Math 307 Homework October 16, 2015

1. (a) Prove that if V is a real inner product space, then

$$\langle v, w \rangle = \frac{1}{4} (\|v + w\|^2 - \|v - w\|^2)$$

for each $v, w \in V$.

(b) Prove that if V is a complex inner product space, then

$$\langle v, w \rangle = \frac{1}{4} (\|v + w\|^2 - \|v - w\|^2 + i \|v + iw\|^2 - i \|v - iw\|^2)$$

for each $v, w \in V$.

2. Equip $C([0, 2\pi])$ with the inner product

$$\langle f, g \rangle = \int_0^{2\pi} f(x)g(x) \ dx.$$

Let $f(x) = \sin x$ and $g(x) = \cos x$. Compute each of the following:

- (a) ||f||
- (b) ||g||
- (c) $\langle f, g \rangle$
- (d) ||af + bg||, where $a, b \in \mathbb{R}$ are constants.

Hint: After doing the first three parts, you shouldn't need to do any integrals in the last part.

3. Prove that

$$(a_1b_1 + a_2b_2 + \dots + a_nb_n)^2 \le \left(a_1^2 + 2a_2^2 + \dots + na_n^2\right) \left(b_1^2 + \frac{b_2^2}{2} + \dots + \frac{b_n^2}{n}\right)$$

for all $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}$.

4. Suppose that V is a vector space, W is an inner product space, and $T: V \to W$ is an isomorphism. For $v_1, v_2 \in V$, define

$$\langle v_1, v_2 \rangle := \langle \mathbf{T} v_1, \mathbf{T} v_2 \rangle,$$

where the right hand side involves the given inner product on W. Prove that this defines an inner product on V.