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What is a random unitary matrix?

I A unitary matrix is an n× n matrix U with entries in C, such
that

UU∗ = I,

where U∗ is the conjugate transpose of U.

That is, a unitary matrix is an n × n matrix over C whose
columns (or rows) are orthonormal in Cn.

I The set of all n × n unitary matrices is denoted U (n); this
set is a group and a manifold.
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What is a random unitary matrix?

I Metric Structure:
I U (n) sits inside Cn2

and inherits a geodesic metric dg(·, ·)
from the Euclidean metric on Cn2

.

I U (n) also has its own Euclidean (Hilbert-Schmidt) metric
from the inner product 〈U,V 〉 = Tr(UV ∗).

I The two metrics are equivalent:

dHS(U,V ) ≤ dg(U,V ) ≤ π

2
dHS(U,V ).

I Randomness:
There is a unique translation-invariant probability measure
called Haar measure on U (n): if U is a Haar-distributed
random unitary matrix, so are AU and UA, for A a fixed
unitary matrix.
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A couple ways to build a random unitary matrix

1. I Pick the first column U1 uniformly from S1
C ⊆ Cn.

I Pick the second column U2 uniformly from U⊥1 ⊆ S1
C.

...
I Pick the last column Un uniformly from

(span{U1, . . . ,Un−1})⊥ ⊆ S1
C.

2. I Fill an n × n array with i.i.d. standard complex Gaussian
random variables.

I Stick the result into the QR algorithm; the resulting Q is
Haar-distributed on U (n).



A couple ways to build a random unitary matrix

1. I Pick the first column U1 uniformly from S1
C ⊆ Cn.

I Pick the second column U2 uniformly from U⊥1 ⊆ S1
C.

...
I Pick the last column Un uniformly from

(span{U1, . . . ,Un−1})⊥ ⊆ S1
C.

2. I Fill an n × n array with i.i.d. standard complex Gaussian
random variables.

I Stick the result into the QR algorithm; the resulting Q is
Haar-distributed on U (n).



A couple ways to build a random unitary matrix

1. I Pick the first column U1 uniformly from S1
C ⊆ Cn.

I Pick the second column U2 uniformly from U⊥1 ⊆ S1
C.

...
I Pick the last column Un uniformly from

(span{U1, . . . ,Un−1})⊥ ⊆ S1
C.

2. I Fill an n × n array with i.i.d. standard complex Gaussian
random variables.

I Stick the result into the QR algorithm; the resulting Q is
Haar-distributed on U (n).



A couple ways to build a random unitary matrix

1. I Pick the first column U1 uniformly from S1
C ⊆ Cn.

I Pick the second column U2 uniformly from U⊥1 ⊆ S1
C.

...
I Pick the last column Un uniformly from

(span{U1, . . . ,Un−1})⊥ ⊆ S1
C.

2. I Fill an n × n array with i.i.d. standard complex Gaussian
random variables.

I Stick the result into the QR algorithm; the resulting Q is
Haar-distributed on U (n).



A couple ways to build a random unitary matrix

1. I Pick the first column U1 uniformly from S1
C ⊆ Cn.

I Pick the second column U2 uniformly from U⊥1 ⊆ S1
C.

...
I Pick the last column Un uniformly from

(span{U1, . . . ,Un−1})⊥ ⊆ S1
C.

2. I Fill an n × n array with i.i.d. standard complex Gaussian
random variables.

I Stick the result into the QR algorithm; the resulting Q is
Haar-distributed on U (n).



A couple ways to build a random unitary matrix

1. I Pick the first column U1 uniformly from S1
C ⊆ Cn.

I Pick the second column U2 uniformly from U⊥1 ⊆ S1
C.

...
I Pick the last column Un uniformly from

(span{U1, . . . ,Un−1})⊥ ⊆ S1
C.

2. I Fill an n × n array with i.i.d. standard complex Gaussian
random variables.

I Stick the result into the QR algorithm; the resulting Q is
Haar-distributed on U (n).



Meet U (n)’s kid sister: The orthogonal group

I An orthogonal matrix is an n × n matrix U with entries in R,
such that

UUT = I,

where UT is the transpose of U. That is, a unitary matrix is
an n × n matrix over R whose columns (or rows) are
orthonormal in Rn.

I The set of all n × n unitary matrices is denoted O (n); this
set is a subgroup and a submanifold of U (n).

I O (n) has two connected components: SO (n) (det(U) = 1)
and SO− (n) (det(U) = −1).

I There is a unique translation-invariant (Haar) probability
measure on each of O (n), SO (n) and SO− (n).
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The symplectic group:
the weird uncle no one talks about

I A symplectic matrix is an 2n × 2n matrix with entries in C,
such that

UJU∗ = J,

where U∗ is the conjugate transpose of U and

J =

[
0 I
−I 0

]
.

(It is really the quaternionic unitary group.)

I The group of 2n × 2n symplectic matrices is denoted
Sp (2n).
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Concentration of measure

Theorem (G/M;B/E;L;M/M)
Let G be one of SO (n), SO− (n), SU (n), U (n), Sp (2n), and let
F : G→ R be L-Lipschitz (w.r.t. the geodesic metric or the
HS-metric). Let U be distributed according to Haar measure on
G. Then there are universal constants C, c such that

P
[∣∣F (U)− EF (U)

∣∣ > Lt
]
≤ Ce−cnt2

,

for every t > 0.



The entries of a random orthogonal matrix

Note: permuting the rows or columns of a random orthogonal
matrix U corresponds to left- or right-multiplication by a
permutation matrix (which is itself orthogonal).

=⇒ The entries {uij} of U all have the same distribution.

Classical fact: A coordinate of a random point on the sphere in
Rn is approximately Gaussian, for large n.

=⇒ The entries {uij} of U are

individually approximately Gaussian

if U is large.
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The entries of a random orthogonal matrix

A more modern fact (Diaconis–Freedman): If X is a randomly
distributed point on the sphere of radius

√
n in Rn, and Z is a

standard Gaussian random vector in Rn, then

dTV

(
(X1, . . . ,Xk ), (Z1, . . . ,Zk )

)
≤ 2(k + 3)

n − k − 3
.

=⇒ Any k entries within one row (or column) of U ∈ U (n) are
approximately independent Gaussians, if k = o(n).

Diaconis’question: How many entries of U can be
simultaneously approximated by independent Gaussians?
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Jiang’s answer(s)

It depends on what you mean by approximated.

Theorem (Jiang)
Let {Un} be a sequence of random orthogonal matrices with
Un ∈ O (n) for each n, and suppose that pn,qn = o(

√
n).

Let L(
√

nU(pn,qn)) denote the joint distribution of the pnqn
entries of the top-left pn × qn block of

√
nUn, and let Z (pn,qn)

denote a collection of pnqn i.i.d. standard normal random
variables. Then

lim
n→∞

dTV (L(
√

nU(pn,qn)),Z (pn,qn)) = 0.

That is, a pn × qn principle submatrix can be approximated in
total variation by a Gaussian random matrix, as long as
pn,qn �

√
n.
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Jiang’s answer(s)

Theorem (Jiang)
For each n, let Yn =

[
yij
]n

i,j=1 be an n × n matrix of independent

standard Gaussian random variables and let Γn =
[
γij
]n

i,j=1 be
the matrix obtained from Yn by performing the Gram-Schmidt
process; i.e., Γn is a random orthogonal matrix. Let

εn(m) = max
1≤i≤n,1≤j≤m

∣∣√nγij − yij
∣∣.

Then
εn(mn)

P−−−→
n→∞

0

if and only if mn = o
(

n
log(n)

)
.

That is, in an “in probability” sense, n2

log(n) entries of U can be
simultaneously approximated by independent Gaussians.
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A more geometric viewpoint

Choosing a principle submatrix of an n × n orthogonal matrix U
corresponds to a particular type of orthogonal projection from a
large matrix space to a smaller one.

(Note that the result is no longer orthogonal.)

In general, a rank k orthogonal projection of O (n) looks like

U 7→
(

Tr(A1U), . . . ,Tr(AkU)
)
,

where A1, . . . ,Ak are orthonormal matrices in O (n); i.e.,

Tr(AiAT
j ) = δij .
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A more geometric viewpoint

Theorem (Chatterjee–M.)
Let A1, . . . ,Ak be orthonormal (w.r.t. the Hilbert-Schmidt inner
product) in O (n), and let U ∈ O (n) be a random orthogonal
matrix. Consider the random vector

X := (Tr(A1U), . . . ,Tr(AkU)) ,

and let Z := (Z1, . . . ,Zk ) be a standard Gaussian random
vector in Rk . Then for all n ≥ 2,

dW (X ,Z ) ≤
√

2k
n − 1

.

Here, dW (·, ·) denotes the L1-Wasserstein distance.



Eigenvalues – The empirical spectral measure

Let U be a Haar-distributed matrix in U (N).

Then U has (random) eigenvalues {eiθj}Nj=1.

Note: The distribution of the set of eigenvalues is
rotation-invariant.

To understand the behavior of the ensemble of random
eigenvalues, we consider the empirical spectral measure of U:

µN :=
1
N

N∑
j=1

δeiθj .
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E. Rains

100 i.i.d. uniform random
points

The eigenvalues of a
100× 100 random unitary
matrix



Diaconis/Shahshahani

Theorem (D–S)
Let Un ∈ U (n) be a random unitary matrix, and let µUn denote
the empirical spectral measure of Un. Let ν denote the uniform
probability measure on S1. Then

µUn
n→∞−−−→ ν,

weak-* in probability.

I The theorem follows from explicit formulae for the mixed
moments of the random vector

(
Tr(Un), . . . ,Tr(Uk

n )
)

for
fixed k , which have been useful in many other contexts.

I They showed in particular that
(

Tr(Un), . . . ,Tr(Uk
n )
)

is
asymptotically distributed as a standard complex Gaussian
random vector.



Diaconis/Shahshahani

Theorem (D–S)
Let Un ∈ U (n) be a random unitary matrix, and let µUn denote
the empirical spectral measure of Un. Let ν denote the uniform
probability measure on S1. Then

µUn
n→∞−−−→ ν,

weak-* in probability.

I The theorem follows from explicit formulae for the mixed
moments of the random vector

(
Tr(Un), . . . ,Tr(Uk

n )
)

for
fixed k , which have been useful in many other contexts.

I They showed in particular that
(

Tr(Un), . . . ,Tr(Uk
n )
)

is
asymptotically distributed as a standard complex Gaussian
random vector.



Diaconis/Shahshahani

Theorem (D–S)
Let Un ∈ U (n) be a random unitary matrix, and let µUn denote
the empirical spectral measure of Un. Let ν denote the uniform
probability measure on S1. Then

µUn
n→∞−−−→ ν,

weak-* in probability.

I The theorem follows from explicit formulae for the mixed
moments of the random vector

(
Tr(Un), . . . ,Tr(Uk

n )
)

for
fixed k , which have been useful in many other contexts.

I They showed in particular that
(

Tr(Un), . . . ,Tr(Uk
n )
)

is
asymptotically distributed as a standard complex Gaussian
random vector.



The number of eigenvalues in an arc
Theorem (Wieand)
Let Ij := (eiαj ,eiβj ) be intervals on S1 and for Un ∈ U (n) a
random unitary matrix, let

Yn,k :=
µUn (Ik )− EµUn (Ik )

1
π

√
log(n)

.

Then as n tends to infinity, the random vector
(
Yn,1, . . . ,Yn,k

)
converges in distribution to a jointly Gaussian random vector
(Z1, . . . ,Zk ) with covariance

Cov(Zj ,Zk ) =



0, αj , αk , βj , βk all distict ;
1
2 αj = αk or βj = βk (but not both);

−1
2 αj = βk or βj = αk (but not both);

1 αj = αk and βj = βk ;

−1 αj = βk and βj = αk .
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Where’s the white noise in U?

Theorem (Hughes–Keating–O’Connel)
Let Z (θ) be the characteristic polynomial of U and fix θ1 . . . , θk .
Then

1√
1
2 log(n)

(
log(Z (θ1)), . . . , log(Z (θk ))

)
converges in distribution to a standard Gaussian random vector
in Ck , as n→∞.

HKO in particular showed that Wieand’s result follows from
theirs by the argument principle.
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Powers of U

The eigenvalues of Um for m = 1,5,20,45,80, for U a
realization of a random 80× 80 unitary matrix.



Rains’ Theorems

Theorem (Rains 1997)
Let U ∈ U (n) be a random unitary matrix, and let m ≥ n. Then
the eigenvalues of Um are distributed exactly as n i.i.d. uniform
points on S1.

Theorem (Rains 2003)
Let m ≤ N be fixed. Then

[U (N)]m
e.v .d .

=
⊕

0≤j<m

U
(⌈

N − j
m

⌉)
,

where e.v .d .
= denotes equality of eigenvalue distributions.
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The eigenvalues of Um for m = 1,5,20,45,80, for U a
realization of a random 80× 80 unitary matrix.



Theorem (E.M./M. Meckes)
Let ν denote the uniform probability measure on the circle and

Wp(µ, ν) := inf
{(∫

|x − y |p dπ(x , y)
) 1

p

∣∣∣∣ π(A× C) = µ(A)
π(C× A) = ν(A)

}
.

Then

I E
[
Wp(µm,N , ν)

]
≤

Cp
√

m[log( N
m )+1]

N .

I For 1 ≤ p ≤ 2,

P

[
Wp(µm,N , ν) ≥

C
√

m[log( N
m )+1]

N + t

]
≤ exp

[
−N2t2

24m

]
.

I For p > 2,

P

[
Wp(µm,N , ν) ≥

Cp
√

m[log( N
m )+1]

N + t

]
≤ exp

[
−N1+ 2

p t2

24m

]
.
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Almost sure convergence

Corollary
For each N, let UN be distributed according to uniform measure
on U (N) and let mN ∈ {1, . . . ,N}. There is a C such that, with
probability 1,

Wp(µmN ,N , ν) ≤
Cp
√

mN log(N)

N
1
2+

1
max(2,p)

eventually.



A miraculous representation of the eigenvalue
counting function

Fact: The set {eiθj}Nj=1 of eigenvalues of U (uniform in U (N)) is
a determinantal point process.

Theorem (Hough/Krishnapur/Peres/Virág 2006)
Let X be a determinantal point process in Λ satisfying some
niceness conditions. For D ⊆ Λ, let ND be the number of points
of X in D. Then

ND
d
=
∑

k

ξk ,

where {ξk} are independent Bernoulli random variables with
means given explicitly in terms of the kernel of X .
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A miraculous representation of the eigenvalue
counting function

That is, if Nθ is the number of eigenangles of U between 0 and
θ, then

Nθ
d
=

N∑
j=1

ξj

for a collection {ξj}Nj=1 of independent Bernoulli random
variables.



A miraculous representation of the eigenvalue
counting function

Recall Rains’ second theorem:

[U (N)]m
e.v .d .

=
⊕

0≤j<m

U
(⌈

N − j
m

⌉)
,

So: if Nm,N(θ) denotes the number of eigenangles of Um in
[0, θ), then

Nm,N(θ)
d
=

N∑
j=1

ξj ,

for {ξj}Nj=1 independent Bernoulli random variables.



A miraculous representation of the eigenvalue
counting function

Recall Rains’ second theorem:

[U (N)]m
e.v .d .

=
⊕

0≤j<m

U
(⌈

N − j
m

⌉)
,

So: if Nm,N(θ) denotes the number of eigenangles of Um in
[0, θ), then

Nm,N(θ)
d
=

N∑
j=1

ξj ,

for {ξj}Nj=1 independent Bernoulli random variables.



Consequences of the miracle

I From Bernstein’s inequality and the representation of Nm,N(θ) as∑N
j=1 ξj ,

P
[∣∣Nm,N(θ)− ENm,N(θ)

∣∣ > t
]
≤ 2 exp

[
−min

{
t2

4σ2 ,
t
2

}]
,

where σ2 = VarNm,N(θ).

I ENm,N(θ) = Nθ
2π (by rotation invariance).

I Var
[
N1,N(θ)

]
≤ log(N) + 1 (e.g., via explicit computation with the

kernel of the determinantal point process), and so

Var
(
Nm,N(θ)

)
=
∑

0≤j<m

Var
(
N

1,
⌈

N−j
m

⌉(θ)

)
≤ m

(
log
(

N
m

)
+ 1
)
.
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The concentration of Nm,N leads to concentration of individual
eigenvalues about their predicted values:

P
[∣∣∣∣θj −

2πj
N

∣∣∣∣ > 4πt
N

]
≤ 4 exp

−min

 t2

m
(

log
(

N
m

)
+ 1
) , t

 ,

for each j ∈ {1, . . . ,N}:

P
[
θj >

2πj
N

+
4π
N

u
]

= P
[
N (m)

2π(j+2u)
N

< j
]

= P
[
j + 2u −N (m)

2π(j+2u)
N

> 2u
]

≤ P
[∣∣∣∣N (m)

2π(j+2u)
N

− EN (m)
2π(j+2u)

N

∣∣∣∣ > 2u
]
.
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The concentration of Nm,N leads to concentration of individual
eigenvalues about their predicted values:
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2πj
N
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N
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≤ 4 exp
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log
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N
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Bounding EWp(µm,N , ν)

If νN := 1
N
∑N

j=1 δexp
(

i 2πj
N

), then Wp(νN , ν) ≤ π
N and

EW p
p (µm,N , νN) ≤ 1

N

N∑
j=1

E
∣∣∣∣θj −

2πj
N

∣∣∣∣p

≤ 8Γ(p + 1)

4π
√

m
[
log
(

N
m

)
+ 1
]

N


p

,

using the concentration result and Fubini’s theorem.
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Concentration of Wp(µm,N , ν)

The Idea: Consider the function Fp(U) = Wp (µUm , ν), where
µUm is the empirical spectral measure of Um.

I By Rains’ theorem, it is distributionally the same as
Fp(U1, . . . ,Um) =

(
1
m
∑m

j=1 µUj , ν
)

.

I Fp(U1, . . . ,Um) is Lipschitz (w.r.t. the L2 sum of the

Euclidean metrics) with Lipschitz constant N−
1

max(p,2) .

I If we had a general concentration phenomenon on⊕
0≤j<m U

(⌈
N−j
m

⌉)
, concentration of Wp (µUm , ν) would

follow.
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follow.



Concentration on U (N1)⊕ · · · ⊕ U (Nk)

Theorem (E. M./M. Meckes)
Given N1, . . . ,Nk ∈ N, denote by M = U (N1)× · · ·U (Nk )
equipped with the L2-sum of Hilbert–Schmidt metrics.

Suppose that F : M → R is L-Lipschitz, and that Uj ∈ U
(
Nj
)

are independent, uniform random unitary matrices, for
1 ≤ j ≤ k. Then for each t > 0,

P
[
F (U1, . . . ,Uk ) ≥ EF (U1, . . . ,Uk ) + t

]
≤ e−Nt2/12L2

,

where N = min{N1, . . . ,Nk}.


