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Statistical Topology

I predict a new subject of statistical topology.

Rather than count the number of holes, Betti

numbers, etc., one will be more interested in the

distribution of such objects on noncompact

manifolds as one goes out to infinity.

– Isadore Singer, 2004



Why study the topology of random spaces?

I As a null hypothesis for statistical topology/to get a sense
of what happens “generically”.

I For use in topological data analysis; in particular, to
understand high-dimensional point cloud data via
topological features.

I Manifold learning.

I For existence proofs via the probabilistic method.
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The topology of data? Huh?
The nerve lemma and the Čech complex

Consider a collection of points P. A natural way to make sense
of “the topology” of P is to consider

Ur (P) := ∪p∈PBr (p),

as a parametrized family of spaces for r ∈ (0,∞).

The Čech complex Cr (P) on P is a simplicial complex with
0-skeleton P and faces included or not depending on the
distances between the points of P.

The Nerve Lemma: The homology of Ur (P) and Cr (P) are the
same.
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The random Čech complex

I First construct a random
geometric graph: start with a
random point process, and add
an edge between v and w if
Br (v) ∩ Br (w) 6= ∅.

I Continue in higher dimensions: if
Br (v) ∩ Br (w) ∩ Br (z) 6= ∅, fill in
the triangle with vertices v ,w , z.

I And so on...
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More specifics about the construction

I Let f be a bounded density on Rd . Choose n points
{X1, . . . ,Xn} independently according to f to be the
vertices of the complex.

I Let rn be the connectivity threshhold as described on the
last slide.

I We study the random Čech complex
C = C(X1, . . . ,Xn).
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Realizations of Betti numbers

The Betti numbers of the random Vietoris–Rips complex vs. rn,
with n = 100. Figure courtesy of Afra Zomorodian.
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The three regimes

The behavior of C = C(X1, . . . ,Xn) is qualitatively different
depending on the asymptotics of the quantity nrd

n , as follows:

I nrd
n

n→∞−−−→ 0: The sparse or sub-critical regime

I nrd
n

n→∞−−−→ α ∈ (0,∞): The critical regime

I nrd
n

n→∞−−−→∞: The super-critical regime
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Expected Betti numbers in the sparse regime

K-M showed:

For 0 ≤ k ≤ d − 1, there is a constant µ depending only on f
and k such that if nrd

n
n→∞−−−→ 0,

In particular, for k fixed there are three subregimes in the
sparse regime:

I nk+2rd(k+1)
n → 0;

I nk+2rd(k+1)
n → β ∈ (0,∞);

I nk+2rd(k+1)
n →∞.
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Limiting distributions of Betti numbers
Theorem (Kahle/M.)

1. If nk+2rd(k+1)
n → 0 as n→∞, then

βk (C(X1, . . . ,Xn))→ 0 a.a.s. as n→∞.

2. If nk+2rd(k+1)
n → α ∈ (0,∞) as n→∞, then

dTV (βk (C(X1, . . . ,Xn)),Y ) ≤ cnrd
n ,

where Y is a Poisson random variable with E[Y ] = E[βk ]
and c is a constant depending only on α, k and f .

3. If nk+2rd(k+1)
n →∞ and nrd

n → 0 as n→∞, then

β(C(X1, . . . ,Xn))− E[β(C(X1, . . . ,Xn))]√
Var(β(C(X1, . . . ,Xn)))

⇒ N(0,1).
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A different tack: the distance function

Let P be a set of points in Rd , and consider the distance
function dP : Rd → [0,∞) defined by

dP(x) := min
p∈P
‖x − p‖.

Note: {
x ∈ Rd ∣∣dP(x) ≤ r

}
= Ur (P);

that is, the topology we’re interested in is contained in the
sublevel sets of the distance function.
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Morse Theory

Let f : M→ R be a Morse function; i.e., a smooth function on a
closed manifold M such that all critical points of f are
nondegenerate and all critical values of f are distinct.

Consider the sublevel sets

Mr :=
{

x ∈M
∣∣f (x) ≤ r

}
.

If there are no critical levels between a and b, Ma and Mb are
homotopy equivalent.

As you pass through each critical value, one of the Betti
numbers changes by one – a hole is created or filled in.
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Morse theory has been extended to apply to min-type
functions, e.g., the distance function, so that the homology of
Ur (P) for stochastic point process P can be studied through the
random function dP and its critical points.

The challenge is that Morse theory says that at a critical value
of “Morse index k ”, βk goes up by 1 or else βk−1 goes down by
1, but the definition of Morse index assumes smoothness that
dP lacks.
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A new definition of criticality

Gershkovich and Rubinstein (via Bobrowski and Adler) give the
following definition of a critical point of index k of dP:

Definition
The critical points of index 0 of dP are the global minima of dP;
i.e., the points of P itself.

A point x ∈ Rd is a critical point of index k ∈ {1, . . . ,d} of dP if
there is a subset Y ⊆ P with |Y| = k + 1 such that

I dP(x) = ‖x − y‖ for all y ∈ Y and ‖x − p‖ > dP for all
p ∈ P \ Y.

I The points of Y are in general position.

I x ∈ conv◦(Y).
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Bobrowski–Adler
Limit Theory for the number of critical points

Given n i.i.d. points Xn = {X1, . . . ,Xn}, each distributed
according to the density f on Rd , and given a threshhold radius
rn, let Nk ,n be the number of critical points of index k of Xn.

B–A prove limit theorems for Nk ,n in all three regimes (with an
additional condition in the supercritical regime).

The theorems in the sparse regime are exactly analogous to
the limit theorems for βk in the sparse regime, but the fact that
they get theorems in all regimes points to how much more
powerful the Morse theoretic approach can be over the direct
topological approach of K–M.



Bobrowski–Adler
Limit Theory for the number of critical points

Given n i.i.d. points Xn = {X1, . . . ,Xn}, each distributed
according to the density f on Rd , and given a threshhold radius
rn, let Nk ,n be the number of critical points of index k of Xn.

B–A prove limit theorems for Nk ,n in all three regimes (with an
additional condition in the supercritical regime).

The theorems in the sparse regime are exactly analogous to
the limit theorems for βk in the sparse regime, but the fact that
they get theorems in all regimes points to how much more
powerful the Morse theoretic approach can be over the direct
topological approach of K–M.



Bobrowski–Adler
Limit Theory for the number of critical points

Given n i.i.d. points Xn = {X1, . . . ,Xn}, each distributed
according to the density f on Rd , and given a threshhold radius
rn, let Nk ,n be the number of critical points of index k of Xn.

B–A prove limit theorems for Nk ,n in all three regimes (with an
additional condition in the supercritical regime).

The theorems in the sparse regime are exactly analogous to
the limit theorems for βk in the sparse regime, but the fact that
they get theorems in all regimes points to how much more
powerful the Morse theoretic approach can be over the direct
topological approach of K–M.



Bobrowski–Adler
Limit Theory for the number of critical points

Given n i.i.d. points Xn = {X1, . . . ,Xn}, each distributed
according to the density f on Rd , and given a threshhold radius
rn, let Nk ,n be the number of critical points of index k of Xn.

B–A prove limit theorems for Nk ,n in all three regimes (with an
additional condition in the supercritical regime).

The theorems in the sparse regime are exactly analogous to
the limit theorems for βk in the sparse regime, but the fact that
they get theorems in all regimes points to how much more
powerful the Morse theoretic approach can be over the direct
topological approach of K–M.



The Expected Euler Characteristic

Theorem (Bobrowski–Adler)
Let χn be the Euler characteristic of Crn(Xn). Then

lim
n→∞

E
[
χn
]

n
=


1 nrd

n → 0;

1 +
∑d

k=1(−1)kγk (λ) nrd
n → λ ∈ (0,∞);

0 nrd
n →∞;

here, γk (λ) are (sort of) explicit constants depending only on f ,
k and λ.

Moreover, when nrd
n ≥ Cf log(n), then E

[
χn
]
→ 1.
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Sampling from a density on a manifold

Bobrowski–Mukherjee consider the problem of n i.i.d. points
Xn = {X1, . . . ,Xn}, each distributed according to a density f on
an m-dimensional manifold (embedded in some Euclidean
space).

Again, the behavior splits into three regimes:

I nrm
n

n→∞−−−→ 0: The sparse or sub-critical regime

I nrm
n

n→∞−−−→ λ ∈ (0,∞): The critical regime

I nrm
n

n→∞−−−→∞: The super-critical regime
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The sub-critical and critical regimes

Bobrowski–Mukherjee prove detailed limit theorems for the
Betti numbers and the number of critical points of a given index
in the sub-critical regime, analogous to those in the Euclidean
case.

Also as in the Euclidean case, the critical regime is too highly
connected to get easily at the Betti numbers. In particular, B–M
prove that if nrm

n → λ ∈ (0,∞), then

0 < lim inf
n→∞

E
[
βk ,n

]
n

≤ lim sup
n→∞

E
[
βk ,n

]
n

<∞,

for each k ∈ {1, . . . ,m − 1}.
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Betti numbers and the number of critical points of a given index
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Manifold learning
Can we recover the topology of an unknown manifold M by
studying the topology of Ur (n) for n and r chosen suitably?

Niyogi–Smale–Weinberger: Probably.

Theorem (N–S–W)
Given a compact Riemannian submanifold M of RN with
condition number 1/τ and ε ∈ (0, τ/2), there are explicit
constants

N = N(τ, ε, vol(M)) δ = δ(τ, ε, vol(M))

such that if X = {X1, . . . ,Xn} is a sample of n i.i.d. points
chosen uniformly from M and n ≥ N, then with probability at
least 1− δ,

Uε(X) has the same homology as M.
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Manifold learning

Theorem (Bobrowski–Mukherjee)
Consider i.i.d. points Xn = {X1, . . . ,Xn} distributed according to
a density f on a smooth closed manifold M with bounded
curvature. Suppose further that

min
x∈M

f (x) > 0.

There is a constant C depending only on f such that if
nrm

n ≥ C log(n), then with probability one,

βk ,n = βk (M)

for each k ∈ {0, . . . ,m} eventually.



Striking out in a different direction:
Negatively associated stationary point processes

The previous results are about complexes built over i.i.d. point
processes; essentially the same reslts hold in Euclidean space
for complexes built over (nonhomogenous) Poisson point
processes.

In recent work, Yogeshwaran–Adler consider complexes built
over a more general class of stationary point processes P in
Rd ; i.e., given a Borel subset B ⊆ Rd ,

E
[
#{p ∈ P ∩ B}

]
= vol(B).
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Negatively associated stationary point processes

Specifically, Y–A found asymptotic expectations of Betti
numbers for negatively associated stationary point processes,
and observed that the asymptotic orders are different than in
the i.i.d. case.

For example, for the i.i.d Euclidean case, when nrd
n ≥ C log(n),

the Čech complex becomes trivial with high probability; on a
manifold, the topology coincides with that of the manifold.

If a Čech complex is constructed over the Ginibre process in
Rd , the corresponding cut-off happens at log(n)

d
4 .
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Recall: Betti numbers in the sparse regime in Rd

Theorem (Kahle/M.)

1. If nk+2rd(k+1)
n → 0 as n→∞, then

βk (C(X1, . . . ,Xn))→ 0 a.a.s. as n→∞.

2. If nk+2rd(k+1)
n → α ∈ (0,∞) as n→∞, then

dTV (βk (C(X1, . . . ,Xn)),Y ) ≤ cnrd
n ,

where Y is a Poisson random variable with E[Y ] = E[βk ]
and c is a constant depending only on α, k and f .

3. If nk+2rd(k+1)
n →∞ and nrd

n → 0 as n→∞, then

β(C(X1, . . . ,Xn))− E[β(C(X1, . . . ,Xn))]√
Var(β(C(X1, . . . ,Xn)))

⇒ N(0,1).



Some preliminaries to the proof

The first idea is to bound βk between two combinatorial random
variables counting potential contributions to homology, and
prove the same limit theorems for both.

I Let Sn,k be the number of empty k -simplices.

I Let S̃n,k , the number of isolated empty k -simplices.
I Let Yn,k+1 denote the number of pairs {σ, {u, v}}, where
σ ⊆ C(X1, . . . ,Xn) is a k -simplex and u and v are distinct
vertices of σ, each of which is connected to a different
vertex outside σ.

I Let Zn,k+1 denote the number of {σ, u} in C(X1, . . . ,Xn),
where σ is a k -simplex and u is a vertex in σ with a path of
length 2 outside σ attached.



Some preliminaries to the proof

The first idea is to bound βk between two combinatorial random
variables counting potential contributions to homology, and
prove the same limit theorems for both.

I Let Sn,k be the number of empty k -simplices.

I Let S̃n,k , the number of isolated empty k -simplices.
I Let Yn,k+1 denote the number of pairs {σ, {u, v}}, where
σ ⊆ C(X1, . . . ,Xn) is a k -simplex and u and v are distinct
vertices of σ, each of which is connected to a different
vertex outside σ.

I Let Zn,k+1 denote the number of {σ, u} in C(X1, . . . ,Xn),
where σ is a k -simplex and u is a vertex in σ with a path of
length 2 outside σ attached.



It’s not too hard to see that

S̃n,k+1 ≤ βk (C(X1, . . . ,Xn)) ≤ Sn,k+1 + Yn,k+1 + Zn,k+1.



S̃n,k+1 ≤ βk(C(X1, . . . ,Xn)) ≤ Sn,k+1 + Yn,k+1 + Zn,k+1

The idea is now to prove the same limit theorems for the upper
and lower bounds using combinatorial techniques.

What amounts to a rescaling argument with a little calculus
shows that for a (not very explicit) constant µ,

lim
n→∞

E[S̃n,k+1]

nk+2rd(k+1)
n

= lim
n→∞

E[Sn,k+1 + Yn,k+1 + Zn,k+1]

nk+2rd(k+1)
n

=
µ

(k + 1)!
.

=⇒ P[βk (C) ≥ 1] ≤ E[βk (C)] . nk+2rd(k+1)
n ;

That is, if nk+2rd(k+1)
n → 0, then βk (C)→ 0 a.a.s.
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The other end of the sparse regime: nk+2rd(k+1)
n →∞

I In the sparsest case nk+2rd(k+1)
n → 0, there aren’t any

(k + 1)-simplices to contribute to βk .

I In the moderate situation nk+2rd(k+1)
n → β ∈ (0,∞), there

are (k + 1)-simplices, but analyzing βk is comparatively
straightforward because the (k + 1)-simplices are
essentially always isolated, so we just have to count them.

I Once nk+2rd(k+1)
n →∞, this is no longer the case; this

increased spacial dependence presents significant
technical difficulties.

An important tool in such situations is to “Poissonize” the
problem, get the theorem there, and then “de-Poissonize” to get
the theorem we’re really after.
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How to Poissonize your (our) problem

Recall that the complex is built starting from n points chosen
independently and identically according to a fixed distribution.

This produces inherent spacial dependence; i.e., if I tell you
what’s going on in a particular region, you now know more
about what may or may not be happening in other regions.

The Poisson process doesn’t have this property: a Poisson
process with intensity measure µ is a collection of (a random
number of) random points in Rd , such that

I the number of points in a region A ⊆ Rd is a Poisson
random variable with mean µ(A); and

I if A and B are disjoint regions of Rd , then the number of
points in A is independent of the number of points in B.
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We model our i.i.d. points with a Poisson process:

Let Nn be a Poisson random variable with mean n, and let

{X1,X2, . . .}

be a sequence of independent random points, each distributed
according to our density f , and independent of Nn. Then

P := {X1, . . . ,XNn}

is a Poisson process with intensity nf (·).
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The Poissonized problem

We consider the Poissonized random variables

S̃P
n,k and SP

n,k + Y P
n,k + Z P

n,k ,

defined as before but over the collection P = {X1, . . .XNn}.

Means and variances are harder to compute in this case, but
can essentially be recovered from the i.i.d. case.

The matching upper and lower normal approximation theorems
are proved via the dependency graph approach to Stein’s
method – for more on this story, stay tuned until next time.
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