Math 224 FExam 2
September 28, 2012

1. Consider the predator-prey system

dR
=2R—12
— =2R—12RF,

dF
=— F
— =—F+09R

(a) Suppose that the predators find a second food source in limited supply How
- would you modify the system to take this into a account?
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(b) Suppose that predators migrate into the area at a constant rate if there are at
least ten times as many prey as predators in the area (that is, if B > 10F), and
they move away at a (possibly different) constant rate if there are fewer than ten

times as many predators. How would you modlfy the system to take this into
account? Possibly useful notation:

1 >0
1(z > 0) = 0 <0




2. Solve the system

with initial conditions z(0) = 1, y(0) = 2.
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3. The following is a graph of four solution curves (z(t),y(t)) to an autonomous system
of differential equations, together with the direction field of the system.
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Match each of the pairs of graphs to a solution curve in the phase plane. Label which
graph is z and which is y. Finally, describe the long-term behavior of solutions in all
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4. Find two nonzero solutions of the differential equation

dy dy .
72 +7 7 +6y =0
which are not constant multiples of each other.
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5. Suppose you used Euler’s method to approximate the solution to the autonomous

system

ay
- =F(Y)

with initial condition Y (0) = Yy, and the resulting solution curve plotted on the phase
plane looked like this: '

,q,m,,.
L

(a) Explain how you can tell that the Euler’s method approximation must not be a,
very good approximation of the true solution.
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