Dimension Reduction and Other Topics

in Discrete Metric Geometry

William B. Johnson

Perspectives in High Dimensions, August 2010

WBJ and J. Lindenstrauss, *Extensions of Lipschitz mappings into a Hilbert space*, **Contemporary Math. 26** (1984), 189–206. From Google:

About 9,660 for "Dvoretzky's Theorem".

About 16,500 results for "Bishop-Phelps Theorem".

About 27,900 results for "Radon-Nikodym Theorem".

About 58,200 results for "Riesz Representation Theorem".

About 45,300 results for "Fatou's Lemma".

About 75,100 results for "Johnson-Lindenstrauss Lemma".

About 194,000 results for "Schauder Fixed Point Theorem".

About 342,000 results for "Hahn-Banach Theorem". [J-L, '84] "Given n points in Euclidean space (which we might as well take to be ℓ_2^n), what is the smallest k = k(n) so that these points can be moved into k-dimensional Euclidean space via a transformation which expands or contracts all pairwise distances by a factor of at most $1 + \epsilon$?"

Answer:
$$k(n) \leq C \frac{\log(n+1)}{\epsilon^2}$$
.

Nowadays this is called the J-L Lemma.

In fact, [J-L, '84] proved that there is a *linear* mapping T from ℓ_2^n into $\ell_2^{k(n)}$ so that for all pairs x, y from among the n points,

$$||x - y|| \le ||Tx - Ty|| \le (1 + \epsilon)||x - y||.$$

This is called the linear J-L Lemma.

There is a *linear* mapping T from ℓ_2^n into ℓ_2^k , $k = k(n) \leq C \ \epsilon^{-2} \log(n+1)$, so that for all pairs x, y from among the n points,

 $||x - y|| \le ||Tx - Ty|| \le (1 + \epsilon)||x - y||.$

The idea, coming from proofs of Dvoretzky's Theorem, is to use a random isometric embedding T from ℓ_2^n into ℓ_2^k . In the background is some probability space (Ω, \mathcal{P}) , and for each $\omega \in \Omega$, T_{ω} is a linear mapping from ℓ_2^n into ℓ_2^k so that for each $x \in \ell_2^n$, $\mathbb{E}||Tx|| = ||x||$. To almost preserve the norm of a set S of unit norm vectors in ℓ_2^n , one needs to estimate $\mathbb{P}[|||Tx|| - \mathbb{E}||Tx||| > \epsilon]$ (which typically does not depend on the particular norm one vector x). If this probability is sufficiently small, a union bound argument yields that there is $\omega \in \Omega$ so that for all $x \in S$, $|||T_{\omega}x|| - \mathbb{E}||Tx||| \leq \epsilon$. For J-L, if E is a set of n points in ℓ_2^n , let S be the set of normalized differences of points in E. The random linear operator T is just a constant times a random rank k orthogonal projection on ℓ_2^n . Conjugate any rank k orthogonal projection against the orthogonal group to get a random rank k orthogonal projection.

How did Joram and I stumble across the J-L Lemma? It was used to solve a problem from [Marcus-Pisier, '84].

Given a Banach space X, let L(X,n) be the smallest constant C such that for every mapping f from an n-point subset of X into ℓ_2 , there is an extension $g: X \to \ell_2$ so that

$$\operatorname{Lip}(g) \leq C \operatorname{Lip}(f), \quad \text{where}$$
$$\operatorname{Lip}(f) = \sup \frac{\|f(x) - f(y)\|}{d(x, y)}.$$

Kirszbraun's theorem says that $L(\ell_2, n) = 1$. Marcus and Pisier proved for $1 that <math>L(L_p, n) \leq C(p)(\log n)^{1/p-1/2}$. They asked whether always $L(X, n) \leq C(\log n)^{1/2}$, and we showed that the J-L Lemma gives a yes answer.

The way J-L is used in compressed sensing shows that the Feichtinger conjecture is true "generically". A tight frame can be regarded as the image of an orthonormal basis under an orthogonal projection. If P is a random rank k orthogonal projection on $\ell_2^n,$ the expected norm of Px is about $C := \sqrt{\frac{k}{n}}$ for any unit vector x. The concentration around the expected norm guarantees that with big probability, $\frac{1}{2}C \leq ||Px|| \leq 2C$ for every $\delta(C)k$ -sparse Unit vector that is, for any unit vector which has at most $\delta(C)k$ non zero coordinates. This shows that $(Pe_i)_{i=1}^n$ satisfies the Feichtinger conjecture in a strong way: ANY subset of $(C^{-1}Pe_i)_{i=1}^n$ of size at most $\delta(C)k$ is 4-equivalent to an orthonormal sequence.

Say that a Banach space X satisfies the linear J-L Lemma provided there is a constant C so that for all n and all subsets E of X which contain n points there is a linear mapping Ton X of rank $k \leq C \log(n+1)$ so that for all x and y in E,

$$||x - y|| \le ||Tx - Ty|| \le C||x - y||.$$

The linear J-L Lemma is false in any L_1 space [Charikar-Sahai, '02], and in fact it is false in any L_p space, $1 \le p \ne 2 \le \infty$ [Lee-Mendel-Naor, '05].

[J-Naor, 2010]:

What can you say about a Banach space which satisfies the linear J-L Lemma?

Is there a Banach space which satisfies the linear J-L Lemma but is not isomorphic to a Hilbert space?

Is there a Banach space which satisfies the linear J-L Lemma but is not isomorphic to a Hilbert space?

Yes. The space $T^{(2)}$, which is the 2 convexification of Tsirelson's space [Tsirelson, '74], constructed in [Figiel-J, '74], satisfies the linear J-L Lemma.

What is easy is that a certain subspace of the 2 convexification of modified Tsirelson's space, constructed in [J, '80], satisfies the linear J-L Lemma. By later work of [Casazza-J-Tzafriri, '84] and, especially, [Casazza-Odell, '83], this space is actually equal to $T^{(2)}$.

 $T^{(2)}$, like all Tsirelson-type spaces, is a Banach space of sequences whose norm is defined implicitly rather than explicitly.

Tsirelson-type spaces have played a fundamental role in constructing counterexamples in Banach space theory Gowers-Maurey; Argyros-Haydon and even for proving theorems about classical spaces, such as the existence of a distorted norm on Hilbert space [Odell-Schlumprecht, '94]. $T^{(2)}$ (defined in [Figiel-j, '74]) is the completion of the space c_{00} of sequences of scalars which have only finitely many non zero terms under the unique norm that satisfies the equation

$$||x||^{2} = ||x||_{\infty}^{2} \vee \sup_{[n;n < A_{1} < A_{2} < \dots < A_{n}]} \frac{1}{2} \sum_{j=1}^{n} ||A_{j}x||^{2}.$$

A < B means max $A < \min B$ and $Ax = \mathbf{1}_A x$.

It is remarkable that this norm is equivalent to the 2-convexified modified Tsirelson norm defined in [J, '80], which is defined by a similar equation, but the supremum is over finite disjoint sets $n < A_j$, $1 \le j \le n$ [Casazza-Odell, '83]. Since we do not need this result, we write down the formula that defines the 2-convexified modified Tsirelson norm:

$$||x||^{2} = ||x||_{\infty}^{2} \vee \sup_{[n < \bigcup_{j=1}^{n} A_{j}, A_{j} \cap A_{i} = \emptyset]} \frac{1}{2} \sum_{j=1}^{n} ||A_{j}x||^{2}.$$

$$||x||^{2} = ||x||_{\infty}^{2} \vee \sup_{[n < \bigcup_{j=1}^{n} A_{j}, A_{j} \cap A_{i} = \emptyset]} \frac{1}{2} \sum_{j=1}^{n} ||A_{j}x||^{2}.$$

It is more or less obvious that if you take n disjointly supported unit vectors with supports past n, in this norm the vectors are equivalent with constant at most $\sqrt{2}$ to an orthonormal basis for ℓ_2^n . From this you get that for any n there is r(n) so that any n dimensional subspace supported past r(n) is 2-isomorphic to ℓ_2^n . In fact, if you change "2-isomorphic" to "K(s)-isomorphic", then for any iterate $\log^{[s]} n$ of $\log n$, you can get K(s) to make the statement true for $r(n) = 1 \vee \log^{[s]} n$. In some stong sense, this norm is "asymptotically Hilbertian" even though the completion of c_{00} under this norm has no subspace isomorphic to ℓ_2 .

$$||x||^{2} = ||x||_{\infty}^{2} \vee \sup_{[n < \bigcup_{j=1}^{n} A_{j}, A_{j} \cap A_{i} = \emptyset]} \frac{1}{2} \sum_{j=1}^{n} ||A_{j}x||^{2}.$$

Any 4^n -dimensional subspace supported past log n is 4-isomorphic to ℓ_2^n .

In any Banach space X, the projection constant in X of any n dimensional subspace Y is less than two times the projection constant of Y in Z for some $Y \subset Z \subset X$ with dim $Z < 4^n$. Therefore, in $(c_{00}, \|\cdot\|)$, any n-dimensional subspace supported past $\log n$ is 4-isomorphic to ℓ_2^n and is the range of a projection whose norm is at most eight.

$$||x||^{2} = ||x||_{\infty}^{2} \vee \sup_{[n < \bigcup_{j=1}^{n} A_{j}, A_{j} \cap A_{i} = \emptyset]} \frac{1}{2} \sum_{j=1}^{n} ||A_{j}x||^{2}.$$

Now take any *n*-dimensional subspace W of c_{00} and let Y be the subspace of those $x \in W$ which are zero in the first log *n* coordinates. Then Y is 4-isomorphic to the Euclidean space of its dimension and is the range of a projection P of norm at most 8. I - P maps W into a subspace of dimension at most log *n* and P maps into the 4-Euclidean space Y.

Now let E be any n-point subset of c_{00} and let W be its linear span. Apply linear J-L to get a linear operator $S: Y \to Y$ of rank at most log n s.t. for x, y in PE, $||x - y|| \le ||Sx - Sy|| \le 5||x - y||$. Then the linear mapping T := (I - P) + SP has rank at most $2 \log n$ and distorts distances between points in E by a factor of at most 41 (well, to be safe, let's say 100 or 200).

[J-Naor, 2010]:

What can you say about a Banach space which satisfies the linear J-L Lemma?

Given a Banach space X, let $D_n(X)$ be the supremum over all n dimensional subspaces Y of X of the Banach-Mazur distances $d(Y, \ell_2^n)$.

 $d(E,F) = \inf ||T|| \cdot ||T^{-1}||.$

where the infimum is over all isomorphisms from E onto F.

A Banach space X is K-isomorphic to a Hilbert space iff $D_n(X) \leq K$ for all n.

For any X, $D_n(X) \leq \sqrt{n}$.

 $D_n(L_p) = n^{|1/p - 1/2|}$ [Lewis, '76].

 $D_n(T^{(2)})$ goes to infinity slowly; slower than any iterate of log n (even slower). $D_n(X) = \sup\{d(E, \ell_2^n) : \dim E = n; E \subset X\}.$

 $d(Y,Z) = \inf ||T|| \cdot ||T^{-1}||.$ [J-Naor, '10] If X satisfies linear J-L, then

$$D_n(X) \le 2^{2^{c \log^* n}},$$

where $\log^* x$ is the unique integer k such that if we define $a_1 = 1$ and $a_{i+1} = e^{a_i}$ (i.e. a_i is an exponential tower of height i), then $a_k < x \leq a_{k+1}$.

More formally:

Theorem. For every D, K > 0 there exists a constant c = c(K, D) > 0 with the following property. Let X be a Banach space such that for every $n \in \mathbb{N}$ and every $x_1, \ldots, x_n \in X$ there exists a linear subspace $F \subseteq X$, of dimension at most $K \log n$, and a linear mapping $S : X \to F$ such that $||x_i - x_j|| \le ||Sx_i - Sx_j|| \le D||x_i - x_j||$ for all $i, j \in \{1, \ldots, n\}$. Then for every $n \in \mathbb{N}$ and every n-dimensional subspace $E \subseteq X$, we have

$$d(E, \ell_2^n) \le 2^{2^{c \log^*(n)}}.$$
 (1)

 $D_n(X) = \sup\{d(E, \ell_2^n) : \dim E = n; E \subset X\}.$

 $d(Y,Z) = \inf ||T|| \cdot ||T^{-1}||.$

[J-Naor, '10] If X satisfies linear J-L, then

$$D_n(X) \le 2^{2^{c \log^* n}},$$

where $\log^* x$ is the unique integer k such that if we define $a_1 = 1$ and $a_{i+1} = e^{a_i}$ (i.e. a_i is an exponential tower of height i), then $a_k < x \leq a_{k+1}$.

The somewhat technical proof uses harmonic analysis on $\{-1,1\}^n$ and standard results from the local theory of Banach spaces. Part of it is based on the ideas in [Charikar-Sahai, '02], [Lee-Mendel-Naor, '05]. Whether it is the "right" result is open. For $T^{(2)}$ it follows easily from [Bellenot, '84] that

$$D_n(T^{(2)}) \ge 2^{c\alpha(n)},$$

where $\alpha(n) \rightarrow \infty$ is the inverse Ackermann function (which is much smaller than $2^{2^{c\log^*(n)}}$).

Positive results on dimension reduction for spaces other than Hilbert spaces are few. [Matousek, '96] proved that if 1 > a > 0 and E is any n-point metric space, then E embeds into ℓ_{∞}^{k} with distortion at most C/a for some $k \leq C n^{a}$, and up to the constant C this is best possible.

Arguably the most important space other than ℓ_2 for having results on dimension reduction is L_1 . Until this year, the only positive result was that n points in L_1 embed into $\ell_1^{n \log n}$ with constant distortion [schechtman, '87]. But, following up on the idea introduced there, in [Bourgain-Lindenstrauss-Milman, '89], [Talagrand, '90] it was proved that every n-dimensional subspace of L_1 linearly embeds into $\ell_1^{n \log n}$ with constant distortion. That is, we could not do better for n-points than what we can do for their linear span!

But now we know that n points in L_1 must $1 + \epsilon$ -embed into ℓ_1^m with $m \leq Cn/\epsilon^2$ [Newman-Rabinovich, '10].

[Brinkman-Charikar, '05] made a breakthrough on getting a lower bound for dimension reduction in L_1 which goes far beyond showing that the J-L Lemma is false for L_1 . The precise statement of their theorem is that for each n there are subsets A_n of ℓ_1 of cardinality $|A_n| = n$ so that if $\alpha > 0$ and $f_n : A_n \rightarrow \ell_1^{\lceil n^{\alpha} \rceil}$, then Lip (f_n) Lip $(f_n^{-1}) \ge c\alpha^{-1/2}$ for some universal c > 0. A much simpler proof of this was given in [Lee-Naor, '04] and some further simplifications were made in [J-Schechtman, '10]. I'll sketch the proof from [J-Schechtman, '10]. The relevant subsets of L_1 for getting the lower bound on dimension reduction are the *diamond* graphs D_n with the graph metric, which all embed into L_1 with distortion 2. D_0 has two vertices joined by one edge. D_{n+1} is obtained from D_n by erasing each edge [u,v] in D_n , adding two new points x, y for each edge [u,v], and adding edges [u,x], [x,v], [u,y], and [y,v]. Thus D_1 is a square, D_2 begins to look like a diamond, and D_9 really sparkles.

Non embedability of D_n into ℓ_1^k

A frequently used technique in Banach space theory (and used by [Lee-Naor, '04]) is to replace ℓ_1^k by ℓ_p^k where $p' = \log k$ and where 1/p + 1/p' = 1. This is no loss because for this value of p,

$$d(\ell_1^k, \ell_p^k) = d(\ell_{\infty}^k, \ell_{p'}^k) \le k^{1/p'} = k^{1/\log k} = e.$$

The gain from this is that L_p is uniformly convex for $1 , and its modulus of uniform convexity is known. In particular, <math>L_p$ does not contain the "graph square" D_2 isometrically, and in fact you can easily estimate the the distortion needed in order to embed D_2 into L_p .

The modulus of uniform convexity of X is the function $\delta = \delta_X : (0,2) \rightarrow [0,1]$ defined by

$$\delta(\varepsilon) = \inf\{1 - \|\frac{x+y}{2}\| ; \|x\|, \|y\| \le 1, \|x-y\| \ge \varepsilon\}.$$

$$\begin{split} \delta(\varepsilon) &= \inf\{1 - \|\frac{x+y}{2}\| \; ; \; \|x\|, \|y\| \leq 1, \; \|x-y\| \geq \varepsilon\}.\\ D_1 &= \{0,1\}^2 \; \text{with edges } [(0,0),(0,1)],\\ [(0,0),(1,0)], [(0,1),(1,1)], [(1,0),(1,1)]. \end{split}$$

Lemma 1 Let X be a normed space and f: $D_1 \rightarrow X$ with $\operatorname{Lip}(f^{-1}) \leq 1$ and $\operatorname{Lip}(f) \leq M$. Then $\|f(1,1) - f(0,0)\| \leq 2M(1 - \delta(\frac{2}{M}))$.

Proof: Without loss of generality we may assume f(0,0) = 0. Denote x = f(1,1) and $x_1 = x - f(1,0), x_2 = f(1,0), x_3 = x - f(0,1), x_4 = f(0,1)$. Then, $1 \le ||x_i|| \le M$ for i = 1,2,3,4. Since $||\frac{x_2}{M} - \frac{x_4}{M}|| \ge \frac{2}{M}$, we get that

$$1 - \frac{\|x_2 + x_4\|}{2M} \ge \delta(\frac{2}{M}).$$

Similarly,

$$1 - \frac{\|x_1 + x_3\|}{2M} \ge \delta(\frac{2}{M}).$$

Consequently,

$$2(1-\delta(\frac{2}{M})) \ge \frac{\|x_1+x_2+x_3+x_4\|}{2M} = \frac{\|x\|}{M}.$$

$$\begin{split} \delta(\varepsilon) &= \inf\{1 - \|\frac{x+y}{2}\| \; ; \; \|x\|, \|y\| \leq 1, \; \|x-y\| \geq \varepsilon\}.\\ \text{Lemma 1:}\\ f : D_1 \to X, \; \; \text{Lip}\,(f^{-1}) \leq 1, \; \text{and} \; \text{Lip}\,(f) \leq M.\\ \text{Then} \; \|f(1,1) - f(0,0)\| \leq 2M(1 - \delta(\frac{2}{M})). \end{split}$$

Applying the lemma we get that if M_n is the best constant M such that there is an embedding f of D_n into X with $d_{D_n}(x,y) \leq ||f(x) - f(y)|| \leq M d_{D_n}(x,y)$, then $M_{n-1} \leq M_n(1-\delta_X(\frac{2}{M_n}))$. Indeed, by the Lemma the distance between the images of the top and the bottom vertices of any sub diamond of level n-1 is at most $2M_n(1-\delta_X(\frac{2}{M_n}))$ (and at least 2). The collection of all top and bottom vertices of level n-1 of D_n is isometric to D_{n-1} : The distance between any two points of that subset of D_n is exactly twice the distance of the vertices of D_{n-1} they developed from. This implies that $M_{n-1} \leq M_n(1-\delta_X(\frac{2}{M_n}))$ or

$$M_n - M_{n-1} \ge M_{n-1}\delta_X(\frac{2}{M_n}).$$

$$\delta_X(\varepsilon) = \inf\{1 - \|\frac{x+y}{2}\|; \|x\|, \|y\| \le 1, \|x-y\| \ge \varepsilon\}.$$

 M_n : best constant M s.t. $\exists f : D_n \to X$ with $d_{D_n}(x,y) \leq \|f(x) - f(y)\| \leq M d_{D_n}(x,y)$. Then

$$M_n - M_{n-1} \ge M_{n-1}\delta_X(\frac{2}{M_n}).$$

So if $\delta_X(\varepsilon) \ge c\varepsilon^p$ then

$$M_n \ge c2^p \sum_{k=1}^n M_k^{-p+1} + M_0 \ge c2^p n M_n^{-p+1},$$

implying $M_n \geq 2c^{1/p}n^{1/p}$.

$$\delta_X(\varepsilon) = \inf\{1 - \|\frac{x+y}{2}\|; \|x\|, \|y\| \le 1, \|x-y\| \ge \varepsilon\}.$$

 M_n : best M s.t. $\exists f : D_n \to X$ with $d_{D_n}(x, y) \leq \|f(x) - f(y)\| \leq M d_{D_n}(x, y)$. If $\delta_X(\varepsilon) \geq c\varepsilon^p$ then $M_n \geq 2c^{1/p} n^{1/p}$.

Corollary 1 [Brinkman-Charikar, '05] If D_n Lipschitz embeds into ℓ_1^k with distortion K then $k \ge |D_n|^{\beta/K^2}$, for a universal $\beta > 0$.

Set $p' = \frac{p}{p-1} = \log k$ (i.e., $p = 1 + \frac{1}{\log k}$), so that $d(\ell_1^k, \ell_p^k) \le e$. Classical fact: for 1 , $<math>\delta_{L_p}(\epsilon) \ge \alpha(p-1)\epsilon^2$,

for a universal $\alpha > 0$. Thus

$$eK \ge 2\alpha^{1/2}(p-1)^{1/2}n^{1/2}.$$

Plugging in $p = 1 + \frac{1}{\log k}$ we get $\log k \ge \beta n/K^2$ for a universal $\beta > 0$. This gives the corollary because

$$|D_n| = 2 + 2\frac{4^n - 1}{3}.$$

Another use for the diamond graphs

Let T_n be the dyadic tree of depth n. [Bourgain, '86] proved that a Banach space X is not isomorphic to a uniformly convex space iff T_n embeds into X with distortion independent of n.

[J-Schechtman, '10] proved that a Banach space X is not isomorphic to a uniformly convex space iff D_n embeds into X with distortion independent of n iff the Laakso graph L_n embeds into Xwith distortion independent of n. L_n "looks" a lot like D_n but has bounded geometry.

It is not clear how to derive either result from the other.