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RIP matrices

Definition

An N × n matrix (with n < N) Φ has the Restricted Isometry
Property (RIP) of order k with constant δ if, for all k-sparse
vectors x, we have

(1− δ)‖x‖22 6 ‖Φx‖22 6 (1 + δ)‖x‖22.

Application: sparse signal recovery

x ∈ CN is a signal with at most k nonzero components

Φx ∈ Cn is a lower dimensional linear measurement

Candès, Romberg and Tao (2006) showed that given Φx, one
can effectively recover x;

It suffices, for sparse signal recovery, that Φ satisfies RIP with
fixed constant δ <

√
2− 1 (Candès, 2008).
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Fundamental Problem

Given N, n (fix δ = 1
3 , say), find a RIP matrix Φ with maximal k

(Alternatively, minimize n given N, k).

Theorem (Kashin (1977); Candès, Romberg, Tao (2006))

Suppose n 6 N/2. Choose entries of Φ as independent ±n−1/2

Bernouilli random variables. With positive probability, Φ will

satisfy RIP of order k, for all k 6
cn

log(N/n)
.

Remarks: Baraniuk, Davenport, DeVore and Wakin (2008) gave a
proof using the Johnson-Lindenstrauss lemma.
Other random constructions given by Rudelson/Vershinin (2008),
Mendelson, Pajor and Tomczak-Jaegermann (2007).

Theorem (Nelson and Temlyakov, 2010)

For all RIP matrices Φ, k = O

(
n

log(N/n)

)
.
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Coherence

Definition

The coherence µ of unit vectors u1, . . . ,uN ∈ Cn is

µ := max
r 6=s
|〈ur ,us〉|.

Sets of vectors with small coherence are spherical codes

Proposition

Suppose that u1, . . . ,uN are the columns of Φ with coherence µ.
For all k, Φ satisfies RIP of order k with constant δ = kµ.
Cor: Φ satisfies RIP of order k = b1/(3µ)c and δ = 1

3 .

Proof: For a k-sparse vector x,

|‖Φx‖22 − ‖x‖22| =
∑
r ,s

|xr xs〈ur ,us〉| 6 µ
(∑

|xr |
)2

6 kµ‖x‖22.
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Explicit constructions of RIP matrices

Many explicit contructions of vectors u1, . . . ,uN satisfying

µ = O

(
log N√
n log n

)
,

e.g. Kashin (1977), Alon-Goldreich-Håstad-Peralta (1992), DeVore
(2007), Andersson (2008), and Nelson-Temlyakov (2010).

Corollary: Φ with columns uj satisfies RIP with δ = 1
3 and all

k 6
c
√

n log n

log N
.

Limitation: (Levenshtein, 1983) For all u1, . . . ,uN ,

µ > c
( log N

n log(n/ log N)

)1/2
>

c√
n
,

With coherence, we cannot deduce RIP of order larger than
√

n.
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Breaking the
√

n barrier with explicit constructions

Theorem (BDFKK, 2010)

For an effective constant α > 0, large n and N1−α 6 n 6 N, we

give an explicit n × N RIP matrix of order k = bn
1
2
+αc and

constant δ = 1
3 .

The construction: Take s a large integer, p a large prime,
A =

{
1, 2, . . . , bp1/sc

}
,

M = 22s−1, r =
⌊

log p
2s log 2

⌋
, B =

{r−1∑
j=0

xj(2M)j : 0 6 xj 6 M − 1
}

.

matrix columns ua,b = p−1/2
(

e2πi(ax2+bx)/p
)

16x6p
; a ∈ A, b ∈ B.

N = |A| · |B|, n = p.
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Some ideas of the proof

Take s a large integer, p a large prime,
A =

{
1, 2, . . . , bp1/sc

}
,

M = 22s−1, r =
⌊

log p
2s log 2

⌋
, B =

{r−1∑
j=0

xj(2M)j : 0 6 xj 6 M − 1
}

.

matrix columns ua,b = p−1/2
(

e2πi(ax2+bx)/p
)

16x6p
; a ∈ A, b ∈ B.

N = |A| · |B|, n = p.

(1) No “carries” when adding elements of B, thought of as
base-2M numbers.

(2) use Gauss sum formula to compute exactly 〈ua,b,ua′,b′〉.

(3) results from additive combinatorics for subsets of B.
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Turán’s power sums

For unit complex numbers z1, . . . , zn, let

MN(z) = max
m=1,2,...,N

∣∣∣∣∣
n∑

j=1

zm
j

∣∣∣∣∣.
General problem: find z to minimize MN(z).

Proposition

For unit complex numbers z1, . . . , zn, the vectors
um = n−1/2(zm−1

1 , . . . , zm−1
n )T , 1 6 m 6 N, have coherence

µ =
MN−1(z)

n
.
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Explicit constructions for Turán’s power sums

Andersson (2008). Explicit z with MN(z) = O
(

n1/2 log N
log n

)
.

Theorem (BDFKK, 2010)

We give explicit constructions of z such that

MN(z) = O
(

(log N log log N)1/3n2/3
)
.

Remark. Our constructions are better than Andersson’s
constructions for n . (log N)4.

Corollary. Explicit constructions of vectors u1, . . . ,uN with

µ = O

((
log N log log N

n

)1/3
)
.

This matches, up to a power of log log N, the best known explicit
constructions for codes when n . (log N)4.
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Some ideas of the proof

Based on ideas in a paper of Ajtai, Iwaniec, Komlós, Pintz and
Szemeredi (1990).
They were interested in constructing sets T ⊆ {1, . . . ,N} such
that all the Fourier coefficients∑

t∈T

e2πimt/N , 1 6 m 6 N − 1,

are uniformly small, with |T | taken a small as possible.

The analysis uses only very basic (undergraduate-level) number
theory.
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