Z is a standard Gaussian random vector in  $\mathbb{R}^n$ , then

$$d_{TV}\Big((X_1,\ldots,X_k),(Z_1,\ldots,Z_k)\Big) \leq \frac{2(k+3)}{n-k-3}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

A more modern fact (Diaconis–Freedman): If X is a randomly distributed point on the sphere of radius  $\sqrt{n}$  in  $\mathbb{R}^n$ , and Z is a standard Gaussian random vector in  $\mathbb{R}^n$ , then

$$d_{TV}\Big((X_1,\ldots,X_k),(Z_1,\ldots,Z_k)\Big) \leq \frac{2(k+3)}{n-k-3}$$

 $\implies$  Any *k* entries within one row (or column) of  $U \in \mathbb{U}(n)$  are approximately independent Gaussians, if k = o(n).

くしゃ 不良 そうやく ひゃくしゃ

A more modern fact (Diaconis–Freedman): If X is a randomly distributed point on the sphere of radius  $\sqrt{n}$  in  $\mathbb{R}^n$ , and Z is a standard Gaussian random vector in  $\mathbb{R}^n$ , then

$$d_{TV}\Big((X_1,\ldots,X_k),(Z_1,\ldots,Z_k)\Big) \leq \frac{2(k+3)}{n-k-3}$$

 $\implies$  Any *k* entries within one row (or column) of  $U \in \mathbb{U}(n)$  are approximately independent Gaussians, if k = o(n).

Diaconis'question: How many entries of *U* can be simultaneously approximated by independent Gaussians?

▲□▶▲□▶▲目▶▲目▶ 目 のへで

It depends on what you mean by approximated.

It depends on what you mean by approximated.

#### Theorem (Jiang)

Let  $\{U_n\}$  be a sequence of random orthogonal matrices with  $U_n \in \mathbb{O}(n)$  for each *n*, and suppose that  $p_n, q_n = o(\sqrt{n})$ .

Let  $\mathcal{L}(\sqrt{n}U(p_n, q_n))$  denote the joint distribution of the  $p_nq_n$ entries of the top-left  $p_n \times q_n$  block of  $\sqrt{n}U_n$ , and let  $Z(p_n, q_n)$ denote a collection of  $p_nq_n$  i.i.d. standard normal random variables. Then

 $\lim_{n\to\infty} d_{TV}(\mathcal{L}(\sqrt{n}U(p_n,q_n)),Z(p_n,q_n))=0.$ 

It depends on what you mean by approximated.

#### Theorem (Jiang)

Let  $\{U_n\}$  be a sequence of random orthogonal matrices with  $U_n \in \mathbb{O}(n)$  for each *n*, and suppose that  $p_n, q_n = o(\sqrt{n})$ .

Let  $\mathcal{L}(\sqrt{n}U(p_n, q_n))$  denote the joint distribution of the  $p_nq_n$ entries of the top-left  $p_n \times q_n$  block of  $\sqrt{n}U_n$ , and let  $Z(p_n, q_n)$ denote a collection of  $p_nq_n$  i.i.d. standard normal random variables. Then

# $\lim_{n\to\infty} d_{TV}(\mathcal{L}(\sqrt{n}U(p_n,q_n)),Z(p_n,q_n))=0.$

That is, a  $p_n \times q_n$  principle submatrix can be approximated in total variation by a Gaussian random matrix, as long as  $p_n, q_n \ll \sqrt{n}$ .
## Jiang's answer(s)

Theorem (Jiang) For each *n*, let  $Y_n = [y_{ij}]_{i,j=1}^n$  be an  $n \times n$  matrix of independent standard Gaussian random variables and let  $\Gamma_n = [\gamma_{ij}]_{i,j=1}^n$  be the matrix obtained from  $Y_n$  by performing the Gram-Schmidt process; i.e.,  $\Gamma_n$  is a random orthogonal matrix. Let

$$\epsilon_n(m) = \max_{1 \le i \le n, 1 \le j \le m} \big| \sqrt{n} \gamma_{ij} - \mathbf{y}_{ij} \big|.$$

Then

$$\epsilon_n(m_n) \xrightarrow[n \to \infty]{\mathbb{P}} 0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

if and only if  $m_n = o\left(\frac{n}{\log(n)}\right)$ .

# Jiang's answer(s)

Theorem (Jiang) For each *n*, let  $Y_n = [y_{ij}]_{i,j=1}^n$  be an  $n \times n$  matrix of independent standard Gaussian random variables and let  $\Gamma_n = [\gamma_{ij}]_{i,j=1}^n$  be the matrix obtained from  $Y_n$  by performing the Gram-Schmidt process; i.e.,  $\Gamma_n$  is a random orthogonal matrix. Let

$$\epsilon_n(m) = \max_{1 \le i \le n, 1 \le j \le m} \big| \sqrt{n} \gamma_{ij} - \mathbf{y}_{ij} \big|.$$

Then

$$\epsilon_n(m_n) \xrightarrow[n \to \infty]{\mathbb{P}} 0$$

if and only if  $m_n = o\left(\frac{n}{\log(n)}\right)$ .

That is, in an "in probability" sense,  $\frac{n^2}{\log(n)}$  entries of *U* can be simultaneously approximated by independent Gaussians.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Choosing a principle submatrix of an  $n \times n$  orthogonal matrix U corresponds to a particular type of orthogonal projection from a large matrix space to a smaller one.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Choosing a principle submatrix of an  $n \times n$  orthogonal matrix U corresponds to a particular type of orthogonal projection from a large matrix space to a smaller one.

<ロ> < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(Note that the result is no longer orthogonal.)

Choosing a principle submatrix of an  $n \times n$  orthogonal matrix U corresponds to a particular type of orthogonal projection from a large matrix space to a smaller one.

(Note that the result is no longer orthogonal.)

In general, a rank k orthogonal projection of  $\mathbb{O}(n)$  looks like

$$U \mapsto (\operatorname{Tr}(A_1 U), \ldots, \operatorname{Tr}(A_k U)),$$

where  $A_1, \ldots, A_k$  are orthonormal matrices in  $\mathbb{O}(n)$ ; i.e.,

$$\operatorname{Tr}(\boldsymbol{A}_{i}\boldsymbol{A}_{j}^{T})=\delta_{ij}.$$

くして 山田 くぼう 人間 くうえん

#### Theorem (Chatterjee–M.)

Let  $A_1, \ldots, A_k$  be orthonormal (w.r.t. the Hilbert-Schmidt inner product) in  $\mathbb{O}(n)$ , and let  $U \in \mathbb{O}(n)$  be a random orthogonal matrix. Consider the random vector

 $X := (\mathrm{Tr}(A_1 U), \ldots, \mathrm{Tr}(A_k U)),$ 

and let  $Z := (Z_1, ..., Z_k)$  be a standard Gaussian random vector in  $\mathbb{R}^k$ . Then for all  $n \ge 2$ ,

$$d_W(X,Z) \leq \frac{\sqrt{2}k}{n-1}.$$

Here,  $d_W(\cdot, \cdot)$  denotes the L<sub>1</sub>-Wasserstein distance.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 - の Q ()

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Let *U* be a Haar-distributed matrix in  $\mathbb{U}(N)$ .

Then *U* has (random) eigenvalues  $\{e^{i\theta_j}\}_{j=1}^N$ .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Let *U* be a Haar-distributed matrix in  $\mathbb{U}(N)$ .

Then *U* has (random) eigenvalues  $\{e^{i\theta_j}\}_{j=1}^N$ .

Let *U* be a Haar-distributed matrix in  $\mathbb{U}(N)$ .

Then *U* has (random) eigenvalues  $\{e^{i\theta_j}\}_{i=1}^N$ .

Note: The distribution of the set of eigenvalues is rotation-invariant.

くしゃ 不良 そうやく ひゃくしゃ

Let *U* be a Haar-distributed matrix in  $\mathbb{U}(N)$ .

Then *U* has (random) eigenvalues  $\{e^{i\theta_j}\}_{i=1}^N$ .

Note: The distribution of the set of eigenvalues is rotation-invariant.

To understand the behavior of the ensemble of random eigenvalues, we consider the empirical spectral measure of *U*:

$$\mu_N := \frac{1}{N} \sum_{j=1}^N \delta_{e^{i\theta_j}}.$$

くしゃ 不良 そうやく ひゃくしゃ



100 i.i.d. uniform random points



E. Rains

The eigenvalues of a  $100 \times 100$  random unitary matrix

## Diaconis/Shahshahani

#### Theorem (D–S)

Let  $U_n \in \mathbb{U}(n)$  be a random unitary matrix, and let  $\mu_{U_n}$  denote the empirical spectral measure of  $U_n$ . Let  $\nu$  denote the uniform probability measure on  $\mathbb{S}^1$ . Then

$$u_{U_n} \xrightarrow{n \to \infty} \nu,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

weak-\* in probability.

## Diaconis/Shahshahani

#### Theorem (D–S)

Let  $U_n \in \mathbb{U}(n)$  be a random unitary matrix, and let  $\mu_{U_n}$  denote the empirical spectral measure of  $U_n$ . Let  $\nu$  denote the uniform probability measure on  $\mathbb{S}^1$ . Then

$$\mu_{U_n} \xrightarrow{n \to \infty} \nu,$$

weak-\* in probability.

► The theorem follows from explicit formulae for the mixed moments of the random vector (Tr(U<sub>n</sub>),...,Tr(U<sub>n</sub><sup>k</sup>)) for fixed k, which have been useful in many other contexts.

## Diaconis/Shahshahani

#### Theorem (D–S)

Let  $U_n \in \mathbb{U}(n)$  be a random unitary matrix, and let  $\mu_{U_n}$  denote the empirical spectral measure of  $U_n$ . Let  $\nu$  denote the uniform probability measure on  $\mathbb{S}^1$ . Then

$$u_{U_n} \xrightarrow{n \to \infty} \nu,$$

weak-\* in probability.

- ► The theorem follows from explicit formulae for the mixed moments of the random vector (Tr(U<sub>n</sub>),...,Tr(U<sub>n</sub><sup>k</sup>)) for fixed k, which have been useful in many other contexts.
- ► They showed in particular that (Tr(U<sub>n</sub>),...,Tr(U<sup>k</sup><sub>n</sub>)) is asymptotically distributed as a standard complex Gaussian random vector.

## The number of eigenvalues in an arc

### Theorem (Wieand)

Let  $I_j := (e^{i\alpha_j}, e^{i\beta_j})$  be intervals on  $\mathbb{S}^1$  and for  $U_n \in \mathbb{U}(n)$  a random unitary matrix, let

$$Y_{n,k} := \frac{\mu_{U_n}(I_k) - \mathbb{E}\mu_{U_n}(I_k)}{\frac{1}{\pi}\sqrt{\log(n)}}.$$

Then as n tends to infinity, the random vector  $(Y_{n,1}, \ldots, Y_{n,k})$  converges in distribution to a jointly Gaussian random vector  $(Z_1, \ldots, Z_k)$  with covariance

$$\operatorname{Cov}(Z_j, Z_k) = \begin{cases} 0, & \alpha_j, \alpha_k, \beta_j, \beta_k \text{ all distict;} \\ \frac{1}{2} & \alpha_j = \alpha_k \text{ or } \beta_j = \beta_k \text{ (but not both);} \\ -\frac{1}{2} & \alpha_j = \beta_k \text{ or } \beta_j = \alpha_k \text{ (but not both);} \\ 1 & \alpha_j = \alpha_k \text{ and } \beta_j = \beta_k; \\ -1 & \alpha_j = \beta_k \text{ and } \beta_j = \alpha_k. \end{cases}$$

・ロト・西ト・モート ヨー うへの

## About that weird covariance structure...

## About that weird covariance structure...

Another Gaussian process that has it:

### About that weird covariance structure...

Another Gaussian process that has it: Again suppose that  $I_j := (e^{i\alpha_j}, e^{i\beta_j})$  are intervals on  $\mathbb{S}^1$ , and suppose that  $\{G_{\theta}\}_{\theta \in [0,2\pi)}$  are i.i.d. standard Gaussians. Define

$$X_{n,k} = G_{\beta_k} - G_{\alpha_k};$$

then

$$\operatorname{Cov}(X_j, X_k) = \begin{cases} 0, & \alpha_j, \alpha_k, \beta_j, \beta_k \text{ all distict;} \\ \frac{1}{2} & \alpha_j = \alpha_k \text{ or } \beta_j = \beta_k \text{ (but not both);} \\ -\frac{1}{2} & \alpha_j = \beta_k \text{ or } \beta_j = \alpha_k \text{ (but not both);} \\ 1 & \alpha_j = \alpha_k \text{ and } \beta_j = \beta_k; \\ -1 & \alpha_j = \beta_k \text{ and } \beta_j = \alpha_k. \end{cases}$$

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

## Where's the white noise in *U*?

## Where's the white noise in *U*?

## Theorem (Hughes–Keating–O'Connel)

Let  $Z(\theta)$  be the characteristic polynomial of U and fix  $\theta_1 \dots, \theta_k$ . Then

$$\frac{1}{\sqrt{\frac{1}{2}\log(n)}} \left(\log(Z(\theta_1)), \dots, \log(Z(\theta_k))\right)$$

converges in distribution to a standard Gaussian random vector in  $\mathbb{C}^k$ , as  $n \to \infty$ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

## Where's the white noise in *U*?

## Theorem (Hughes–Keating–O'Connel)

Let  $Z(\theta)$  be the characteristic polynomial of U and fix  $\theta_1 \dots, \theta_k$ . Then

$$\frac{1}{\sqrt{\frac{1}{2}\log(n)}} \left(\log(Z(\theta_1)), \dots, \log(Z(\theta_k))\right)$$

converges in distribution to a standard Gaussian random vector in  $\mathbb{C}^k$ , as  $n \to \infty$ .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

HKO in particular showed that Wieand's result follows from theirs by the argument principle.

## Powers of U



The eigenvalues of  $U^m$  for m = 1, 5, 20, 45, 80, for U a realization of a random  $80 \times 80$  unitary matrix.

## Rains' Theorems

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

## Rains' Theorems

Theorem (Rains 1997)

Let  $U \in \mathbb{U}(n)$  be a random unitary matrix, and let  $m \ge n$ . Then the eigenvalues of  $U^m$  are distributed exactly as n i.i.d. uniform points on  $\mathbb{S}^1$ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

## Rains' Theorems

Theorem (Rains 1997)

Let  $U \in \mathbb{U}(n)$  be a random unitary matrix, and let  $m \ge n$ . Then the eigenvalues of  $U^m$  are distributed exactly as n i.i.d. uniform points on  $\mathbb{S}^1$ .

Theorem (Rains 2003) Let  $m \le N$  be fixed. Then

$$\left[\mathbb{U}(N)\right]^{m} \stackrel{e.v.d.}{=} \bigoplus_{0 \leq j < m} \mathbb{U}\left(\left\lceil \frac{N-j}{m} \right\rceil\right),$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

where  $\stackrel{e.v.d.}{=}$  denotes equality of eigenvalue distributions.



The eigenvalues of  $U^m$  for m = 1, 5, 20, 45, 80, for U a realization of a random  $80 \times 80$  unitary matrix.

うせん 間 (4回を)(回を)(日を)

#### Theorem (E.M./M. Meckes)

Let  $\nu$  denote the uniform probability measure on the circle and  $W_p(\mu,\nu) := \inf \left\{ \left( \int |x-y|^p d\pi(x,y) \right)^{\frac{1}{p}} \middle| \begin{array}{l} \pi(A \times \mathbb{C}) = \mu(A) \\ \pi(\mathbb{C} \times A) = \nu(A) \end{array} \right\}.$ 

くしゃ 不良 そうやく ひゃくしゃ

#### Theorem (E.M./M. Meckes)

Let  $\nu$  denote the uniform probability measure on the circle and  $W_p(\mu,\nu) := \inf \left\{ \left( \int |x-y|^p d\pi(x,y) \right)^{\frac{1}{p}} \middle| \begin{array}{l} \pi(A \times \mathbb{C}) = \mu(A) \\ \pi(\mathbb{C} \times A) = \nu(A) \end{array} \right\}.$ Then

(ロ)

• 
$$\mathbb{E}\left[W_{\rho}(\mu_{m,N},\nu)\right] \leq \frac{C\rho\sqrt{m\left[\log\left(\frac{N}{m}\right)+1\right]}}{N}$$

#### Theorem (E.M./M. Meckes)

Let  $\nu$  denote the uniform probability measure on the circle and  $W_p(\mu,\nu) := \inf \left\{ \left( \int |x-y|^p d\pi(x,y) \right)^{\frac{1}{p}} \middle| \begin{array}{l} \pi(A \times \mathbb{C}) = \mu(A) \\ \pi(\mathbb{C} \times A) = \nu(A) \end{array} \right\}.$ Then

$$\blacktriangleright \mathbb{E}\left[W_{p}(\mu_{m,N},\nu)\right] \leq \frac{Cp\sqrt{m\left[\log\left(\frac{N}{m}\right)+1\right]}}{N}$$

・ロト・西・・ヨ・・ヨ・・ 日・ うへつ

## Almost sure convergence

#### Corollary

For each N, let  $U_N$  be distributed according to uniform measure on  $\mathbb{U}(N)$  and let  $m_N \in \{1, ..., N\}$ . There is a C such that, with probability 1,

$$W_{p}(\mu_{m_{N},N},
u) \leq rac{Cp\sqrt{m_{N}\log(N)}}{N^{rac{1}{2}+rac{1}{\max(2,p)}}}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

eventually.

# A miraculous representation of the eigenvalue counting function

▲□▶▲□▶▲□▶▲□▶ □□ のへで

# A miraculous representation of the eigenvalue counting function

Fact: The set  $\{e^{i\theta_j}\}_{j=1}^N$  of eigenvalues of U (uniform in  $\mathbb{U}(N)$ ) is a determinantal point process.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

# A miraculous representation of the eigenvalue counting function

Fact: The set  $\{e^{i\theta_j}\}_{j=1}^N$  of eigenvalues of U (uniform in  $\mathbb{U}(N)$ ) is a determinantal point process.

#### Theorem (Hough/Krishnapur/Peres/Virág 2006)

Let  $\mathcal{X}$  be a determinantal point process in  $\Lambda$  satisfying some niceness conditions. For  $D \subseteq \Lambda$ , let  $\mathcal{N}_D$  be the number of points of  $\mathcal{X}$  in D. Then

$$\mathcal{N}_D \stackrel{d}{=} \sum_k \xi_k,$$

うしん 山 くらく ホイト (四)・ (日)

where  $\{\xi_k\}$  are independent Bernoulli random variables with means given explicitly in terms of the kernel of  $\mathcal{X}$ .
# A miraculous representation of the eigenvalue counting function

That is, if  $\mathcal{N}_{\theta}$  is the number of eigenangles of *U* between 0 and  $\theta$ , then

$$\mathcal{N}_{\theta} \stackrel{d}{=} \sum_{j=1}^{N} \xi_{j}$$

for a collection  $\{\xi_j\}_{j=1}^N$  of independent Bernoulli random variables.

## A miraculous representation of the eigenvalue counting function

Recall Rains' second theorem:

$$\left[\mathbb{U}(N)\right]^{m} \stackrel{e.v.d.}{=} \bigoplus_{0 \leq j < m} \mathbb{U}\left(\left\lceil \frac{N-j}{m} \right\rceil\right),$$

▲□▶▲□▶▲□▶▲□▶ □ ● ●

# A miraculous representation of the eigenvalue counting function

Recall Rains' second theorem:

$$\left[\mathbb{U}(N)\right]^{m} \stackrel{e.v.d.}{=} \bigoplus_{0 \leq j < m} \mathbb{U}\left(\left\lceil \frac{N-j}{m} \right\rceil\right),$$

So: if  $\mathcal{N}_{m,N}(\theta)$  denotes the number of eigenangles of  $U^m$  in  $[0, \theta)$ , then

$$\mathcal{N}_{m,N}(\theta) \stackrel{d}{=} \sum_{j=1}^{N} \xi_j,$$

(日) (日) (日) (日) (日) (日) (日)

for  $\{\xi_j\}_{j=1}^N$  independent Bernoulli random variables.

► From Bernstein's inequality and the representation of  $\mathcal{N}_{m,N}(\theta)$  as  $\sum_{j=1}^{N} \xi_j$ ,

$$\mathbb{P}\left[\left|\mathcal{N}_{m,N}(\theta)-\mathbb{E}\mathcal{N}_{m,N}(\theta)\right|>t\right]\leq 2\exp\left[-\min\left\{\frac{t^2}{4\sigma^2},\frac{t}{2}\right\}\right],$$

(日) (日) (日) (日) (日) (日) (日) (日)

where  $\sigma^2 = \operatorname{Var} \mathcal{N}_{m,N}(\theta)$ .

From Bernstein's inequality and the representation of  $\mathcal{N}_{m,N}(\theta)$  as  $\sum_{j=1}^{N} \xi_j$ ,

$$\mathbb{P}\left[\left|\mathcal{N}_{m,N}(\theta) - \mathbb{E}\mathcal{N}_{m,N}(\theta)\right| > t\right] \leq 2\exp\left[-\min\left\{\frac{t^2}{4\sigma^2}, \frac{t}{2}\right\}\right],$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

where  $\sigma^2 = \operatorname{Var} \mathcal{N}_{m,N}(\theta)$ .

•  $\mathbb{E}\mathcal{N}_{m,N}(\theta) = \frac{N\theta}{2\pi}$  (by rotation invariance).

From Bernstein's inequality and the representation of  $\mathcal{N}_{m,N}(\theta)$  as  $\sum_{j=1}^{N} \xi_j$ ,

$$\mathbb{P}\left[\left|\mathcal{N}_{m,N}(\theta) - \mathbb{E}\mathcal{N}_{m,N}(\theta)\right| > t\right] \leq 2\exp\left[-\min\left\{\frac{t^2}{4\sigma^2}, \frac{t}{2}\right\}\right],$$

where  $\sigma^2 = \operatorname{Var} \mathcal{N}_{m,N}(\theta)$ .

- $\mathbb{E}\mathcal{N}_{m,N}(\theta) = \frac{N\theta}{2\pi}$  (by rotation invariance).
- Var [N<sub>1,N</sub>(θ)] ≤ log(N) + 1 (e.g., via explicit computation with the kernel of the determinantal point process), and so

$$\operatorname{Var}\left(\mathcal{N}_{m,N}(\theta)\right) = \sum_{0 \le j < m} \operatorname{Var}\left(\mathcal{N}_{1,\left\lceil \frac{N-j}{m} \right\rceil}(\theta)\right) \le m\left(\log\left(\frac{N}{m}\right) + 1\right).$$

$$\mathbb{P}\left[\left|\theta_j - \frac{2\pi j}{N}\right| > \frac{4\pi t}{N}\right] \le 4 \exp\left[-\min\left\{\frac{t^2}{m\left(\log\left(\frac{N}{m}\right) + 1\right)}, t\right\}\right],$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

for each  $j \in \{1, ..., N\}$ :

$$\mathbb{P}\left[\left|\theta_j - \frac{2\pi j}{N}\right| > \frac{4\pi t}{N}\right] \le 4 \exp\left[-\min\left\{\frac{t^2}{m\left(\log\left(\frac{N}{m}\right) + 1\right)}, t\right\}\right],$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

for each  $j \in \{1, ..., N\}$ :

$$\mathbb{P}\left[\theta_j > \frac{2\pi j}{N} + \frac{4\pi}{N}u\right] = \mathbb{P}\left[\mathcal{N}_{\frac{2\pi(j+2u)}{N}}^{(m)} < j\right]$$

$$\mathbb{P}\left[\left|\theta_j - \frac{2\pi j}{N}\right| > \frac{4\pi t}{N}\right] \le 4 \exp\left[-\min\left\{\frac{t^2}{m\left(\log\left(\frac{N}{m}\right) + 1\right)}, t\right\}\right],$$

for each  $j \in \{1, ..., N\}$ :

$$\mathbb{P}\left[\theta_{j} > \frac{2\pi j}{N} + \frac{4\pi}{N}u\right] = \mathbb{P}\left[\mathcal{N}_{\frac{2\pi(j+2u)}{N}}^{(m)} < j\right]$$
$$= \mathbb{P}\left[j + 2u - \mathcal{N}_{\frac{2\pi(j+2u)}{N}}^{(m)} > 2u\right]$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

$$\mathbb{P}\left[\left|\theta_j - \frac{2\pi j}{N}\right| > \frac{4\pi t}{N}\right] \le 4 \exp\left[-\min\left\{\frac{t^2}{m\left(\log\left(\frac{N}{m}\right) + 1\right)}, t\right\}\right],$$

for each  $j \in \{1, ..., N\}$ :

$$\begin{split} \mathbb{P}\left[\theta_{j} > \frac{2\pi j}{N} + \frac{4\pi}{N}u\right] &= \mathbb{P}\left[\mathcal{N}_{\frac{2\pi(j+2u)}{N}}^{(m)} < j\right] \\ &= \mathbb{P}\left[j + 2u - \mathcal{N}_{\frac{2\pi(j+2u)}{N}}^{(m)} > 2u\right] \\ &\leq \mathbb{P}\left[\left|\mathcal{N}_{\frac{2\pi(j+2u)}{N}}^{(m)} - \mathbb{E}\mathcal{N}_{\frac{2\pi(j+2u)}{N}}^{(m)}\right| > 2u\right]. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Bounding  $\mathbb{E} W_{p}(\mu_{m,N},\nu)$ 

If 
$$\nu_N := \frac{1}{N} \sum_{j=1}^N \delta_{\exp\left(j\frac{2\pi j}{N}\right)}$$
, then  $W_p(\nu_N, \nu) \le \frac{\pi}{N}$  and

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへぐ

Bounding  $\mathbb{E} W_{p}(\mu_{m,N},\nu)$ 

If 
$$\nu_N := \frac{1}{N} \sum_{j=1}^N \delta_{\exp\left(i\frac{2\pi j}{N}\right)}$$
, then  $W_p(\nu_N, \nu) \le \frac{\pi}{N}$  and

$$\mathbb{E} \textit{W}^{\textit{p}}_{\textit{p}}(\mu_{\textit{m},\textit{N}},\nu_{\textit{N}}) \leq \frac{1}{\textit{N}} \sum_{j=1}^{\textit{N}} \mathbb{E} \left| \theta_j - \frac{2\pi j}{\textit{N}} \right|^{\textit{p}}$$

Bounding  $\mathbb{E} W_{p}(\mu_{m,N},\nu)$ 

If 
$$\nu_N := \frac{1}{N} \sum_{j=1}^N \delta_{\exp\left(j\frac{2\pi j}{N}\right)}$$
, then  $W_p(\nu_N, \nu) \le \frac{\pi}{N}$  and  
 $\mathbb{E}W_p^p(\mu_{m,N}, \nu_N) \le \frac{1}{N} \sum_{j=1}^N \mathbb{E} \left| \theta_j - \frac{2\pi j}{N} \right|^p$ 

$$\leq 8\Gamma(
ho+1)\left(rac{4\pi\sqrt{m\left[\log\left(rac{N}{m}
ight)+1
ight]}}{N}
ight)^{
ho},$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

using the concentration result and Fubini's theorem.

◆□▶◆□▶◆≧▶◆≧▶ ≧ の�?

The Idea: Consider the function  $F_p(U) = W_p(\mu_{U^m}, \nu)$ , where  $\mu_{U^m}$  is the empirical spectral measure of  $U^m$ .

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The Idea: Consider the function  $F_{\rho}(U) = W_{\rho}(\mu_{U^m}, \nu)$ , where  $\mu_{U^m}$  is the empirical spectral measure of  $U^m$ .

► By Rains' theorem, it is distributionally the same as  $F_p(U_1, ..., U_m) = \left(\frac{1}{m} \sum_{j=1}^m \mu_{U_j}, \nu\right).$ 

(日) (日) (日) (日) (日) (日) (日)

The Idea: Consider the function  $F_{\rho}(U) = W_{\rho}(\mu_{U^m}, \nu)$ , where  $\mu_{U^m}$  is the empirical spectral measure of  $U^m$ .

- ► By Rains' theorem, it is distributionally the same as  $F_p(U_1, ..., U_m) = \left(\frac{1}{m} \sum_{j=1}^m \mu_{U_j}, \nu\right).$
- ► F<sub>p</sub>(U<sub>1</sub>,..., U<sub>m</sub>) is Lipschitz (w.r.t. the L<sub>2</sub> sum of the Euclidean metrics) with Lipschitz constant N<sup>- <sup>1</sup>/<sub>max(p,2)</sub></sup>.

A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A D M A

The Idea: Consider the function  $F_{\rho}(U) = W_{\rho}(\mu_{U^m}, \nu)$ , where  $\mu_{U^m}$  is the empirical spectral measure of  $U^m$ .

- ► By Rains' theorem, it is distributionally the same as  $F_p(U_1, ..., U_m) = \left(\frac{1}{m} \sum_{j=1}^m \mu_{U_j}, \nu\right).$
- ► F<sub>p</sub>(U<sub>1</sub>,..., U<sub>m</sub>) is Lipschitz (w.r.t. the L<sub>2</sub> sum of the Euclidean metrics) with Lipschitz constant N<sup>- <sup>1</sup>max(p,2)</sup>.
- ► If we had a general concentration phenomenon on  $\bigoplus_{0 \le j < m} \mathbb{U}\left(\left\lceil \frac{N-j}{m} \right\rceil\right)$ , concentration of  $W_p(\mu_{U^m}, \nu)$  would follow.

## Concentration on $\mathbb{U}(N_1) \oplus \cdots \oplus \mathbb{U}(N_k)$

#### Theorem (E. M./M. Meckes)

Given  $N_1, \ldots, N_k \in \mathbb{N}$ , denote by  $M = \mathbb{U}(N_1) \times \cdots \mathbb{U}(N_k)$  equipped with the  $L_2$ -sum of Hilbert–Schmidt metrics.

Suppose that  $F : M \to \mathbb{R}$  is L-Lipschitz, and that  $U_j \in \mathbb{U}(N_j)$  are independent, uniform random unitary matrices, for  $1 \le j \le k$ . Then for each t > 0,

$$\mathbb{P}\Big[F(U_1,\ldots,U_k)\geq \mathbb{E}F(U_1,\ldots,U_k)+t\Big]\leq e^{-Nt^2/12L^2},$$

where  $N = \min\{N_1, ..., N_k\}$ .