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About 9,660 for “Dvoretzky’s Theorem.

About 16,500 results for “Bishop-Phelps The-
orem’ .

About 27,900 results for “Radon-Nikodym T he-
orem’ .

About 58,200 results for “Riesz Representa-
tion Theorem” .

About 45,300 results for “Fatou’s Lemma’.

About 75,100 results for “Johnson-Lindenstrauss
Lemma’.

About 194 000 results for “Schauder Fixed Point
Theorem’ .

About 342,000 results for “Hahn-Banach The-
orem’ .



[J-L, '84] “‘Given n points in Euclidean space (which
we might as well take to be ), what is the smallest
k = k(n) so that these points can be moved
into k-dimensional Euclidean space via a trans-
formation which expands or contracts all pair-
wise distances by a factor of at most 1 + €7

Answer: k(n) < ¢ '09(nt1)
€

Nowadays this is called the J-L Lemma.

In fact, [J-L, 's4] proved that there is a linear
mapping T from /% into Eg(n) so that for all
pairs z,y from among the n points,

|z —yll < || Tz =Tyl < (1 + 6|z -yl

This is called the linear J-L Lemma.



There is a linear mapping 1" from Eg into Ek,
k=k(n) < C e?log(n+1), so that for all
pairs x,y from among the n points,

|z —yll < || Tz —Ty|| < (1 + )|z -yl

The idea, coming from proofs of Dvoretzky's
Theorem, is to use a random isometric em-
bedding T from ¢3 into ¢5. In the background
is some probability space (€2,P), and for each
w € €2, T, is a linear mapping from /5 into
¢5 so that for each = € /3, E|Tz| = |=].
To almost preserve the norm of a set S of
unit norm vectors in £2, one needs to estimate
P[|||Tx|| — E||Tz||| > €] (which typically does not
depend on the particular norm one vector x).
If this probability is sufficiently small, a union
bound argument yields that there is w € €2 so
that for all x € S, |||Twz||—E||Tx||| <e. For J-L,
if £/ is a set of n pointsin /3, let S be the set of
normalized differences of pointsin E. The ran-
dom linear operator 7' is just a constant times
a random rank k orthogonal projection on /¢5.
Conjugate any rank k orthogonal projection against the orthogonal

group to get a random rank k£ orthogonal projection.



How did Joram and I stumble across the J-L
Lemma? It was used to solve a problem from

[Marcus-Pisier, '84].

Given a Banach space X, let L(X,n) be the
smallest constant C such that for every map-
ping f from an n-point subset of X into /5,
there is an extension g : X — ¢ so that

Lip(g) < CLip(f), where

1f(z) — f(W)|
d(z,y)

Lip (f) = sup

Kirszbraun’'s theorem says that L(4>,n) = 1.
Marcus and Pisier proved for 1 < p < 2 that
L(Ly,n) < C(p)(logn)t/P=1/2 They asked whether
always L(X,n) < C (logn)l/2, and we showed
that the J-L Lemma gives a yes answer.



The way J-L is used in compressed sensing
shows that the Feichtinger conjecture is true
“generically” . A tight frame can be regarded
as the image of an orthonormal basis under an
orthogonal projection. If P is a random rank
k orthogonal projection on /2, the expected

norm of Px is about C = \/% for any unit
vector . The concentration around the ex-
pected norm guarantees that with big proba-
bility, 3C < ||Pz|| < 2C for every §(C)k-sparse
unit vector that is, for any unit vector which has at most
§(C)k non zero coordinates. I hisS shows that (‘Pe’l:);,;ll:]_
satisfies the Feichtinger conjecture in a strong
way: ANY subset of (C~1Pe;)?_; of size at
most 6(C)k is 4-equivalent to an orthonormal
sequence.



Say that a Banach space X satisfies the linear
J-L Lemma provided there is a constant C so
that for all n and all subsets E of X which
contain n points there is a linear mapping T
on X of rank kK < C log(n 4+ 1) so that for all
x and y in F,

|z —y|| < ||[Tz — Tyl < Cllz -y

The linear J-L Lemma is false in any L1 space
[Charikar-Sahai, '02], and in fact it is false in any Ly
space, 1 < D # 2 < 00 [Lee-Mendel-Naor, '05].

[J-Naor, 2010].
What can you say about a Banach space which
satisfies the linear J-L Lemma~

Is there a Banach space which satisfies the
linear J-L Lemma but is not isomorphic to a
Hilbert space?



Is there a Banach space which satisfies the
linear J-L Lemma but is not isomorphic to a
Hilbert space?

Yes. The space T(?2), which is the 2 convex-
ification of Tsirelson’s space [Tsirelson, '74], CON-
structed in [Figiel-J, '74], Satisfies the linear J-L
Lemma.

What is easy is that a certain subspace of the 2
convexification of modified Tsirelson’s space,
constructed in [J, 'so], satisfies the linear J-L
Lemma. By later work of [Casazza-J-Tzafriri, '84]
and, especially, [Casazza-Odell, '83], this space is
actually equal to 7(2).

7(2) like all Tsirelson-type spaces, is a Banach
space of sequences whose norm is defined im-
plicitly rather than explicitly.

Tsirelson-type spaces have played a fundamen-
tal role in constructing counterexamples in Ba-
nach space theory Gowers-Maurey; Argyros-Haydon and
even for proving theorems about classical spaces,
such as the existence of a distorted norm on
Hilbert space [Odell-Schiumprecht, '94].



7(2) (defined in [Figiel-j, '74]) IS the completion of the
space cgg Of sequences of scalars which have
only finitely many non zero terms under the
unigue norm that satisfies the equation

n
2
2l = Jll|3 v sup 5 > A2,
> [n;n<A1<A2<'"<An]2jZ:1 ’

A< B means maxA<minB and Ax = 1,x.

It is remarkable that this norm is equivalent to
the 2-convexified modified Tsirelson norm de-
fined in [J, '80], Which is defined by a similar equa-
tion, but the supremum is over finite disjoint
setsn < A;, 1 < j < n [Casazza-Odell, '83]. Since we
do not need this result, we write down the for-
mula that defines the 2-convexified modified
Tsirelson norm:

n
2 2 2
][ = [[=ll% v Sup Z [REVES |

[n<u;?:1Aj, A;NA; =] 2



n
lell? = llz)13 v sup 5 2 Azl
[n<U?_, Aj, A;nA=0] 2 ;=1

It is more or less obvious that if you take n
disjointly supported unit vectors with supports
past n, in this norm the vectors are equivalent
with constant at most /2 to an orthonormal
basis for /5. From this you get that for any
n there is r(n) so that any n dimensional sub-
space supported past r(n) is 2-isomorphic to
¢5. In fact, if you change "2-isomorphic” to
“K (s)-isomorphic’, then for any iterate loglsl n
of logn, you can get K(s) to make the state-
ment true for r(n) = 1Vvioglsln. In some stong
sense, this norm is “asymptotically Hilbertian”
even though the completion of cgg under this
norm has no subspace isomorphic to 4.



1 n
2 2 2
]| = |zl v sup 5 2 Azl
[TL<U§L=1A]', AJQAZ:(Z)] j=1

Any 4"-dimensional subspace supported past
logn is 4-isomorphic to /5.

In any Banach space X, the projection con-
stant in X of any n dimensional subspace Y is
less than two times the projection constant of
Y in Z for some Y C Z C X with dimZ < 4",
Therefore, in (cqo,||:||), any n-dimensional sub-
space supported past logn is 4-isomorphic to
¢35 and is the range of a projection whose norm
is at most eight.



1 n
2 2 2
lz]|* = [[z]|5% V sup =2 : [Ajz]]=.
2
[TL<U§-L:1AJ', AjﬂAiz@] j=1

Now take any n-dimensional subspace W of
coo and let Y be the subspace of those x € W
which are zero in the first logn coordinates.
Then Y is 4-isomorphic to the Euclidean space
of its dimension and is the range of a projection
P of norm at most 8. I — P maps W into a
subspace of dimension at most logn and P
maps into the 4-Euclidean space Y.

Now let E be any n-point subset of cgg and let
W be its linear span. Apply linear J-L to get a
linear operator S : Y — Y of rank at most logn
s.t. forz, yin PE, ||z —y| < [|Sz—Sy|| < 5]z —
y||. Then the linear mapping T':= (I — P)+SP
has rank at most 21ogn and distorts distances
between points in E by a factor of at most 41

(well, to be safe, let's say 100 or 200).



[J-Naor, 2010].
What can you say about a Banach space which
satisfies the linear J-L Lemma~

Given a Banach space X, let D,(X) be the
supremum over all n dimensional subspaces Y
of X of the Banach-Mazur distances d(Y,43).

d(E,F) =inf||T| - T}

where the infimum is over all isomorphisms
from E onto F.

A Banach space X is K-isomorphic to a Hilbert
space iff Dp(X) < K for all n.

For any X, Dnp(X) </n.
Dn(Lp) = nl1/P=1/2] { ewis, '76].

Dn(T(z)) goes to infinity slowly; slower than
any iterate of logn (even slower).



Dp(X) =sup{d(E,{5) :dimE =n; EC X}.

d(Y,Z) = inf ||T| - ||T~1].

[J-Naor, '10] If X satisfies linear J-L, then

clog®n
Dp(X) <22 ",

where log* z is the unique integer k such that
if we define a; = 1 and a;41 = e% (i.e. a; is an
exponential tower of height i), then a;, < x <
Af4-1-

More formally:

Theorem. For every D,K > 0 there exists a
constant ¢ = ¢(K,D) > 0 with the following
property. Let X be a Banach space such that
for every n € N and every xz1,...,xn € X there
exists a linear subspace F' C X, of dimension at
most K logn, and a linear mapping S : X — F
such that ||z; — ajl| < ||Se; — Szjl| < Dllz; — |
for all i,5 € {1,...,n}. Then for every n € N
and every n-dimensional subspace E C X, we
have

d(E, B) < 22°°0 ", (1)



Dp(X) =sup{d(E,{5) :dimE =n; EC X}.

d(Y,Z) =inf||T| - |71

[J-Naor, '10] If X satisfies linear J-L, then

chog*n

where log* z is the unique integer k£ such that
if we define a; = 1 and a;41 = e% (i.e. a; is an
exponential tower of height i), then ap < z <
ak_|_1.

T he somewhat technical proof uses harmonic analy-
sis on {—1,1}" and standard results from the
local theory of Banach spaces. Part of it is
based on the ideas in [Charikar-Sahai, '02], [Lee-Mendel-
Naor, '05]. Whether it is the “right” result is
open. For T(2) it follows easily from [Bellenot,
'84] that

Dp(T(?)) > 20(n),

where a(n) — oo is the inverse Ackermann
function (which is much smaller than 227 ™).



Positive results on dimension reduction for spaces
other than Hilbert spaces are few. [Matousek, '96]
proved that if 1 > a > 0 and E is any n-point
metric space, then E embeds into ¢% with dis-
tortion at most C'/a for some k£ < Cn?%, and up
to the constant ¢ this is best possible.

Arguably the most important space other than
¢> for having results on dimension reduction
is Lq. Until this year, the only positive re-
sult was that n points in L; embed into ¢7'09"
with constant distortion [Schechtman, 's7]. But,
following up on the idea introduced there, in
[Bourgain-Lindenstrauss-Milman, '89], [Talagrand, '90] it was
proved that every n-dimensional subspace of
Ly linearly embeds into ¢7'°9™ with constant
distortion. That is, we could not do better for
n-points than what we can do for their linear
span!

But now we know that n points in L1 must
1 4+ e-embed into £7* with m < Cn/e? [Newman-
Rabinovich, '10].



[Brinkman-Charikar, '05] made a breakthrough on get-
ting a lower bound for dimension reduction in
L1 which goes far beyond showing that the
J-L Lemma is false for Lq. The precise state-
ment of their theorem is that for each n there
are subsets A, of ¢; of cardinality |[An| = n
so that if « > 0 and fn : An — ngrm’ then
Lip (fn)Lip (f;1) > ca=1/2 for some universal
c > 0. A much simpler proof of this was given
iN [Lee-Naor, '04] and some further simplifications
were made in [J-Schechtman, '10]. I'll sketch the
proof from [J-Schechtman, '10].



T he relevant subsets of L for getting the lower
bound on dimension reduction are the diamond
graphs D, with the graph metric, which all em-
bed into L1 with distortion 2. Dg has two ver-
tices joined by one edge. D, is obtained
from D, by erasing each edge [u,v] in Dy,
adding two new points x, y for each edge [u, v],
and adding edges [u, x], [z,v], [u,y], and [y, v].
Thus D1 is a square, D> begins to look like a
diamond, and Dg really sparkles.



Non embedability of D, into ¢4

A frequently used technique in Banach space
theory (and used by [Lee-Naor, '04]) iS tO replace
f]f by flg where p/ — |log k and where 1/p+1/p = 1.
This is no loss because for this value of p,

d(ey, ey = d(eh,, i) < KMV = g1/ 109k = .

The gain from this is that Ly is uniformly con-
vex for 1 < p < oo, and its modulus of uniform
convexity is known. In particular, L, does not
contain the “graph square” D-> isometrically,
and in fact you can easily estimate the the dis-
tortion needed in order to embed D, into Ly.

The modulus of uniform convexity of X is the
function § =dx : (0,2) — [0, 1] defined by

a:—l—y

6(e) = inf{1—|] 5 llzll lyll < 1, flz—yll = €}



6(e) = inf{1— || =2 ; ll=l, llyll < 1, llz—yl| > €},

= {0, 1}2 with edges [(0,0), (0,1)],
[(0,0),(1,0)],[(0,1),(1,1)],[(1,0),(1,1)].

Lemma 1 Let X be a normed space and f .
Dy — X with Lip(f~=1) <1 and Lip(f) < M.
Then | f(1,1) = £(0,0)|| < 2M(1 - 6(5))-

Proof: Without loss of generality we may
assume f(0,0) = 0. Denote z = f(1,1) and
r1 =z — f(1,0), zp = f(1,0), zz3 =z — f(0, 1),
x4 = f(0,1). Then, 1 < ||lzg|| < M for ¢ =
1,2,3,4. Since |32 — %4|| > &, we get that

oot el g2
2M M
Similarly,

e tasl g2y
2M
Consequently,

lz1 + 2o + 23+ 24| _ [[z]
2M M’

2(1 - 8(=) >



x4+ vy
2

6(e) = inf{1—|] 5 lllls llyll < 1, fle—yll > €}

Lemma 1:
f: Dy — X, Lip(f/1) <1, and Lip(f) < M.
Then |£(1,1) — £(0,0)| < 2M(1 — ().

Applying the lemma we get that if M, is the
best constant M such that there is an embed-
ding f of Dy into X with dp (z,y) < ||f(z) —
FWII < Mdp, (z,y), then M,,_1 < Mn(1=6x(33)).
Indeed, by the Lemma the distance between
the images of the top and the bottom vertices
of any sub diamond of level n — 1 is at most
2Mn(1 — 6x(35-)) (and at least 2). The col-
lection of all top and bottom vertices of level
n—1 of Dy is isometric to D,,_1: The distance
between any two points of that subset of D,
IS exactly twice the distance of the vertices of
D, _1 they developed from. This implies that
My_1 < Mp(1 = 6x(37)) or

2
Mn — My 1 2 Mn—15X(ﬁ)-
n



T+ vy,
2 ]

6x(e) = inf{1—||

zll, [lyll < 1, llz—yll = €}

My. best constant M s.t. df : D, — X with
dp,(z,y) < ||f(z) — f(YI| < Mdp,(z,y). Then
2
Mn — My_1 2 Mn—léX(ﬁ)-

n

So if §x(g) > ceP then

n
My > c2P 3" M PP Mg > 2P L
k=1

implying M,, > 2c1/pPpl/p,



x4+ vy
2

ox(e) = inf{1—| 5zl [yl < 15 llz—yll > €}

Mpy: best M s.t. 3f : Dn — X with dp (z,y) <
1f(z) = f(y)|| < Mdp,(z,y). If x(e) > ceP then

M, > 2c1/Pp1/p.

Corollary 1 [Brinkman-Charikar, '05] If Dy, LipSchitz
embeds into ¢§ with distortion K then k >

2
|Dn|5/K , for a universal g > 0.

Set p/ = z% = logk (i.e.,, p =1 —I—@), SO
that d(¢¥,¢F) <e. Classical fact: for 1 < p < 2,
51,(€) > alp— 1)é,

for a universal o > 0. Thus
eK > 2a1/2(p — 1)1/277,1/2.

Plugging in p=1+ |Oék we get logk > n/K?
for a universal g > 0. This gives the corollary
because

4n — 1
Dp| =242 .




Another use for the diamond graphs

Let 7,, be the dyadic tree of depth n. [Bour-
gain, '86] proved that a Banach space X is not
isomorphic to a uniformly convex space iff 1)y
embeds into X with distortion independent of

n.

[J-Schechtman, '10] proved that a Banach space X is
not isomorphic to a uniformly convex space iff
D, embeds into X with distortion independent
of n iff the Laakso graph L, embeds into X
with distortion independent of n. L, “looks’ a lot

like D, but has bounded geometry.

It is not clear how to derive either result from
the other.



