All course information is posted here; Canvas is used only for grades.
A course in linear algebra that studies the fundamentals of vector spaces, inner product spaces, and linear transformations on an axiomatic basis. Topics include: solutions of linear systems, matrix algebra over the real and complex numbers, linear independence, bases and dimension, eigenvalues and eigenvectors, singular value decomposition, and determinants. Other topics may include least squares, general inner product and normed spaces, orthogonal projections, finite dimensional spectral theorem. This course is required of all students majoring in mathematics and applied mathematics. More theoretical than MATH 201.
Topics | Book chapter | Weeks |
---|---|---|
Linear systems, spaces, and maps | 1,2 | 1-4 |
Linear independence and bases | 3 | 5-7 |
Inner products, SVD, the spectral theorem | 4,5 | 8-11 |
Determinants and the characteristic polynomial | 6 | 12-14 |
Lecture | Group quiz | Reading for next time | Problems | Due Date |
---|---|---|---|---|
M 8/26 | none | Sec. 1.1, 1.2 | Read this and do the exercise
for practice proof 1. From the book: 1.1.5 (a,b,d), 1.1.8, 1.1.10, 1.1.11 | 8/28 |
W 8/28 | Sec. 1.3 | 1.2.4 (a,b,c), 1.2.6, 1.2.10, 1.2.14 | 8/30 | |
F 8/30 | Sec. 1.4 | 1.3.4, 1.3.6, 1.3.9, 1.3.12 | 9/4 | |
W 9/4 | Sec. 1.5 | 1.4.1, 1.4.6, 1.4.8, 1.4.16, 1.4.18 | 9/6 | |
F 9/6 | Sec. 2.1 | 1.5.2, 1.5.4, 1.5.10, 1.5.18, 1.5.20 | 9/9 | |
M 9/9 | Sec. 2.2 | 2.1.4, 2.1.5, 2.1.8, 2.1.10, 2.1.16 | 9/11 | |
W 9/11 | Review sections 2.1, 2.2 | 2.1.12, 2.1.14, 2.2.10, 2.2.14, 2.2.15 | 9/13 | |
F 9/13 | none | 2.2.2, 2.2.4, 2.2.7, 2.2.17 | 9/18 | |
M 9/16 | none | Sec. 2.3 | none | |
W 9/18 | Sec. 2.4 | 2.3.2, 2.3.10, 2.3.11, 2.3.12 (a) | 9/20 | |
F 9/20 | Sec. 2.4 (again) | 2.4.2, 2.4.4, 2.4.19, 2.4.22 | 9/23 | |
M 9/23 | Sec. 2.5 | 2.4.6, 2.4.8 (c,d), 2.4.10(c,d) 2.4.17 | 9/25 | |
W 9/25 | Sec. 3.1 | 2.5.2, 2.5.4, 2.5.10, 2.5.11 | 9/27 | |
F 9/27 | Sec. 2.6 | 2.5.6, 2.5.12, 2.5.15, 2.5.16 | 9/30 | |
M 9/30 | Sec. 3.1 (again) | 2.6.2, 2.6.4, 2.6.7, 2.6.8 | 10/2 | |
W 10/2 | Sec. 3.2 | 3.1.2(a,b), 3.1.8, 3.1.9, 3.1.14 | 10/4 | |
F 10/4 | Sec. 3.3 | 3.2.2 (a,b,c), 3.2.6 (a,b,c) 3.2.13, 3.2.14 | 10/7 | |
M 10/7 | none | 3.2.4 (a,b,d), 3.2.11, 3.2.16, 3.2.18, 3.2.20 | 10/11 | |
W 10/9 | none | Sec. 3.3 (again) | 3.2.4 (a,b,d), 3.2.11, 3.2.16, 3.2.18, 3.2.20 | 10/11 |
F 10/11 | Sec. 3.4 | 3.3.2(b,e); 3.3.8, 3.3.9, 3.3.12 | 10/14 | |
M 10/14 | Sec. 3.5 | 3.4.2 (a,b,c), 3.4.3, 3.4.4, 3.4.8 | 10/16 | |
W 10/16 | Sec. 3.6 | 3.5.6 (a,b,c), 3.5.10, 3.5.12 | 10/18 | |
F 10/18 | Sec. 3.6 (again) | 3.4.16, 3.5.14, 3.5.16 | 10/23 | |
W 10/23 | Sec. 3.7 | 3.6.10, 3.6.12, 3.6.18, 3.6.23 | 10/25 | |
F 10/25 | Sec. 4.1 | 3.7.4 (a,b,c), 3.7.7,
3.7.10, 3.7.14 (in 3.7.14, it should have said that the polynomial has to be nonzero!) | 10/28 | |
M 10/28 | Sec. 4.1 (again) | 4.1.2, 4.1.9, 4.1.10, 4.1.11 | 10/30 | |
W 10/30 | Sec. 4.2 | 4.1.4, 4.1.7, 4.14, 4.1.18 | 11/1 | |
F 11/1 | Sec. 4.2 (again) | 4.2.4, 4.2.6, 4.2.10 | 11/4 | |
M 11/4 | Sec. 4.3 | 4.2.9, 4.2.16, 4.2.18, 4.2.20 | 11/6 | |
W 11/6 | Sec. 4.3 (for 11/11) | 4.3.14, 4.3.16, 4.3.21, 4.3.22 | 11/11 | |
M 11/11 | Sec. 4.4 | 4.3.6(a,b,c), 4.3.8, 4.3.18, 4.3.20 | 11/13 | |
W 11/13 | Sec. 4.5 | 4.4.1, 4.4.16, 4.4.18, 4.4.19 | 11/15 | |
F 11/15 | Sec. 5.1 | 4.5.6, 4.5.12, 4.5.14, 4.5.16 | 11/18 | |
M 11/18 | Sec. 5.2 | 5.1.4, 5.1.6, 5.1.10, 5.1.14 | 11/20 | |
W 11/20 | Sec. 5.3 | 5.2.2, 5.2.8, 5.2.15, 5.2.21 | 11/22 | |
F 11/22 | Sec. 5.4 | 5.3.6, 5.3.8, 5.3.12, 5.3.18 | 11/25 | |
M 11/25 | Sec. 5.4(again) | 5.4.2 (b,c), 5.4.5, 5.4.9, 5.4.10 | 11/27 | |
W 11/27 | Sec. 6.1 | 5.4.6, 5.4.7, 5.4.12, 5.4.18 | 12/2 | |
M 12/2 | none | 6.1.8, 6.1.10, 6.2.3, 6.3.1(a,b), 6.3.17 | 12/6 |