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» A unitary matrix is an n x n matrix U with entries in C, such
that
uur =1,

where U* is the conjugate transpose of U.

That is, a unitary matrix is an n x n matrix over C whose
columns (or rows) are orthonormal in C".

» The set of all n x n unitary matrices is denoted U (n); this
set is a group and a manifold.
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What is a random unitary matrix?

» Metric Structure:
» U (n) sits inside C™ and inherits a geodesic metric dy(-,-)
from the Euclidean metric on C™.

» U (n) also has its own Euclidean (Hilbert-Schmidt) metric
from the inner product (U, V) = Tr(UV™).

» The two metrics are equivalent:

dus(U, V) < dy(U, V) < gst(u, V).

» Randomness:
There is a unique translation-invariant probability measure
called Haar measure on U (n): if U is a Haar-distributed
random unitary matrix, so are AU and UA, for A a fixed
unitary matrix.
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Pick the last column U, uniformly from
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A couple ways to build a random unitary matrix

1. » Pick the first column Uy uniformly from SQ: ccn,
» Pick the second column U, uniformly from Ui~ € S]..

» Pick the last column U, uniformly from
(Span{U17 000y Un—‘l})L C Séj

2. » Fillan n x narray with i.i.d. standard complex Gaussian
random variables.
» Stick the result into the QR algorithm; the resulting Q is
Haar-distributed on U (n).
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Meet U (n)’s kid sister: The orthogonal group

» An orthogonal matrix is an n x n matrix U with entries in R,
such that
uuT =1,

where U is the transpose of U. That is, a unitary matrix is
an n x n matrix over R whose columns (or rows) are
orthonormal in R”.

» The set of all n x n unitary matrices is denoted O (n); this
set is a subgroup and a submanifold of U (n).

» O (n) has two connected components: SO (n) (det(U) = 1)
and SO~ (n) (det(U) = —1).

» There is a unique translation-invariant (Haar) probability
measure on each of O (n), SO (n) and SO~ (n).



The symplectic group:
the weird uncle no one talks about



The symplectic group:
the weird uncle no one talks about

» A symplectic matrix is an 2n x 2n matrix with entries in C,
such that
wu* = J,

where U* is the conjugate transpose of U and

J= [f’/ (’J



The symplectic group:
the weird uncle no one talks about

» A symplectic matrix is an 2n x 2n matrix with entries in C,

such that
uJu* = J,
where U* is the conjugate transpose of U and
o |/
4= [—l 0} ’

(It is really the quaternionic unitary group.)



The symplectic group:
the weird uncle no one talks about

» A symplectic matrix is an 2n x 2n matrix with entries in C,

such that
uJu* = J,
where U* is the conjugate transpose of U and
o |/
4= [—l 0} ’

(It is really the quaternionic unitary group.)

» The group of 2n x 2n symplectic matrices is denoted
Sp (2n).



Concentration of measure

Theorem (G/M;B/E;L;M/M)

Let G be one of SO (n), SO~ (n), SU (n), U(n), Sp (2n), and let
F: G — R be L-Lipschitz (w.r.t. the geodesic metric or the
HS-metric). Let U be distributed according to Haar measure on
G. Then there are universal constants C, ¢ such that

P [|F(U) — EF(U)| > Lt] < Ce~",

forevery t > 0.
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The entries of a random orthogonal matrix

Note: permuting the rows or columns of a random orthogonal
matrix U corresponds to left- or right-multiplication by a
permutation matrix (which is itself orthogonal).

= The entries {u;;} of U all have the same distribution.

Classical fact: A coordinate of a random point on the sphere in
R" is approximately Gaussian, for large n.

= The entries {u;j} of U are
individually approximately Gaussian

if U is large.



The entries of a random orthogonal matrix

A more modern fact (Diaconis—Freedman): If X is a randomly
distributed point on the sphere of radius /nin R", and Z is a
standard Gaussian random vector in R", then
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The entries of a random orthogonal matrix

A more modern fact (Diaconis—Freedman): If X is a randomly
distributed point on the sphere of radius /nin R", and Z is a

standard Gaussian random vector in R”, then
2(k+3)
dTV((XM , Xk), (41, ,Zk)) < k_3

— Any k entries within one row (or column) of U € U (n) are
approximately independent Gaussians, if k = o(n).

Diaconis’question: How many entries of U can be
simultaneously approximated by independent Gaussians?



Jiang’s answer(s)



Jiang’s answer(s)

It depends on what you mean by approximated.



Jiang’s answer(s)

It depends on what you mean by approximated.

Theorem (Jiang)

Let {U,} be a sequence of random orthogonal matrices with
U, € O (n) for each n, and suppose that p,, g, = o(+/n).

Let £(\/nU(pn, qn)) denote the joint distribution of the pnqn
entries of the top-left p, x qn block of \/nU,, and let Z(pp, qn)
denote a collection of pnqn i.i.d. standard normal random
variables. Then
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It depends on what you mean by approximated.

Theorem (Jiang)
Let {U,} be a sequence of random orthogonal matrices with
U, € O (n) for each n, and suppose that p,, g, = o(+/n).

Let £(\/nU(pn, qn)) denote the joint distribution of the pnqn
entries of the top-left p, x qn block of \/nU,, and let Z(pp, qn)
denote a collection of pnqn i.i.d. standard normal random
variables. Then

n”_>moo drv(L(v/'nU(pn, Gn)), Z(Pn, Gn)) = 0.

That is, a p, x gp principle submatrix can be approximated in
total variation by a Gaussian random matrix, as long as

Pn, Gn < /N
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Theorem (Jiang)

For each n, let Y,, = [y,j} be an n x n matrix of independent

I

standard Gaussian random variables and let T, = ;] 1 be

the matrix obtained from Y, by performing the Gram-Schmidit
process; i.e., I, is a random orthogonal matrix. Let

m)=  max i — Yil-
€n(M) 1§i§n,1§/§m|f%’ Yil

Then
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ifand only if m, = o (Iog(n)) .



Jiang’s answer(s)

Theorem (Jiang)

For each n, let Y,, = [y,j} be an n x n matrix of independent

ij=1
standard Gaussian random variables and let T, = ;] 1 be
the matrix obtained from Y, by performing the Gram-Schmidit

process; i.e., I, is a random orthogonal matrix. Let

m)=  max i — Yil-
€n(M) 1§i§n,1§/§m|f%’ Yil

Then

en(Mp) —— 0
n—oo

ifand only if m, = o (Iog( ))

That is, in an “in probability” sense, Iog(n) entries of U can be
simultaneously approximated by independent Gaussians.
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A more geometric viewpoint

Choosing a principle submatrix of an n x n orthogonal matrix U
corresponds to a particular type of orthogonal projection from a
large matrix space to a smaller one.

(Note that the result is no longer orthogonal.)

In general, a rank k orthogonal projection of O (n) looks like
U (Tr(A1U), ..., Tr(AU)),

where Aq,. .., A are orthonormal matrices in O (n); i.e.,

Tr(A,-A/-T) = Jj.



A more geometric viewpoint

Theorem (Chatterjee—M.)

Let Aq, ..., Ax be orthonormal (w.r.t. the Hilbert-Schmidt inner
product) in O (n), and let U € O (n) be a random orthogonal
matrix. Consider the random vector

X = (T(AU),. .., Tr(AU)),

andlet Z .= (Zy,...,Z) be a standard Gaussian random
vector in RX. Then for all n > 2,

fk

dw(X,2) < =

Here, dy(-,-) denotes the Li-Wasserstein distance.
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Eigenvalues — The empirical spectral measure

Let U be a Haar-distributed matrix in U (N).

Then U has (random) eigenvalues {e”/} ;.

Note: The distribution of the set of eigenvalues is
rotation-invariant.

To understand the behavior of the ensemble of random
eigenvalues, we consider the empirical spectral measure of U:

1 N
BN = Nzéem/'
j=1



100 i.i.d. uniform random
points

e E. Rains

The eigenvalues of a
100 x 100 random unitary
matrix



Diaconis/Shahshahani

Theorem (D-S)

Let U, € U (n) be a random unitary matrix, and let 1., denote
the empirical spectral measure of U,. Let v denote the uniform
probability measure on'S'. Then
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HU, —V
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weak-* in probability.
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Diaconis/Shahshahani

Theorem (D-S)

Let U, € U (n) be a random unitary matrix, and let 1., denote
the empirical spectral measure of Uy,. Let v denote the uniform
probability measure on'S'. Then

n—oo
KUy — Vs
weak-* in probability.
» The theorem follows from explicit formulae for the mixed

moments of the random vector ( Tr(Uy), ..., Tr(UX)) for
fixed k, which have been useful in many other contexts.

» They showed in particular that ( Tr(Up), ..., Tr(UK)) is
asymptotically distributed as a standard complex Gaussian
random vector.



The number of eigenvalues in an arc
Theorem (Wieand)

Let |; := (€', €'%) be intervals on'S' and for U, € U(n) a
random unitary matrix, let

Vo pu, (k) — Epy, (Ik)
nk ‘= .

1./log(n)

Then as n tends to infinity, the random vector (Y, 1, ..., Ynk)
converges in distribution to a jointly Gaussian random vector
(Zy,...,Zx) with covariance

0, O, Oty ﬂj, B all distict;
% aj = ay or 5/' = (6 (bUt not bth);
COV(Zj, Zk) = —% o = By or ﬁj = Qg (bUt not bOth);

—

oj = ax and fj = Bi;
—1 Oz/':[))kand[))j:ak.
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About that weird covariance structure...

Another Gaussian process that has it: Again suppose that
I := (€', ') are intervals on S', and suppose that
{Go}oeo,2r) are i.i.d. standard Gaussians. Define

Xnk = Gg, — Goy;

then
0, Qj, Oty Bj» B all distict;
Y «aj = akor Bj = Pk (but not both);
COV()(/', Xk) = —% o = Bk Of,@j = Qi (bUt not bOth);

[y

oj = axand fj = Bi;
—1 Oéj:ﬂk andﬁj:ak.
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Let Z(0) be the characteristic polynomial of U and fix 01 . .., 0.
Then
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3 log(n)

converges in distribution to a standard Gaussian random vector
inCk, asn — .



Where’s the white noise in U?

Theorem (Hughes—Keating—O’Connel)

Let Z(0) be the characteristic polynomial of U and fix 01 . .., 0.
Then

—— (log(Z(61)), - . .,l0g(Z(6k)))
3 log(n)

converges in distribution to a standard Gaussian random vector
inCk, asn — .

HKO in particular showed that Wieand’s result follows from
theirs by the argument principle.



Powers of U

m=1 m=5 m=20

The eigenvalues of U™ for m = 1,5, 20, 45,80, for U a
realization of a random 80 x 80 unitary matrix.
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Rains’ Theorems

Theorem (Rains 1997)

Let U € U (n) be a random unitary matrix, and let m > n. Then
the eigenvalues of U™ are distributed exactly as n i.i.d. uniform
points on S'.

Theorem (Rains 2003)
Let m < N be fixed. Then

o 2 @ o( [/

0<j<m

where %% denotes equality of eigenvalue distributions.



m=45

The eigenvalues of U™ for m = 1,5, 20,45, 80, for U a
realization of a random 80 x 80 unitary matrix.
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Theorem (E.M./M. Meckes)
Let v denote the uniform probability measure on the circle and

W) = i {(] = P st )| T8 D20 ]

Then
> E [Wp(umn,v)] < %‘q(%)]'

» For1 <p<2,

P WP(Nm,N;V) Z % +t

N2¢2
< exp [—m} .

> Fo:rp>2,
Cpy/mllog( &)+ 1+3
P | Wolimn,v) = #H <ex|°[ 245#2]




Almost sure convergence

Corollary
For each N, let Uy be distributed according to uniform measure

onU(N) and letmy € {1,...,N}. There is a C such that, with
probability 1,

Cp\/mylog(N)

1 1
N2 + max(2,p)

Wp(NmN,Na V) <

eventually.
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A miraculous representation of the eigenvalue
counting function

Fact: The set {€"}}Y, of eigenvalues of U (uniform in U (N)) is
a determinantal point process.

Theorem (Hough/Krishnapur/Peres/Virag 2006)

Let X be a determinantal point process in \ satisfying some
niceness conditions. For D C A, let Np be the number of points

of X in D. Then ;
Np £ &,
k

where {{} are independent Bernoulli random variables with
means given explicitly in terms of the kernel of X.



A miraculous representation of the eigenvalue
counting function

That is, if Ny is the number of eigenangles of U between 0 and
6, then

N
Ny 230G
j=1

for a collection {¢; j"; of independent Bernoulli random
variables.
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A miraculous representation of the eigenvalue
counting function

Recall Rains’ second theorem:

o 2 @ o( [/

0<j<m

So: if Ny n(0) denotes the number of eigenangles of U™ in
[0,0), then

N
ANOE > g,
=

for {g,-}j’\; independent Bernoulli random variables.
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Consequences of the miracle
» From Bernstein’s inequality and the representation of N, () as

T &

[t
P [[Nmn(0) — ENpn(8)] > t] < 2exp [ min {402, 2H ’

where o2 = Var N, n(6).
> ENpn(0) = X2 (by rotation invariance).

» Var [NV n(6)] <log(N)+ 1 (e.g., via explicit computation with the
kernel of the determinantal point process), and so

Var (Nm n(0 0</Z<mVar< | m,w(0)> <m (Iog <rl\rll> + 1) .
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The concentration of V;;, i leads to concentration of individual
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-2 5] oo ot )

foreachje {1,...,N}:

2rf

b~ =

2nj 4
P[9j>7”+ﬂu] =P

N’(m) o< :|
N N |: 27\'(}[\72) j

=P [j +2u — Néf,)+2u) > ZU]



The concentration of V;;, i leads to concentration of individual
eigenvalues about their predicted values:

-2 5] oo ot )

foreachje {1,...,N}:

2rf
%N

2rj 4n [ Am) .
P [Qj > N + N ] =P _N27r(j’\72u) </:|

=P |j+2u— Néf,)+2u) > ZU]

(m)
< P ’ 27r(j+2u - ENZﬂ(j+2u)
N

>2u].
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Bounding EW,(1im.n. )

N s
If vy = %IZ]-:1 5exp<igwﬂj), then Wp(VN./ I/) < N and

g 2

N
’
D
EW, (tmn: vn) < N ;E N




Bounding EW,(1imn, v)

N ™
If oy = s Soup(igt)> 116N Wolvn, ) < § and

1 2mj|P
EW[‘J)(Mm,N7VN)SNZE /_W
j=1
p
Wm log () +1]

<8r(p+1)

N

using the concentration result and Fubini’s theorem.
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Concentration of Wy(umn, )

The Idea: Consider the function Fy(U) = Wp (1ym, v), where
wym is the empirical spectral measure of U™.

» By Rains’ theorem, it is distributionally the same as

Fo(Ut,....Un) = ( > 1HU7>

» Fp(Us,. .., Un)is Lipschitz (w.r.t. the L, sum of the
1
Euclidean metrics) with Lipschitz constant N max(¢2)

» If we had a general concentration phenomenon on

Do<j<mU ({qu), concentration of W, (uym,v) would
follow.



Concentration on U (Ny) @ - - - & U (Nk)

Theorem (E. M./M. Meckes)
Given Ny, ..., Nx € N, denote by M = U (Ny) x --- U (Nk)
equipped with the Ly-sum of Hilbert—Schmidt metrics.

Suppose that F : M — R is L-Lipschitz, and that U; € U (N;)
are independent, uniform random unitary matrices, for
1 <j<k. Thenforeacht >0,

PF(Us, ..., Uc) > EF(U,. .., U + t} < g~ NE/12L2

where N = min{Ny, ..., Ng}.



