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What is Stein’s method,
and what is it good for?

“Stein’s method” refers to a family of techniques

for approximating the distribution of a random

variable you want to understand by some model

distribution that you already understand

(normal, Poisson, gamma, semi-circle, etc.)
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What is Stein’s method and what is it good for?

I The method has no a priori requirements for any particular
structure of the random variable (e.g., it need not be a
sum), or for any independence. This makes it often useful
in geometric or topological problems.

I It is a non-asymptotic method: when used to prove limit
theorems, it automatically produces rates of convergence.

I It is quite robust: one can often handle conditions almost
being satisfied, but not exactly.

I It’s most useful when you already have a guess as to a
good approximating distribution for your random variable,
although this is not an absolute requirement.
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The Characterizing Operator

Let X be a random variable. A characterizing operator for X is
an operator To on some class of functions A, such that, for any
random variable Y ,

ETof (Y ) = 0 ∀f ∈ A iff Y d
= X .

Examples:
I Standard Normal: Tof (x) = f ′(x)− xf (x) for f : R→ R.

I Poisson(λ): Tof (j) = λf (j + 1)− jf (j) for f : N→ R.

I Exponential(λ): Tof (x) = f ′(x)− λf (x) for f : R+ → R with
f (0) = 0.
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Approximation

Suppose Y is the random variable you care about, and X is a
random variable with characterizing operator To which you think
is a good approximation of Y .

The Big Idea:

Instead of trying to show that ETof (Y ) = 0 for all
f ∈ A, (which is probably not true), try to show that
ETof (Y ) is small for all f ∈ A. This will imply that Y is
close to X in some sense.
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Implementing the Big Idea: The Stein Equation

We need to solve the Stein equation: given a function g, find f
such that

Tof (x) = g(x)− Eg(X ).

We use Uo to denote the operator that gives the solution of the
Stein equation:

f (x) = Uog(x).

If f = Uog, observe that

ETof (Y ) = Eg(Y )− Eg(X ).

Thus if ETof (Y ) is small, then Eg(Y )− Eg(X ) is small.
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This leads naturally to notions of distance between the random
variables X and Y which can be expressed in the form

d(X ,Y ) = sup
F

∣∣Eg(X )− Eg(Y )
∣∣,

where the supremum is over some class F of test functions g.

Examples:
I F = {f : ‖f‖∞ ≤ 1, continuous} ←→ total

variation distance.

I F = {f : ‖f ′‖∞ ≤ 1} ←→ Wasserstein distance.

I F = {f : ‖f‖∞ + ‖f ′‖∞ ≤ 1} ←→ bounded
Lipschitz distance.
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So What?

Instead of trying to estimate the distance between X and Y
directly, the problem has been reduced to trying to estimate
ETof (Y ) for some large class of functions f . Why is this any
better?

Various techniques are in use for trying to estimate ETof (Y ).
Among them:

I The method of exchangeable pairs (e.g. Stein’s book)
I The dependency graph method (e.g. Arratia, Goldstein,

and Gordon or Barbour, Karoński, and Ruciński)
I Size-bias coupling (e.g. Goldstein and Rinott)
I Zero-bias coupling (e.g. Goldstein and Reinert)
I The generator method (Barbour)
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The idea of the method of exchangeable pairs

I Suppose you have a random variable W which you
conjecture is well-approximated by X . Make a “small
random change” to W to get a new random variable W ′,
such that (W ,W ′)

d
= (W ′,W ).

I The goal is to bound
∣∣ETof (W )

∣∣. Many characterizing
operators To are defined using derivatives or differences.
Use the fact that W and W ′ are close to express or
approximate those derivatives or differences in terms of
(W ,W ′).

I Use the fact that W ′ was constructed explicitly from W
together with the nesting property of conditional
expectation to help evaluate/estimate the resulting
espression.
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Exchangeable pairs for normal approximation

Fix h and let f = Uoh; in other words,

Tof (x) = h(x)− Eh(Z ),

where Z is a standard normal random variable.

Suppose (W ,W ′) is exchangeable.

Then

0 = E
[
(W ′ −W )

(
f (W ′) + f (W )

)]
= E

[
(W ′ −W )

(
f (W ′)− f (W )

)
+ 2(W ′ −W )f (W )

]
= E

[
(W ′ −W )2f ′(W ) + 2(W ′ −W )f (W ) + R

]
= E

[
f ′(W )E

[
(W ′ −W )2∣∣W]

+ 2f (W )E
[
W ′ −W

∣∣W ]
+ R

]
.



Exchangeable pairs for normal approximation

Fix h and let f = Uoh; in other words,

Tof (x) = h(x)− Eh(Z ),

where Z is a standard normal random variable.

Suppose (W ,W ′) is exchangeable. Then

0 = E
[
(W ′ −W )

(
f (W ′) + f (W )

)]

= E
[
(W ′ −W )

(
f (W ′)− f (W )

)
+ 2(W ′ −W )f (W )

]
= E

[
(W ′ −W )2f ′(W ) + 2(W ′ −W )f (W ) + R

]
= E

[
f ′(W )E

[
(W ′ −W )2∣∣W]

+ 2f (W )E
[
W ′ −W

∣∣W ]
+ R

]
.



Exchangeable pairs for normal approximation

Fix h and let f = Uoh; in other words,

Tof (x) = h(x)− Eh(Z ),

where Z is a standard normal random variable.

Suppose (W ,W ′) is exchangeable. Then

0 = E
[
(W ′ −W )

(
f (W ′) + f (W )

)]
= E

[
(W ′ −W )

(
f (W ′)− f (W )

)
+ 2(W ′ −W )f (W )

]

= E
[
(W ′ −W )2f ′(W ) + 2(W ′ −W )f (W ) + R

]
= E

[
f ′(W )E

[
(W ′ −W )2∣∣W]

+ 2f (W )E
[
W ′ −W

∣∣W ]
+ R

]
.



Exchangeable pairs for normal approximation

Fix h and let f = Uoh; in other words,

Tof (x) = h(x)− Eh(Z ),

where Z is a standard normal random variable.

Suppose (W ,W ′) is exchangeable. Then

0 = E
[
(W ′ −W )

(
f (W ′) + f (W )

)]
= E

[
(W ′ −W )

(
f (W ′)− f (W )

)
+ 2(W ′ −W )f (W )

]
= E

[
(W ′ −W )2f ′(W ) + 2(W ′ −W )f (W ) + R

]

= E
[
f ′(W )E

[
(W ′ −W )2∣∣W]

+ 2f (W )E
[
W ′ −W

∣∣W ]
+ R

]
.



Exchangeable pairs for normal approximation

Fix h and let f = Uoh; in other words,

Tof (x) = h(x)− Eh(Z ),

where Z is a standard normal random variable.

Suppose (W ,W ′) is exchangeable. Then

0 = E
[
(W ′ −W )

(
f (W ′) + f (W )

)]
= E

[
(W ′ −W )

(
f (W ′)− f (W )

)
+ 2(W ′ −W )f (W )

]
= E

[
(W ′ −W )2f ′(W ) + 2(W ′ −W )f (W ) + R

]
= E

[
f ′(W )E

[
(W ′ −W )2∣∣W]

+ 2f (W )E
[
W ′ −W

∣∣W ]
+ R

]
.



E
[
f ′(W )E

[
(W ′ −W )2

∣∣W ]
+ 2f (W )E

[
W ′ −W

∣∣W ]
+ R

]
= 0

Now, suppose that there is a λ ∈ (0,1) such that

I E
[
W ′ −W

∣∣W ]
= −λW

I E
[
(W ′ −W )2

∣∣W ]
= 2λ+ E . (E is a random variable.)

Then

2λE
[

Tof (W )

That is, ETof (W ) = Eh(W )− Eh(Z ) = − 1
2λE

[
f ′(W )E + R

]
.



E
[
f ′(W )E

[
(W ′ −W )2

∣∣W ]
+ 2f (W )E

[
W ′ −W

∣∣W ]
+ R

]
= 0

Now, suppose that there is a λ ∈ (0,1) such that

I E
[
W ′ −W

∣∣W ]
= −λW

I E
[
(W ′ −W )2

∣∣W ]
= 2λ+ E . (E is a random variable.)

Then

2λE
[

Tof (W )

That is, ETof (W ) = Eh(W )− Eh(Z ) = − 1
2λE

[
f ′(W )E + R

]
.



E
[
f ′(W )E

[
(W ′ −W )2

∣∣W ]
+ 2f (W )E

[
W ′ −W

∣∣W ]
+ R

]
= 0

Now, suppose that there is a λ ∈ (0,1) such that

I E
[
W ′ −W

∣∣W ]
= −λW

I E
[
(W ′ −W )2

∣∣W ]
= 2λ+ E . (E is a random variable.)

Then

2λE
[

Tof (W )

That is, ETof (W ) = Eh(W )− Eh(Z ) = − 1
2λE

[
f ′(W )E + R

]
.



E
[
f ′(W )E

[
(W ′ −W )2

∣∣W ]
+ 2f (W )E

[
W ′ −W

∣∣W ]
+ R

]
= 0

Now, suppose that there is a λ ∈ (0,1) such that

I E
[
W ′ −W

∣∣W ]
= −λW

I E
[
(W ′ −W )2

∣∣W ]
= 2λ+ E . (E is a random variable.)

Then

2λE
[

Tof (W )

That is, ETof (W ) = Eh(W )− Eh(Z ) = − 1
2λE

[
f ′(W )E + R

]
.



E
[
f ′(W )E

[
(W ′ −W )2

∣∣W ]
+ 2f (W )E

[
W ′ −W

∣∣W ]
+ R

]
= 0

Now, suppose that there is a λ ∈ (0,1) such that

I E
[
W ′ −W

∣∣W ]
= −λW

I E
[
(W ′ −W )2

∣∣W ]
= 2λ+ E . (E is a random variable.)

Then

2λE
[

f ′(W )−Wf (W ) +
f ′(W )E + R

2λ

]
= 0.

Tof (W )

That is, ETof (W ) = Eh(W )− Eh(Z ) = − 1
2λE

[
f ′(W )E + R

]
.



E
[
f ′(W )E

[
(W ′ −W )2

∣∣W ]
+ 2f (W )E

[
W ′ −W

∣∣W ]
+ R

]
= 0

Now, suppose that there is a λ ∈ (0,1) such that

I E
[
W ′ −W

∣∣W ]
= −λW

I E
[
(W ′ −W )2

∣∣W ]
= 2λ+ E . (E is a random variable.)

Then

2λE
[

f ′(W )−Wf (W )︸ ︷︷ ︸ +
f ′(W )E + R

2λ

]
= 0.

Tof (W )

That is, ETof (W ) = Eh(W )− Eh(Z ) = − 1
2λE

[
f ′(W )E + R

]
.



E
[
f ′(W )E

[
(W ′ −W )2

∣∣W ]
+ 2f (W )E

[
W ′ −W

∣∣W ]
+ R

]
= 0

Now, suppose that there is a λ ∈ (0,1) such that

I E
[
W ′ −W

∣∣W ]
= −λW

I E
[
(W ′ −W )2

∣∣W ]
= 2λ+ E . (E is a random variable.)

Then

2λE
[

f ′(W )−Wf (W )︸ ︷︷ ︸ +
f ′(W )E + R

2λ

]
= 0.

Tof (W )

That is, ETof (W ) = Eh(W )− Eh(Z ) = − 1
2λE

[
f ′(W )E + R

]
.



Stein’s abstract normal approximation theorem

Theorem (Stein)
Let (W ,W ′) be an exchangeable pair of random variables with
EW 2 = 1 and

E
[
W ′ −W

∣∣W ]
= −λW

for some λ ∈ (0,1). Let ∆ = W ′ −W ,. Then for Z a standard
normal random variable,

dBL(W ,Z ) ≤ 2
λ

√
Var

(
E
[
∆2
∣∣W ])

+
1

2λ
E|∆|3.
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An infinitesimal version

Theorem (M)
Suppose that (W ,Wε) is a family of exchangeable pairs defined
on a common probability space, such that EW = 0 and
EW 2 = σ2.

Suppose there is a function λ(ε) and random variables E ,E ′

such that

1. 1
λ(ε)E

[
Wε −W

∣∣W ] L1−−→
ε→0

−W + E ′.

2. 1
2λ(ε)σ2 E

[
(Wε −W )2

∣∣W ] L1−−→
ε→0

1 + E .

3. 1
λ(ε)E|Wε −W |3 ε→0−−→ 0.

Then if Z is a standard normal random variable,

dTV (W ,Z ) ≤ E
∣∣E∣∣+

√
π

2
E
∣∣E ′∣∣.
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A now familiar example:
Rank 1 projection of Haar measure on O (n)

Theorem (M)
Let M ∈ O (n) be a random orthogonal matrix.
Let A ∈ O (n) be a fixed orthogonal matrix with ‖A‖HS = 1.

Define the random variable W by

W := Tr(AM).

If Z is a standard normal random variable, then

dTV (W ,Z ) ≤ 2
√

3
n − 1

.
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The exchangeable pair
(first used by Charles Stein)

I Fix ε > 0, and let Aε =

[√
1− ε2 ε

−ε
√

1− ε2

]
⊕ In−2.

I Let U be distributed according to Haar measure on O (n),
and independent of M.

The matrix UAεUT is a rotation by arcsin(ε) in a random
two-dimensional subspace of Rn.

I Make an exchangeable pair of random matrices (M,Mε) by
randomly rotating M:

Mε := UAεUT M.

I The exchangeable pair descends to W :

Wε := Tr(AMε).
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Getting our hands (a little) dirty

To apply the abstract approximation theorem to this
exchangeable pair, we need to evaluate

E
[
Wε −W

∣∣W ]
= E

[
Tr
[
A(Mε −M)

]∣∣∣Tr(AM)
]
.

Let K be the n× 2 matrix made of the first two columns of U, let
I2 be the 2× 2 identity, and

C2 :=

[
0 1
−1 0

]
.

Then

Mε −M = U
(
Aε − In

)
UT M = K

[(√
1− ε2 − 1

)
I2 + εC2

]
K T M

= K
[(
−ε

2

2
+ O(ε4)

)
I2 + εC2

]
K T M

.
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So:

Wε −W =

(
−ε

2

2
+ O(ε4)

)
Tr(AKK T M) + εTr(AKC2K T M).

Using symmetry arguments one can easily check that

E
[
KK T ] =

2
n

In E
[
KC2K T ] = 0.

So out pops:

E
[
Wε −W

∣∣W ]
=

(
−ε

2

n
+ O(ε4)

)
W ;

Condition 1 of the theorem holds with λ(ε) = ε2

n .
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The error from the theorem is given by

lim
ε→0

1
2λ(ε)

E
∣∣∣E[|Wε −W |2

∣∣W ]
− 1
∣∣∣

as long as

lim
ε→0

1
λ(ε)

E|Wε −W |3 = 0.
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The computation thus comes down to some mixed moments of
entries of K . One gets:



Again using

Wε −W =

(
−ε

2

2
+ O(ε4)

)
Tr(AKK T M) + εTr(AKC2K T M)

and λ(ε) = ε2

n ,

1
2λ(ε)

E
[
(Wε −W )2

∣∣W ]
∼ n

2
E
[(

Tr(AKCK T M)
)2∣∣W]

.

The computation thus comes down to some mixed moments of
entries of K . One gets:



Again using

Wε −W =

(
−ε

2

2
+ O(ε4)

)
Tr(AKK T M) + εTr(AKC2K T M)

and λ(ε) = ε2

n ,

1
2λ(ε)

E
[
(Wε −W )2

∣∣W ]
∼ n

2
E
[(

Tr(AKCK T M)
)2∣∣W]

.

The computation thus comes down to some mixed moments of
entries of K .

One gets:



Again using

Wε −W =

(
−ε

2

2
+ O(ε4)

)
Tr(AKK T M) + εTr(AKC2K T M)

and λ(ε) = ε2

n ,

1
2λ(ε)

E
[
(Wε −W )2

∣∣W ]
∼ n

2
E
[(

Tr(AKCK T M)
)2∣∣W]

.

The computation thus comes down to some mixed moments of
entries of K . One gets:

n
2

E
[(

Tr(AKCK T M)
)2∣∣W]

= 1 +
1

n − 1

[
1− Tr

(
(AM)2)] .



Again using

Wε −W =

(
−ε

2

2
+ O(ε4)

)
Tr(AKK T M) + εTr(AKC2K T M)

and λ(ε) = ε2

n ,

1
2λ(ε)

E
[
(Wε −W )2

∣∣W ]
∼ n

2
E
[(

Tr(AKCK T M)
)2∣∣W]

.

The computation thus comes down to some mixed moments of
entries of K . One gets:

n
2

E
[(

Tr(AKCK T M)
)2∣∣W]

= 1 +
1

n − 1

[
1− Tr

(
(AM)2)]︸ ︷︷ ︸ .

has bounded expectation



Dependency Graphs

This is a quite different approach for estimating ETof (W ), which
is often useful when W is a sum of weakly dependent random
variables.

Let {Xi}ni=1 be a set of random variables. A dependency graph
for the Xi is a graph with vertices {1, . . . ,n} and edge set E
such that, if K1,K2 ⊆ {1, . . . ,n} are not connected by any
edges, then

{Xi}i∈K1 and {Xi}i∈K2 are independent.

The idea is to exploit the dependence structure to analyze∑n
i=1 Xi .
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Poisson approximation via dependency graphs

Theorem (Arratia–Goldstein–Gordon)
Let {Xi}i∈V be a finite collection of binary random variables
with dependency graph (V ,E); let Ni denote the neighborhood
of i in V and suppose that

P(Xi = 1) = pi P(Xi = 1,Xj = 1) = pij .

Let λ =
∑

pi ; let Y ∼ Poi(λ) and W :=
∑

Xi . Then

dTV (W ,Y ) ≤ min(1, λ−1)

∑
i∈I

∑
j∈Ni\{i}

pij +
∑
i∈I

∑
j∈Ni

pipj

 .



The idea of the proof

Remember that the characterizing operator for Y is

Tof (j) = λf (j + 1)− jf (j).

Let A ⊆ N: if f is such that Tof (j) = 1A(j)− E1A(Y ), then

P(Y ∈ A)− P(W ∈ A) = E[Wf (W )− λf (W + 1)]

=
∑
i∈V

E[Xi f (W )− pi f (W + 1)]

=
∑
i∈V

E

Xi f

∑
j 6=i

Xj + 1

− pi f (W + 1)

 .
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Xj + 1

− pi f (W + 1)
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Example: Betti numbers in the “pretty sparse” regime

Recall the set-up: let f be a bounded density on Rd and choose
n points {X1, . . . ,Xn} independently according to f .

Construct the random Čech complex C = C(X1, . . . ,Xn) over the
points: any subcollection of the points span a face in C if the
collection of balls with those centers and radius rn intersect
nontrivially.

Theorem (Kahle–M)
If nk rd(k−1)

n → α ∈ (0,∞) as n→∞, then

dTV (βk (C(X1, . . . ,Xn)),Y ) ≤ cnrd
n ,

where Y is a Poisson random variable with E[Y ] = E[βk ] and c
is a constant depending only on α, k and f .
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Preliminaries

Firstly, we relate βk to the number of empty (k + 1)-simplices in
C(X1, . . . ,Xn)

:

S̃n,k+1 ≤ βk (C) ≤ Sn,k+1 + other stuff ,

where Sn,k+1 is the number of empty simplices on k + 2
vertices in C(X1, . . . ,Xn) and S̃n,k+1 is the number of isolated
empty simplices on k + 2 vertices in C.

Proving that Sn,k+1 is approximately Poisson in this regime is
basically enough; there’s no real difference between Sn,k+1 and
S̃n,k+1 and the other stuff can be estimated away.
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The set-up

Write
Sn,k =

∑
i=(i0,i1,...,ik )

1≤i1<···<ik≤n

ξi,

where ξi is the indicator that Xi0 , . . . ,Xik form an empty
k -simplex; that is, the balls of radius rn about any k of the Xij
intersect, but the intersection of all k + 1 balls is empty.

The dependency graph: If i = (i0, i1, . . . , ik ) and
j = (j0, j1, . . . , jk ) have no indices in common, then certainly ξi
and ξj are independent – we thus

connect i and j if i ∩ j 6= ∅.
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Estimates
Recall: the theorem says that

dTV (Sn,k ,Y ) ≤ min(1, λ−1)

∑
i

∑
j∈Ni\{i}

pij +
∑

i

∑
j∈Ni

pipj



Recall also from the last lecture: for 0 ≤ k ≤ d − 1, there is a
constant µ depending only on f and k such that

E
[
βk (C)

]
nk rd(k−1)

n

−→ µ

(k + 1)!
as n→∞.

This actually comes from getting the corresponding
asymptotics for S̃n,k and Sn,k ; in particular,

λ =
( µ

k !

)
nk+1rdk

n .
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dTV (Sn,k ,Y ) ≤
(

k!
µ

)
n−(k+1)r−dk

n

[∑
i
∑

j∈Ni\{i} pij +
∑

i
∑

j∈Ni
pipj

]

Now, for k + 1 i.i.d. points to form a simplex, the first k all have
to be within 2rn of the last:

pi = Eξi ≤
[
(2rn)dθd‖f‖∞

]k
,

where θd is the volume of the unit sphere in Rd .

Given i ∈ I, the number of j ∈ I with i ∼ j is(
n

k + 1

)
−
(

n − k − 1
k + 1

)
=

(k + 1)2nk

(k + 1)!
+ O

(
nk−1

)
.

=⇒ The pipj term above is, to top order,

(2θd‖f‖∞)2k

k !µ
(nrd

n )k .



dTV (Sn,k ,Y ) ≤
(

k!
µ

)
n−(k+1)r−dk

n

[∑
i
∑

j∈Ni\{i} pij +
∑

i
∑

j∈Ni
pipj

]
Now, for k + 1 i.i.d. points to form a simplex, the first k all have
to be within 2rn of the last:

pi = Eξi ≤
[
(2rn)dθd‖f‖∞

]k
,

where θd is the volume of the unit sphere in Rd .

Given i ∈ I, the number of j ∈ I with i ∼ j is(
n

k + 1

)
−
(

n − k − 1
k + 1

)
=

(k + 1)2nk

(k + 1)!
+ O

(
nk−1

)
.

=⇒ The pipj term above is, to top order,

(2θd‖f‖∞)2k

k !µ
(nrd

n )k .



dTV (Sn,k ,Y ) ≤
(

k!
µ

)
n−(k+1)r−dk

n

[∑
i
∑

j∈Ni\{i} pij +
∑

i
∑

j∈Ni
pipj

]
Now, for k + 1 i.i.d. points to form a simplex, the first k all have
to be within 2rn of the last:

pi = Eξi ≤
[
(2rn)dθd‖f‖∞

]k
,

where θd is the volume of the unit sphere in Rd .

Given i ∈ I, the number of j ∈ I with i ∼ j is(
n

k + 1

)
−
(

n − k − 1
k + 1

)
=

(k + 1)2nk

(k + 1)!
+ O

(
nk−1

)
.

=⇒ The pipj term above is, to top order,

(2θd‖f‖∞)2k

k !µ
(nrd

n )k .



dTV (Sn,k ,Y ) ≤
(

k!
µ

)
n−(k+1)r−dk

n

[∑
i
∑

j∈Ni\{i} pij +
∑

i
∑

j∈Ni
pipj

]
Now, for k + 1 i.i.d. points to form a simplex, the first k all have
to be within 2rn of the last:

pi = Eξi ≤
[
(2rn)dθd‖f‖∞

]k
,

where θd is the volume of the unit sphere in Rd .

Given i ∈ I, the number of j ∈ I with i ∼ j is(
n

k + 1

)
−
(

n − k − 1
k + 1

)
=

(k + 1)2nk

(k + 1)!
+ O

(
nk−1

)
.

=⇒ The pipj term above is, to top order,

(2θd‖f‖∞)2k

k !µ
(nrd

n )k .



Similarly, if
∣∣i ∩ j

∣∣ = `, then

pij = E
[
ξiξj
]
≤
[
(2rn)dθd‖f‖∞

]2k−`+1
.

Given i, the number of j with
∣∣i ∩ j

∣∣ = ` is(
k + 1
`

)(
n − k − 1
k + 1− `

)
.

=⇒ the pij term above is,

1
λ

(
n

k + 1

) k∑
`=1

(
k + 1
`

)(
n − k − 1
k + 1− `

)[
(2rn)dθd‖f‖∞

]2k−`+1
. nrd

n .
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