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Everyone knows what it means to toss a fair coin, right?  It means that it’s equally likely 

to land on heads or tails.  But what does that really mean?  You toss it once, it lands on heads, so 

what?  Is it fair?  Is it unfair?  How do you know? 

At this point, you’re probably going to tell me that I should toss it a bunch of times.  If it 

lands on heads every time, we’re pretty sure it’s not a fair coin.  We know what should happen, 

and it pushes us a little closer to knowing what fair means: if we toss the coin a lot of times, we 

should get about equal numbers of heads and tails.  And that’s perfectly fine for a Saturday 

afternoon, but not very satisfying to a mathematician. 

There’s a big difference between what we mean when we talk about “laws” in physics 

and when we talk about “laws” in mathematics.  In physics, we’re trying to describe the reality 

that we see, and to do it accurately enough to be able to make valid predictions.  But in math, 

even though we often start with real, physical observations like coin tosses, our mindset is 

different.  We want to come up with some axioms (statements we will assume) which seem 

reasonable based on our observations and are as simple as possible; then we want to see how 

much we can prove.  Our goal is to start from these very simple assumptions, things we feel 

comfortable assuming, and prove that the more complicated things we think we’ve observed 

follow just from those axioms. 

Understanding what a fair coin is is a great way to see the difference between 

mathematical and physical laws at work.  The idea that I can’t predict whether the coin lands on 

heads or tails is very hard to turn into a mathematical axiom; it’s not even clear how to test it by 

experiment.  The suggestion I imagined you making before, that I should check fairness by 

tossing the coin a lot, led us to the general idea that a coin is fair if when you toss it a lot of 

times, it lands on heads about half the time.  But that’s still awfully fuzzy.  We could make it 

sound a bit math-ier by saying that if Hn is the number of times out of n tosses that the coin lands 

on heads, then we should have lim / 1/ 2n nH n  .  But really I’m just conning you with fancy 

language and notation.  If I toss the coin n times, I get a certain number for Hn.  And then if I do 

it again, I get a different number: Hn is random!  Even if I could toss a coin an infinite number of 

times in order to take the limit, how do I know I’d get the same thing if I did the whole process 

again? 

The answer that probabilists have settled on is that going through limits is a bad way to 

define fair.  Instead, we assume that we can assign numbers called “probabilities” to events in a 

way that satisfy a small set of axioms which are so simple and so intuitively reasonable that we 

don’t mind taking them as a starting point.  Then, we prove the limiting statement above: that if 

you toss the coin a lot of times, the limiting proportion of times it lands on heads tends to 1/2. 

So, what are these axioms?  The first one is that I can assign a numerical probability, 

which I’ll call P(E) to any event E.  Sticking just with coin tossing, an event is anything I can 

describe in terms of the outcomes of a series of coin tosses.  So E could be the event that the first 

three tosses are heads, heads, tails.  Or it could be that the seventh toss is tails.  Or it could be 

that every other toss is a heads (forever – this is math, so I can have an infinite sequence of 

tosses).  I moreover assume that for any event E, P(E) is between 0 and 1 (including possibly 0 

or 1).  For example, if E is the event that the first toss is heads, and I’m trying to talk about a fair 

coin, then P(E) should be 1/2. 
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My second axiom is very simple: if E is just 

the event that something, anything, happens, then 

P(E) = 1.  And here’s the third and final one, which 

is as complicated as it gets: if I have a bunch of 

different events E1, E2, . . . with no overlap, then I 

can figure out the probability that one of them 

happens by adding up the individual probabilities.  

This has to work even if there are infinitely many 

Ek. 

And that’s it.  Those are the properties that 

something I call probability has to have.  Now, 

back to our fair coin.  Like we said above, if E is 

the event that the first toss is heads, then P(E) 

should be 1/2.  And if E2 is the event that the 

second toss is heads, then P(E2) should be 1/2.  

And so on; each individual toss should be equally 

likely to be heads or tails.  But there’s one other 

important feature of a fair coin: independence.  

How the toss came out on the first try shouldn’t tell 

you anything about what’s going to happen next, 

and vice versa.  For our coin tossing, this means 

that all of the possible strings of outcomes of a 

given length should be equally likely: e.g., the first 

three trials have eight total possible outcomes, as 

shown at right, and each has probability 1/8. 

Phew.  Okay, now we really know what a 

fair coin is.  So what about tossing it a lot of times?  

We can start from just the three axioms above and 

prove what’s called the strong law of large 

numbers.  In symbols, if Hn is the number of heads 

in the first n tosses of a fair coin, then the strong 

law of large numbers says that 
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What this means is that it’s essentially certain that 

in an infinite sequence of independent tosses of a 

fair coin, the limiting proportion of heads would be 

1/2.  I really have to have that cheater word 

“essentially” there: it’s of course possible that the 

limit might be something else (or even not exist).  

In principle, I could toss a fair coin forever and get heads every single time.  But what the strong 

law of large numbers says is that the probability that that will happen is zero.  It’s not that it can’t 

happen, but it won’t. 

So caveats and technicalities aside, modern mathematics has triumphed: we can start with 

very simple, very reasonable assumptions about how anything called probability should work, 

and our intuition about what fairness should mean becomes a theorem we can prove.



The Laws of Probability2 
Part 2: Zooming In. 

by Elizabeth S. Meckes  

 

Last time we talked about how mathematicians define a fair coin, and the theorem that 

the limiting proportion of heads when a fair coin is tossed a lot of times is 1/2.  Here’s a 

computer simulation of that effect: in the histogram below, the computer did the experiment of 

tossing a coin 5000 times and counting the proportion of heads.  It did this experiment 50,000 

times (so the computer tossed 250,000,000 coins), and the histogram below shows the 

proportions of heads in the 50,000 experiments. 

At this resolution, you 

see exactly what anyone would 

expect: a big bar at 1/2, meaning 

that the proportion of heads was 

between .475 and .525 every 

time. 

Let’s zoom in; we’ll 

make a histogram (bottom right) 

of what’s going on inside that 

one big bar. This represents 

exactly the same set of coin 

tosses, but now the bars 

correspond to counting points 

within intervals of length .01, 

whereas before the bars covered 

intervals of length .05. 

As you can see, it’s still 

reassuringly concentrated 

around 1/2: there still don’t 

seem to be any outcomes with 

fewer than 47.5% or more than 

52.5% heads.  But, because 

we’ve zoomed in enough, we’re 

starting to be able to observe the 

fact that we’re not going to get 

exactly half heads and half tails.  

We can see that the picture 

looks reasonably symmetric, 

which seems natural enough: 

it’s just as likely to get a few 

more heads than tails as vice 

versa.  We can also see that the 

bars drop off from the one that 

covers 1/2; the uneven outcomes 

got more unlikely as they got 

more uneven. 
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Okay, now let’s really zoom in: 

Whoa!  Amazing!  That beautiful curve was hidden in that first picture, but because we 

were looking at a coarse scale, we didn’t see it. 

The curve you see there is what people often call the “bell-shaped curve” (because it 

looks like the outline of a bell), or sometimes, the Gaussian curve, for the mathematician Carl 

Friedrich Gauss.  He wasn’t the first to see it, though – this curve has shown up as scientists 

observed and recorded findings about a huge number of features of the natural world.  And 

lurking behind that ubiquitous curve is the central limit theorem. 

Remember the law of large numbers from last time: if Hn is the number of heads in n 

tosses of a fair coin, then 
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That theorem basically corresponds to the first picture.  To zoom in, the first thing we have to do 

is to center our attention at 1/2.  Just like when you zoom in on an online map, you need to move 

the spot you’re interested in to the center; here we move the big bar in the first picture to the 

center of the number line (namely, 0), and consider 
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Now that we’ve centered things, we have to figure out how to turn the idea of zooming in into a 

mathematical operation we can do.  Each time we zoomed in, we looked at a shorter interval on 

the x-axis, but we stretched it out so we could see it, making it have the same physical length as 

the original histogram.  That means that we multiplied by larger and larger numbers, but only 

looked at the interval around our point of interest that fit the physical width of our original 

histogram.  It turns out that for Hn, the right zoom factor is n , and so finally the central limit 

theorem is a theorem about the random variables 
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Specifically, the central limit theorem says that Xn converges weakly to the standard Gaussian 

distribution, as n tends to infinity.  There’s a specific technical meaning to that, of course, but 

what it really means is that as n and the number of experiments we do grow, when we plot 

histograms at the kind of scale that we did in the third picture, they smooth out into the bell-

shaped curve. 

So why does all this mean that the bell-shaped curve occurs so often in nature?  Well, one 

of the things about the central limit theorem (and many other theorems in probability) is that it is 

quite robust, in the sense that if you change the hypotheses a little, the same basic result is still 

true.  In fact, you can push pretty much every aspect of the situation I’ve described above.  The 

coin tosses don’t have to be fair, and they don’t even have to be unfair in the same way.  Each 

coin can land on heads with a different probability, as long as those probabilities aren’t too 

different (and they shouldn’t be 1 or 0 – no two-headed or two-tailed coins!).  The coin 

tosses don’t need to be genuinely independent, either; as long as they don’t depend too much on 

each other, we’re okay.  And actually, the coin tosses don’t even have to be coin tosses!  The 

random variable Hn can be a sum of weakly dependent random variables with pretty much any 

description you like – they can even be random vectors living in infinite-dimensional 

spaces!  But back down to earth – why do we see the bell-shaped curve in observational data? 

Think of it this way: any time you have a feature of something, say the weight of an adult 

female rabbit, it depends on a lot of little things.  For (ridiculously over-simplified) instance, set 

the hypothetical rabbit’s weight at the average weight of an adult female rabbit, but then add on 

an ounce if its mother was particularly large and take one away if she was particularly small.  

Now do the same for the father.  Now either add or subtract an ounce depending on whether that 

rabbit’s neighborhood is particularly full of lettuce 

or rather lacking in it.  And so on and so forth; the 

weight of the rabbit is now seen as a random 

variable which is a sum of a lot of (basically 

independent??) things, and so the distribution of 

rabbit weights should look like a bell-shaped curve 

around the average. 


