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T'VE INVENTED A QUANTUM
COMPUTER, CAPABLE OF
INTERACTING WITH MATTER
FROM OTHER UNIVERSES
TO SOLVE COMPLEX

EQUATIONS.

ACCORDING TO CHAOS
THEORY, YOOR TINY
CHANGE TO ANOTHER
UNIVERSE WILL SHIFT
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Outline

* The one-time pad: classical and quantum
— Argument from measure concentration

e Superdense coding: from bits to qubits

— Reduction to Dvoretzky
(Almost Euclidean subspaces of Schatten ¢

* More one-time pad:

— Exponential (and more) reduction in key size

— Decomposing ¢,(¢,) into a direct sum of almost
Euclidean subspaces



One-time pad

Message
D 10110101 10110101 @&
@01101001 -~~~ Shared key @ 01101001 i
11011100 11011100

1 bit of key per bit of message necessary and sufficient [Shannon49]



LigHt pulse

Set BLion as...

Superposition:

State 0 States 0 and 1

11)10)

(Unit) Vectors are to
guantum information.



Distinguishability

<q0 ‘1/} >‘ measures the extent to which

(p> and ‘1/)> are distinguishable.



Physical operations...

Are unitary:
They preserve inner products



Physical operations...
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Are unitary:
They preserve inner products




One-time pad

Message
D 10110101 10110101 @&
@01101001 -~~~ Shared key @ 01101001 i
11011100 11011100

1 bit of key per bit of message necessary and sufficient [Shannon49]




Quantum one-time pad

V|$) € (C*)®"

Message
@ ) UrUj|) = |6) o
PR () L— Sharedkey je{0,1}* %
Us| o) Us| o)

Minimal key length: k = 2n




Approximate quantum one-time pad

e Can achieve using n+log(1/€?) bits of key
— Reduction of factor 2 over exact security
e Proof:
— Select {U} i.i.d. according to Haar measure on U(2")
— Use net on set of {X}

[H-Leung-Shor-Winter 03]



APPROXIMATE ENCRYPTION:
MORE LATER...



Measuring entanglement

Entanglement: nonlocal content of a quantum state (normalized vector)

If € C* ® C’, nonlocal content is orbit of z under U(C%) x U(CP).

r— (VoW

Expand z =Y, Z?Zl z;j e; ® f; using orthonormal bases.

If X = (z;;), then X — VXW?" so orbits are labeled by singular values of X.

Schatten norms: if X has singular values s = (s;), then || X]||, := ||s||,-
1 1
azr 2 1
| | | | | | | |
Maximally 1 X ||2p for p > 1 Product
entangled vector

vector



Dvoretzky’s theorem a la Milman

e 1
Maximally 1 X ||2p for p > 1 Product
Entangled '

For p approaching 1, subspace S is all but constant number of qubits.

[Hayden-Leung-Winter 06, Aubrun-Szarek-Werner 10]



Superdense coding

| D)

) )0) + 1)
)= 1o} + o)
[©5) = (o3 ® DI®) |o,) = [1)]0) —[0)]1
) )0) — 1)

Bob receives one of four orthogonal (distinguishable!) states depending on Alice’s action

1 ebit + 1 qubit = 2 cbits

[Bennett-Wiesner 92]



Superdense coding of
arbitrary quantum states

Suppose that Alice can send Bob an arbitrary 2 qubit state by
sharing an ebit and physically transmitting 1 qubit.

1 qubit + 1 ebit > 2 qubits

2 qubits + 2 ebits > 4 qubits

Substitute: (1 qubit + 1 ebit) + 2 ebits > 4 qubits
1 qubit + 3 ebits > 4 qubits

Repeat: 1 qubit + (2%-1) ebits > 2% qubits




Superdense coding of
maximally entangled states

Identity:
(V@ W)|®o) = (VW' & I)|D0)

Alice can send Bob any maximally entangled pair of qubits
by sharing an ebit and physically transmitting a qubit.




Superdense coding of
maximally entangled states

Identity:
(V@ W)|®o) = (VW' & I)|D0)

wbits

2 log(a) qubits

Alice can send Bob and maximally entangled pair of qubits
by sharing an ebit and physically transmitted a qubit.




Superdense coding of
arbitrary guantum states

Dvoretzky: S C C* ® C° consisting only
of almost maximally entangled states.
c? Let V : C™ — § isometry.
There exists unitary U, such that V|¢) = (Uy ® I)|®).
Uy

log(a)+const qubits

V* —>

[
@ :

T > 2 log(a)-const qubits
i Vi) = (Us ® DIo)

Asymptotically, Alice can send Bob an arbitrary 2 qubit state by
sharing an ebit and physically transmitting 1 qubit.

1 qubit + 1 ebit > 2 qubits




Approximate quantum one-time pad
from superdense coding

Dvoretzky: S C C* ® C° consisting only

@ of almost maximally entangled states.
Let V : C™ — § isometry.

S
There exists unitary U, such that V|¢) = (Uy ® I)|®).
AN U,
N\ log(a)+const qubits
.
________ Time-reverse! |_ _____

A N
G ] Vv —>| a) ;

T > 2 log(a)-const qubits

Viy) = Uy ® I)|Po)

Asymptotically, Alice and send Bob an arbitrary 2 qubit state by
sharing an ebit and physically transmitting 1 qubit.




Approximate quantum one-time pad

from superdense coding

Dvoretzky: S C C* ® C° consisting only

Klag) 2cCft), 115 of almost maximally entangled states.
c? Let V : C™ — § isometry.

There exists unitary U, such that V|¢) = (Uy ® I)|®).

" log(a)+const qubits /_

Uy

log(a) ebits

_:_;_U_ Jar Time-reverse! | _
J= _/
— V
2 log(a)-const qubits

Asymptotically, Alice and send Bob an arbitrary 2 qubit state by

sharing an ebit and physically transmitting 1 qubit.

{U;} forms a perfect quantum one-time pad:
Total key required is 2 x ( log(a) + const ).




Encrypting classical bits
In guantum states

o Secret ke S
JE{(),l}ko======y====0je{o,1}’C i
AN . U;|2)[0)

Strongest security: for any pair of messages x, and x,, Eve cannot
distinguish the encrypted x, from the encrypted x,. (TV < 6)

Less strong security: Assume x uniformly distributed. Eve uses
Bayes’ rule to calculate p(x| measurement outcome).
TV from uniform £ 6 for all measurements and outcomes.



Encrypting classical bits
In guantum states

o Secret ke )
J'E{O,l}ko======y====0je{o,1}’C i
A U;|2)[0)

Less strong security: Assume x uniformly distributed. Eve uses

Bayes’ rule to calculate p(x| measurement outcome).
TV from uniform < 6 for all measurements and outcomes.

Colossal key reduction: Can take k = O(log 1/6). [HLSWO3],
Proof: Choose {Uj} i.i.d. using Haar measure, no ancilla. [Dupuis-H-Leung10],
Adversarial argument for all measurements complicated. [Fawzi-H-Sen10]




Quantum encryption of cbits:
Connection to 4(4)

Imagine U : A® B — C ® D is unitary such that each V, : A — C' ® D given
by Vi|o) = Uld)|k) and |¢) € A satisfy

Viel#)ly 2 = (1 = e)vdim C|[Vi|o) |, -

Each V, gives a low-distortion embedding of ¢, into ¢,(¢,).

A

S ) =

S [
uniformi B
A . v,
Secret key j ========:

Proof that this works is an easy calculation. (Really!)

[Fawzi-
Leads to key size O(log 1/¢) with ancilla of size O(log n + log 1/¢) H-Sen 10]




Explicit constructions!

Adapt [Indyk07] construction of 4 into 4(4) to produce a
quantum algorithm for the encoding and decoding.

Recursively applies mutually unbiased bases and extractors.

Build Indyk embedding from an explicit sequence of 2-qubit
unitaries.

Procedure uses number of gates polynomial in number of
bits n. (Indyk algorithm runs in time exp(O(n)).)

Get key size O(log?(n)+log(n)log(1/<)).
Also gives efficient constructions of:
— Bases violating strong entropic uncertainty relations
— Efficient protocols for string commitment
— Efficient encoding for quantum identification over cbit channels



Summary

* Basic problems in quantum information theory
can be interpreted as norm embedding problems:
— Approximate quantum one-time pad
— Existence of highly entangled subspaces
— Quantum encryption of classical data
— Additivity conjecture! (Not even mentioned)

* Formulating problems this way simplifies proofs
and allows application of known explicit
constructions



Open problems

* Explicit constructions for embedding ¢, into
Schatten ¢?

* Why do all these results boil down to
variations on Dvoretzky?

— What other great theorems should quantum
information theorists know?



