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Volume Computing Algorithms

I A convex body in Rn is usually given by a certain oracle. An
oracle is a ”black box” which provides us information about
the body. Several examples of such oracles:

I The membership oracle, which, for a point x ∈ Rn, answers
either x ∈ K or x /∈ K .

I The separation oracle (which answers x /∈ K and provides a
separating hyperplane).

I The random point oracle which just provides random points
uniformly distributed in K .

I The complexity or running time of the algorithm is defined
as the number of questions posed to the oracle.

I We are looking for polynomial time algorithms which
approximate the volume up to a (multiplicative) constant C
with probability ≈ 1.
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Some History

I The first results in the subject appeared in the mid 80’s.

I G. Elekes realized that it is impossible to find a fast,
deterministic algorithm which approximates the volume, in
polynomial time. This follows from the fact that the convex
hull of polynomially many points in the euclidean ball has a
very small volume.

I Bárány and Z. Füredi later found to the best possible bound,
which is: the volume is computable up to ( cn

log n )n.
I M. E. Dyer, A. M. Frieze, and R. Kannan were the first to find

a polynomial time (non-deterministic) algorithm which
approximates the volume up to some constant, using the
membership oracle.

I Since the early 90’s many improvements were found, and the
running time was improved from O(n24) to O(n4), given by L.
Lovász, S. Vempala in 2004. Additional works by B.Bollobás,
N. Goyal, A.Kalai, L.Rademacher, M.Simonovits and other
people whose names are also very hard to pronounce.
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The Random Point Oracle

Theorem (E., 2009): There does not exist constants C , p, κ > 0
such that for every dimension n there exists an O(nκ) algorithm
which estimates the volume of convex bodies up to C with
probability at least p.

I The result does not involve any complexity arguments, it is of
information-theoretical nature: The random points just do not
contain enough information for the volume to be
approximated.

I The volume cannot be approximated even if every point is
given in an infinitely good accuracy.

I A related result of N.Goyal and L.Rademacher shows that in
order to learn a convex body one needs 2Ω(

√
n) random points.
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A very simple toy model

I Let us consider the n-dimensional unit-volume cube, and its
obvious partition into 2n cells.

I We do the following random construction. Pick 0 < C < 1.
Create a subset of the cube by, for each one of the cells,
removing it with probability 1− C .

I Generate n100 random points according the the uniform
measure on the remaining body.

I Claim: As long as C is not too close to 0, one cannot be
guess this constant according to these n100 points.

I The reason: Consider the event that two points are picked
from the same cell. If we condition on this event, C does not
change anything.

I But since the number of cells is exponential, this event is
negligible.
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A very simple toy model - continued

I A constant C induces a probability measure on the set of
sequences of points, Ω. The total variation distance between
two such measures is small.

dTV (X1,X2) = sup
A⊂Ω
|Prob(X1 ∈ A)− Prob(X2 ∈ A)|

I Of course, the geometry in this model was meaningless. If we
took the convex hull after this construction, the same
argument could doubtfully work (since some of points would
be generated from ”partial” cells, and we could learn their
geometry).

I Maybe we can try some other random deletion process?
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Outline of proof

I Since the algorithm does not make any decisions in the input
phase, we may assume that it is deterministic.

I Define N = nκ to be the number of random points and
Ω = (Rn)N . A deterministic algorithm is a function
F : Ω→ R which takes a sequence of points and returns the
estimated volume of the body.

I Suppose K1 and K2 convex-body-valued random variables
with the following properties:

I With high probability, Vol(K1) ≈ C1 and Vol(K2) ≈ C2, and
C1

C2
is very large.

I The random convex body Ki induces a probability measure on
Ω in the following simple way: first generate a body K and
then generate a sequence of uniformly distributed random
points from K .

I These corresponding measures have a small total variation
distance.
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I A small total variation distance between the random variables
X1,X2 representing sequences of random points implies that
for every algorithm F : Ω→ R, we would have a small total
variation distance between F (X1) and F (X2).

I To summarize: we are looking for two different random
constructions of convex bodies whose volumes are very
different, yet whose output of random points is very similar,
so that no algorithm can distiguish between them.
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The random construction

Denote
T0(θ) = Dn ∩ {x ; 〈x , θ〉 ≤ n−

1
3 }.

Note that it contains essentially all of the mass of the euclidean
ball. Next, Suppose that for every θ ∈ Sn−1, T (θ) is a convex
body satisfying

T0(θ) ⊆ T (θ) ⊆ Dn

At this point, let us imagine that T (θ) = T0(θ).
Let ζ = (θ1, ..., θm′) be a rotation invariant Poisson process on
Sn−1 with intensity m. Define

K = KT ,m =
⋂

1≤i≤m′

T (θi )
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Weak correlation between generated points

Let x1, x2 ∈ Dn. Let us try to compare P(x1 ∈ K&x2 ∈ K ) with
P(x1 ∈ K )P(x2 ∈ K ).

We consider our deletion process as a
superposition of deletion processes (divided into disjoint portions of
Sn−1):

I A first process, S1, which deletes x1 and leaves x2 intact.

I A process S2 which does the vise versa.

I A process Sb which removed both together (in the same
”cut”).

P(x1 ∈ K&x2 ∈ K )

P(x1 ∈ K )P(x2 ∈ K )
=

e−(m(S1)+m(S2)+m(Sb))

e−(m(S1)+m(Sb)+m(S2)+m(Sb))
= em(Sb)
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Sn−1):
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Weak correlation between generated points - continued

I It follows from concentration properties of the euclidean ball
that typical points x1, x2 are almost orthogonal.

I For such points, one has,

m(Sb)� m(S1)

I Therefore, even if the chances of a single point to be removed
are rather high, the chances for both to be removed in the
same deletion are very small.

I This means that we can cut a large portion of mass, still
having

P(x1 ∈ K&x2 ∈ K )(1 + O(e−n
ε
)) = P(x1 ∈ K )P(x2 ∈ K )

for some ε > 0.
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Concentration of the volume

I By Fubini,

E(Vol(K )) =

∫
Dn

P(x ∈ K )dx

I The above ”almost independence” implies,

(EVol(K ))2 =

∫
Dn×Dn

P(x1 ∈ K )P(x2 ∈ K )dx1dx2 ≈

∫
Dn×Dn

P(x1, x2 ∈ K )dx1dx2 = E(Vol(K )2)

I Hence, the volumes are very concentrated around their
expectation.
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How does the weak correlation help us?

I For A ⊂ Ω,

P(A) = E
Vol(A ∩ KN)

Vol(KN)

I Since the volume is concentrated, and since

EVol(KN ∩ A) =

∫
A
P(∀i , xi ∈ K ),

we get

P(A) ≈ 1

E(Vol(KN))

∫
A

∏
i

P(∀i , xi ∈ K )
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So...?

I The above means that the following processes are almost
equivalent:

I Generate the body K and then generate N random points,
uniformly in K .

I Generate the body K and generate one random point. Repeat
N times.

I Since the construction was centrally symmetric, all we have to
do in order for the total variation distance between two
induced measures to be small is to make sure that the
distribution of |x1| is approximately the same in the two
families.

I To do this, we use the liberty of choosing the shape of the
cut, and the intensity of the poisson processes.
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Possible further research

In fact, our proof gives a slightly stronger result:

Theorem
There exists ε > 0 and a number n0 ∈ N such that for all n > n0,
there does not exist an algorithm which takes en

ε
points generated

randomly according to the uniform measure in a convex body
K ⊂ Rn, which determines Vol(K ) up to en

ε
with probability more

than e−n
ε
to be correct.

I The volume radius of a convex body K ⊂ Rn is defined as

Volrad(K ) = Vol(K )
1
n . Clearly, it is much easier to estimate

the volume radius, but is it possible (say, up to 1.001)?

I The above question is equivalent to the question whether or
not the isotropic constant of a body can be estimated using a
polynomial number of points.
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What about a general convex body?

I This result gives us two families of convex bodies that cannot
be distinguished if we only have a polynomial number of
random points. What can be said about the distribution of
n100 random points in a general convex body?

I If we first apply a random rotation to the body, then the
marginal distribution of a single point is spherically symmetric
and therefore all of the information is contained in the Gramm
matrix.

I The recent thin shell results imply that the main diagonal
entries are all concentrated around n.

I What about the off diagonal entries?
I Is their distribution gaussian?
I For a small enough number of points, the off diagonal entries

may be distributed in the same way for all convex bodies.
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Thank you!


