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From Google:

About 9,660 for “Dvoretzky’s Theorem”.

About 16,500 results for “Bishop-Phelps The-
orem”.

About 27,900 results for “Radon-Nikodym The-
orem”.

About 58,200 results for “Riesz Representa-
tion Theorem”.

About 45,300 results for “Fatou’s Lemma”.

About 75,100 results for “Johnson-Lindenstrauss
Lemma”.

About 194,000 results for “Schauder Fixed Point
Theorem”.

About 342,000 results for “Hahn-Banach The-
orem”.



[J-L, ’84] “Given n points in Euclidean space (which

we might as well take to be `n2), what is the smallest
k = k(n) so that these points can be moved
into k-dimensional Euclidean space via a trans-
formation which expands or contracts all pair-
wise distances by a factor of at most 1 + ε?”

Answer: k(n) ≤ C log(n+1)
ε2

.

Nowadays this is called the J-L Lemma.

In fact, [J-L, ’84] proved that there is a linear
mapping T from `n2 into `

k(n)
2 so that for all

pairs x, y from among the n points,

‖x− y‖ ≤ ‖Tx− Ty‖ ≤ (1 + ε)‖x− y‖.

This is called the linear J-L Lemma.



There is a linear mapping T from `n2 into `k2,
k = k(n) ≤ C ε−2 log(n + 1), so that for all
pairs x, y from among the n points,

‖x− y‖ ≤ ‖Tx− Ty‖ ≤ (1 + ε)‖x− y‖.
The idea, coming from proofs of Dvoretzky’s
Theorem, is to use a random isometric em-
bedding T from `n2 into `k2. In the background
is some probability space (Ω,P), and for each
ω ∈ Ω, Tω is a linear mapping from `n2 into
`k2 so that for each x ∈ `n2, E‖Tx‖ = ‖x‖.
To almost preserve the norm of a set S of
unit norm vectors in `n2, one needs to estimate
P[|‖Tx‖−E‖Tx‖| > ε] (which typically does not
depend on the particular norm one vector x).
If this probability is sufficiently small, a union
bound argument yields that there is ω ∈ Ω so
that for all x ∈ S, |‖Tωx‖−E‖Tx‖| ≤ ε. For J-L,
if E is a set of n points in `n2, let S be the set of
normalized differences of points in E. The ran-
dom linear operator T is just a constant times
a random rank k orthogonal projection on `n2.
Conjugate any rank k orthogonal projection against the orthogonal

group to get a random rank k orthogonal projection.



How did Joram and I stumble across the J-L

Lemma? It was used to solve a problem from

[Marcus-Pisier, ’84].

Given a Banach space X, let L(X,n) be the

smallest constant C such that for every map-

ping f from an n-point subset of X into `2,

there is an extension g : X → `2 so that

Lip (g) ≤ C Lip (f), where

Lip (f) = sup
‖f(x)− f(y)‖

d(x, y)
.

Kirszbraun’s theorem says that L(`2, n) = 1.

Marcus and Pisier proved for 1 < p < 2 that

L(Lp, n) ≤ C(p)(logn)1/p−1/2. They asked whether

always L(X,n) ≤ C (logn)1/2, and we showed

that the J-L Lemma gives a yes answer.



The way J-L is used in compressed sensing

shows that the Feichtinger conjecture is true

“generically”. A tight frame can be regarded

as the image of an orthonormal basis under an

orthogonal projection. If P is a random rank

k orthogonal projection on `n2, the expected

norm of Px is about C :=
√
k
n for any unit

vector x. The concentration around the ex-

pected norm guarantees that with big proba-

bility, 1
2C ≤ ‖Px‖ ≤ 2C for every δ(C)k-sparse

unit vector that is, for any unit vector which has at most

δ(C)k non zero coordinates. This shows that (Pei)
n
i=1

satisfies the Feichtinger conjecture in a strong

way: ANY subset of (C−1Pei)
n
i=1 of size at

most δ(C)k is 4-equivalent to an orthonormal

sequence.



Say that a Banach space X satisfies the linear

J-L Lemma provided there is a constant C so

that for all n and all subsets E of X which

contain n points there is a linear mapping T

on X of rank k ≤ C log(n + 1) so that for all

x and y in E,

‖x− y‖ ≤ ‖Tx− Ty‖ ≤ C‖x− y‖.

The linear J-L Lemma is false in any L1 space

[Charikar-Sahai, ’02], and in fact it is false in any Lp

space, 1 ≤ p 6= 2 ≤ ∞ [Lee-Mendel-Naor, ’05].

[J-Naor, 2010]:

What can you say about a Banach space which

satisfies the linear J-L Lemma?

Is there a Banach space which satisfies the

linear J-L Lemma but is not isomorphic to a

Hilbert space?



Is there a Banach space which satisfies the
linear J-L Lemma but is not isomorphic to a
Hilbert space?

Yes. The space T (2), which is the 2 convex-
ification of Tsirelson’s space [Tsirelson, ’74], con-
structed in [Figiel-J, ’74], satisfies the linear J-L
Lemma.

What is easy is that a certain subspace of the 2
convexification of modified Tsirelson’s space,
constructed in [J, ’80], satisfies the linear J-L
Lemma. By later work of [Casazza-J-Tzafriri, ’84]

and, especially, [Casazza-Odell, ’83], this space is
actually equal to T (2).

T (2), like all Tsirelson-type spaces, is a Banach
space of sequences whose norm is defined im-
plicitly rather than explicitly.

Tsirelson-type spaces have played a fundamen-
tal role in constructing counterexamples in Ba-
nach space theory Gowers-Maurey; Argyros-Haydon and
even for proving theorems about classical spaces,
such as the existence of a distorted norm on
Hilbert space [Odell-Schlumprecht, ’94].



T (2) (defined in [Figiel-j, ’74]) is the completion of the

space c00 of sequences of scalars which have

only finitely many non zero terms under the

unique norm that satisfies the equation

‖x‖2 = ‖x‖2∞ ∨ sup
[n;n<A1<A2<···<An]

1

2

n∑
j=1

‖Ajx‖2.

A < B means maxA < minB and Ax = 1Ax.

It is remarkable that this norm is equivalent to

the 2-convexified modified Tsirelson norm de-

fined in [J, ’80], which is defined by a similar equa-

tion, but the supremum is over finite disjoint

sets n < Aj, 1 ≤ j ≤ n [Casazza-Odell, ’83]. Since we

do not need this result, we write down the for-

mula that defines the 2-convexified modified

Tsirelson norm:

‖x‖2 = ‖x‖2∞ ∨ sup
[n<∪nj=1Aj, Aj∩Ai=∅]

1

2

n∑
j=1

‖Ajx‖2.



‖x‖2 = ‖x‖2∞ ∨ sup
[n<∪nj=1Aj, Aj∩Ai=∅]

1

2

n∑
j=1

‖Ajx‖2.

It is more or less obvious that if you take n

disjointly supported unit vectors with supports

past n, in this norm the vectors are equivalent

with constant at most
√

2 to an orthonormal

basis for `n2. From this you get that for any

n there is r(n) so that any n dimensional sub-

space supported past r(n) is 2-isomorphic to

`n2. In fact, if you change “2-isomorphic” to

“K(s)-isomorphic”, then for any iterate log[s] n

of logn, you can get K(s) to make the state-

ment true for r(n) = 1∨ log[s] n. In some stong

sense, this norm is “asymptotically Hilbertian”

even though the completion of c00 under this

norm has no subspace isomorphic to `2.



‖x‖2 = ‖x‖2∞ ∨ sup
[n<∪nj=1Aj, Aj∩Ai=∅]

1

2

n∑
j=1

‖Ajx‖2.

Any 4n-dimensional subspace supported past

logn is 4-isomorphic to `n2.

In any Banach space X, the projection con-

stant in X of any n dimensional subspace Y is

less than two times the projection constant of

Y in Z for some Y ⊂ Z ⊂ X with dimZ < 4n.

Therefore, in (c00, ‖·‖), any n-dimensional sub-

space supported past logn is 4-isomorphic to

`n2 and is the range of a projection whose norm

is at most eight.



‖x‖2 = ‖x‖2∞ ∨ sup
[n<∪nj=1Aj, Aj∩Ai=∅]

1

2

n∑
j=1

‖Ajx‖2.

Now take any n-dimensional subspace W of

c00 and let Y be the subspace of those x ∈ W
which are zero in the first logn coordinates.

Then Y is 4-isomorphic to the Euclidean space

of its dimension and is the range of a projection

P of norm at most 8. I − P maps W into a

subspace of dimension at most logn and P

maps into the 4-Euclidean space Y .

Now let E be any n-point subset of c00 and let

W be its linear span. Apply linear J-L to get a

linear operator S : Y → Y of rank at most logn

s.t. for x, y in PE, ‖x− y‖ ≤ ‖Sx−Sy‖ ≤ 5‖x−
y‖. Then the linear mapping T := (I−P )+SP

has rank at most 2 logn and distorts distances

between points in E by a factor of at most 41

(well, to be safe, let’s say 100 or 200).



[J-Naor, 2010]:

What can you say about a Banach space which

satisfies the linear J-L Lemma?

Given a Banach space X, let Dn(X) be the

supremum over all n dimensional subspaces Y

of X of the Banach-Mazur distances d(Y, `n2).

d(E,F ) = inf ‖T‖ · ‖T−1‖.

where the infimum is over all isomorphisms

from E onto F .

A Banach space X is K-isomorphic to a Hilbert

space iff Dn(X) ≤ K for all n.

For any X, Dn(X) ≤
√
n.

Dn(Lp) = n|1/p−1/2| [Lewis, ’76].

Dn(T (2)) goes to infinity slowly; slower than

any iterate of logn (even slower).



Dn(X) = sup{d(E, `n2) : dimE = n; E ⊂ X}.

d(Y, Z) = inf ‖T‖ · ‖T−1‖.

[J-Naor, ’10] If X satisfies linear J-L, then

Dn(X) ≤ 22c log∗ n
,

where log∗ x is the unique integer k such that
if we define a1 = 1 and ai+1 = eai (i.e. ai is an
exponential tower of height i), then ak < x ≤
ak+1.

More formally:

Theorem. For every D,K > 0 there exists a
constant c = c(K,D) > 0 with the following
property. Let X be a Banach space such that
for every n ∈ N and every x1, . . . , xn ∈ X there
exists a linear subspace F ⊆ X, of dimension at
most K logn, and a linear mapping S : X → F

such that ‖xi − xj‖ ≤ ‖Sxi − Sxj‖ ≤ D‖xi − xj‖
for all i, j ∈ {1, . . . , n}. Then for every n ∈ N
and every n-dimensional subspace E ⊆ X, we
have

d(E, `n2) ≤ 22c log∗(n)
. (1)



Dn(X) = sup{d(E, `n2) : dimE = n; E ⊂ X}.

d(Y, Z) = inf ‖T‖ · ‖T−1‖.

[J-Naor, ’10] If X satisfies linear J-L, then

Dn(X) ≤ 22c log∗ n
,

where log∗ x is the unique integer k such that

if we define a1 = 1 and ai+1 = eai (i.e. ai is an

exponential tower of height i), then ak < x ≤
ak+1.

The somewhat technical proof uses harmonic analy-

sis on {−1,1}n and standard results from the

local theory of Banach spaces. Part of it is

based on the ideas in [Charikar-Sahai, ’02], [Lee-Mendel-

Naor, ’05]. Whether it is the “right” result is

open. For T (2) it follows easily from [Bellenot,

’84] that

Dn(T (2)) ≥ 2cα(n),

where α(n) → ∞ is the inverse Ackermann

function (which is much smaller than 22c log∗(n)
).



Positive results on dimension reduction for spaces

other than Hilbert spaces are few. [Matousek, ’96]

proved that if 1 > a > 0 and E is any n-point

metric space, then E embeds into `k∞ with dis-

tortion at most C/a for some k ≤ C na, and up

to the constant C this is best possible.

Arguably the most important space other than

`2 for having results on dimension reduction

is L1. Until this year, the only positive re-

sult was that n points in L1 embed into `n logn
1

with constant distortion [Schechtman, ’87]. But,

following up on the idea introduced there, in

[Bourgain-Lindenstrauss-Milman, ’89], [Talagrand, ’90] it was

proved that every n-dimensional subspace of

L1 linearly embeds into `n logn
1 with constant

distortion. That is, we could not do better for

n-points than what we can do for their linear

span!

But now we know that n points in L1 must

1 + ε-embed into `m1 with m ≤ Cn/ε2 [Newman-

Rabinovich, ’10].



[Brinkman-Charikar, ’05] made a breakthrough on get-

ting a lower bound for dimension reduction in

L1 which goes far beyond showing that the

J-L Lemma is false for L1. The precise state-

ment of their theorem is that for each n there

are subsets An of `1 of cardinality |An| = n

so that if α > 0 and fn : An → `
dnαe
1 , then

Lip (fn)Lip (f−1
n ) ≥ cα−1/2 for some universal

c > 0. A much simpler proof of this was given

in [Lee-Naor, ’04] and some further simplifications

were made in [J-Schechtman, ’10]. I’ll sketch the

proof from [J-Schechtman, ’10].



The relevant subsets of L1 for getting the lower

bound on dimension reduction are the diamond

graphs Dn with the graph metric, which all em-

bed into L1 with distortion 2. D0 has two ver-

tices joined by one edge. Dn+1 is obtained

from Dn by erasing each edge [u, v] in Dn,

adding two new points x, y for each edge [u, v],

and adding edges [u, x], [x, v], [u, y], and [y, v].

Thus D1 is a square, D2 begins to look like a

diamond, and D9 really sparkles.



Non embedability of Dn into `k1

A frequently used technique in Banach space

theory (and used by [Lee-Naor, ’04]) is to replace

`k1 by `kp where p′ = log k and where 1/p + 1/p′ = 1.

This is no loss because for this value of p,

d(`k1, `
k
p) = d(`k∞, `

k
p′) ≤ k

1/p′ = k1/ log k = e.

The gain from this is that Lp is uniformly con-

vex for 1 < p <∞, and its modulus of uniform

convexity is known. In particular, Lp does not

contain the “graph square” D2 isometrically,

and in fact you can easily estimate the the dis-

tortion needed in order to embed D2 into Lp.

The modulus of uniform convexity of X is the

function δ = δX : (0,2)→ [0,1] defined by

δ(ε) = inf{1−‖
x+ y

2
‖ ; ‖x‖, ‖y‖ ≤ 1, ‖x−y‖ ≥ ε}.



δ(ε) = inf{1−‖
x+ y

2
‖ ; ‖x‖, ‖y‖ ≤ 1, ‖x−y‖ ≥ ε}.

D1 = {0,1}2 with edges [(0,0), (0,1)],

[(0,0), (1,0)], [(0,1), (1,1)], [(1,0), (1,1)].

Lemma 1 Let X be a normed space and f :

D1 → X with Lip (f−1) ≤ 1 and Lip (f) ≤ M .

Then ‖f(1,1)− f(0,0)‖ ≤ 2M(1− δ( 2
M )).

Proof: Without loss of generality we may

assume f(0,0) = 0. Denote x = f(1,1) and

x1 = x− f(1,0), x2 = f(1,0), x3 = x− f(0,1),

x4 = f(0,1). Then, 1 ≤ ‖xi‖ ≤ M for i =

1,2,3,4. Since ‖x2
M −

x4
M‖ ≥

2
M , we get that

1−
‖x2 + x4‖

2M
≥ δ(

2

M
).

Similarly,

1−
‖x1 + x3‖

2M
≥ δ(

2

M
).

Consequently,

2(1− δ(
2

M
)) ≥

‖x1 + x2 + x3 + x4‖
2M

=
‖x‖
M

.



δ(ε) = inf{1−‖
x+ y

2
‖ ; ‖x‖, ‖y‖ ≤ 1, ‖x−y‖ ≥ ε}.

Lemma 1:

f : D1 → X, Lip (f−1) ≤ 1, and Lip (f) ≤ M .

Then ‖f(1,1)− f(0,0)‖ ≤ 2M(1− δ( 2
M )).

Applying the lemma we get that if Mn is the

best constant M such that there is an embed-

ding f of Dn into X with dDn(x, y) ≤ ‖f(x) −
f(y)‖ ≤MdDn(x, y), then Mn−1 ≤Mn(1−δX( 2

Mn
)).

Indeed, by the Lemma the distance between

the images of the top and the bottom vertices

of any sub diamond of level n − 1 is at most

2Mn(1 − δX( 2
Mn

)) (and at least 2). The col-

lection of all top and bottom vertices of level

n−1 of Dn is isometric to Dn−1: The distance

between any two points of that subset of Dn
is exactly twice the distance of the vertices of

Dn−1 they developed from. This implies that

Mn−1 ≤Mn(1− δX( 2
Mn

)) or

Mn −Mn−1 ≥Mn−1δX(
2

Mn
).



δX(ε) = inf{1−‖
x+ y

2
‖; ‖x‖, ‖y‖ ≤ 1, ‖x−y‖ ≥ ε}.

Mn: best constant M s.t. ∃f : Dn → X with

dDn(x, y) ≤ ‖f(x)− f(y)‖ ≤MdDn(x, y). Then

Mn −Mn−1 ≥Mn−1δX(
2

Mn
).

So if δX(ε) ≥ cεp then

Mn ≥ c2p
n∑

k=1

M
−p+1
k +M0 ≥ c2pnM−p+1

n ,

implying Mn ≥ 2c1/pn1/p.



δX(ε) = inf{1−‖
x+ y

2
‖; ‖x‖, ‖y‖ ≤ 1, ‖x−y‖ ≥ ε}.

Mn: best M s.t. ∃f : Dn → X with dDn(x, y) ≤
‖f(x)−f(y)‖ ≤MdDn(x, y). If δX(ε) ≥ cεp then

Mn ≥ 2c1/pn1/p.

Corollary 1 [Brinkman-Charikar, ’05] If Dn Lipschitz

embeds into `k1 with distortion K then k ≥
|Dn|β/K

2
, for a universal β > 0.

Set p′ = p
p−1 = log k (i.e., p = 1 + 1

log k), so

that d(`k1, `
k
p) ≤ e. Classical fact: for 1 < p ≤ 2,

δLp(ε) ≥ α(p− 1)ε2,

for a universal α > 0. Thus

eK ≥ 2α1/2(p− 1)1/2n1/2.

Plugging in p = 1 + 1
log k we get log k ≥ βn/K2

for a universal β > 0. This gives the corollary

because

|Dn| = 2 + 2
4n − 1

3
.



Another use for the diamond graphs

Let Tn be the dyadic tree of depth n. [Bour-

gain, ’86] proved that a Banach space X is not

isomorphic to a uniformly convex space iff Tn

embeds into X with distortion independent of

n.

[J-Schechtman, ’10] proved that a Banach space X is

not isomorphic to a uniformly convex space iff

Dn embeds into X with distortion independent

of n iff the Laakso graph Ln embeds into X

with distortion independent of n. Ln “looks” a lot

like Dn but has bounded geometry.

It is not clear how to derive either result from

the other.


