Mixed volumes of random convex sets

Peter Pivovarov (joint work with Grigoris Paouris, in progress)

August 3rd, 2010

Outline

I. Expected volume of random sets

Polytopes Zonotopes

II. A generalization

Linear operator viewpoint Main theorem

III. Applications

*L*_p-centroid bodies
Orlicz centroid bodies

Random polytopes

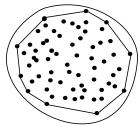
Assume

- $K \subset \mathbb{R}^n$ convex body, $\operatorname{vol}(K) = 1$.
- ▶ *X* random vector distributed uniformly in *K*, i.e.,

$$\mathbb{P}\left(X\in A\right)=\operatorname{vol}\left(A\cap K\right)$$

for measurable $A \subset \mathbb{R}^n$.

- ▶ $X_1, ..., X_N$ independent copies of X,
- convex hull = $\operatorname{conv} \{X_1, \dots, X_N\}$.



Theorem (Groemer, 1974)

Assume

- ▶ $K \subset \mathbb{R}^n$ convex body, vol(K) = 1.
- ▶ $\overline{B_2^n}$ Euclidean ball in \mathbb{R}^n with $\operatorname{vol}\left(\overline{B_2^n}\right) = 1$.

Set

$$\mathbb{E}(K,N) := \int_K ... \int_K \operatorname{vol} \left(\operatorname{conv} \left\{x_1, ..., x_N\right\}\right) dx_1 ... dx_N.$$

Then

$$\mathbb{E}(K, N) \geq \mathbb{E}(\overline{B_2^n}, N).$$

Equality holds only for ellipsoids.

▶ Analogous result holds for $conv \{\pm x_1, ..., \pm x_N\}$.

Generalizations: [Pfiefer '90], [Giannopoulos-Tsolomitis '03], [Hartzoulaki-Paouris, '03], ...

Zonotopes

A zonotope is a Minkowski sum of line segments:

$$\sum_{i=1}^{N} [-x_i, x_i],$$

where the $x_i \in \mathbb{R}^n$ and $[-x_i, x_i] := \{\lambda x_i : -1 \le \lambda \le 1\}.$

Theorem (Bourgain-Meyer-Milman-Pajor, 1988)

Let $K \subset \mathbb{R}^n$ be a convex body $\operatorname{vol}(K) = 1$, p > 0. Set

$$\mathcal{I}_p(K, N) := \int_K \cdots \int_K \operatorname{vol}\left(\sum
_{i=1}^N [-x_i, x_i]\right)^p dx_1 \cdots dx_N.$$

$$\mathcal{I}_p(K, N) \geq \mathcal{I}_p(\overline{B_2^n}, N)$$
.

Linear operator viewpoint

Assume

- $ightharpoonup e_1, \dots, e_N$ standard unit vector basis in \mathbb{R}^N .
- \triangleright $x_1, \ldots, x_N \in \mathbb{R}^n$.
- $ightharpoonup T_N: \mathbb{R}^N \to \mathbb{R}^n$

$$e_i \mapsto x_i, \quad i = 1, \dots, N.$$

As a matrix,

$$T_N = [x_1 \cdots x_N].$$

Write

$$B_1^N = \operatorname{conv}\left\{\pm e_1, \ldots, \pm e_N\right\}, \quad B_\infty^N = [-1, 1]^N.$$

- 1. $T_N B_1^N = \text{conv} \{\pm x_1, \dots, \pm x_N\}.$
- 2. $T_N B_{\infty}^N = \left\{ \sum_i b_i x_i : (b_i) \in B_{\infty}^N \right\} = \sum_{i=1}^N [-x_i, x_i].$

Main result

Theorem (P., Paouris, 2010)

Assume

- ▶ $K \subset \mathbb{R}^n$ bounded, Borel measurable, vol(K) = 1.
- $ightharpoonup T_N(x_1,\ldots,x_N):\mathbb{R}^N o \mathbb{R}^n$, defined by

$$T_N e_i = x_i, \quad i = 1, ..., N.$$

 $ightharpoonup C \subset \mathbb{R}^N$ compact, convex.

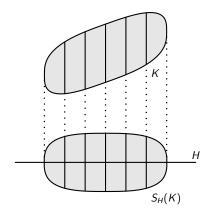
Set

$$\mathbb{E}(K, N, C) := \int_K \dots \int_K \operatorname{vol}(T_N(x_1, \dots, x_N)C) dx_N \dots dx_1.$$

$$\mathbb{E}(K, N, C) \geq \mathbb{E}(\overline{B_2^n}, N, C).$$

Elements of the proof

Common to all proofs: Steiner symmetrization



Sufficient:

$$\mathbb{E}(K, N, C) \geq \mathbb{E}(S_H(K), N, C).$$

Elements of the proof cont...

- ▶ Let *H* be a hyperplane.
- ▶ Assume $y_1, ..., y_N \in H$ are fixed; $Y = (y_1, ..., y_N)$.
- ▶ Fix $\theta \in S^{n-1} \cap H^{\perp}$

Let $\mathcal{T}_N^Y:\mathbb{R}^N o \mathbb{R}^n$ be the operator defined by

$$T_N^Y(t)e_i = y_i + t_i\theta$$
 for each $i = 1, ..., N$,

Lemma

Let $C \subset \mathbb{R}^N$ be a compact convex set. Set $d = \min(n, N, \dim C)$. Let $F_Y : \mathbb{R}^N \to \mathbb{R}^+$ be defined by

$$F_Y(t) = \operatorname{vol}_d\left(T_N^Y(t)C\right).$$

Then F_Y is a convex function.

Generalizations ...

Recall

$$\mathbb{E}(K, N, C) := \int_K ... \int_K \operatorname{vol}(T_N(x_1, ..., x_N)C) dx_N ... dx_1.$$

Similar results hold

- 1. with $\operatorname{vol}(\cdot)$ replaced by $f \circ V_k(\cdot)$ for
 - $V_k = \text{intrinsic volumes}$
 - $f: \mathbb{R} \to \mathbb{R}^+$ any increasing function

2. limits of $(T_N C_N)_N$ in the Hausdorff metric.

Consider independent random vectors

$$X_1, X_2, ... \in K$$
 and $Y_1, Y_2, ... \in \overline{B_2^n}$.

For N = 1, 2, ..., set

$$T_N := [X_1 \cdots X_N]$$
 and $S_N = [Y_1 \cdots Y_N]$.

Corollary

Let $C_N \subset \mathbb{R}^N$, be compact, convex sets for N = 1, 2, ... Let R > 0. Assume that

$$T_N C_N \subset RB_2^n$$
 and $S_N C_N \subset RB_2^n$

and (in the Hausdorff metric)

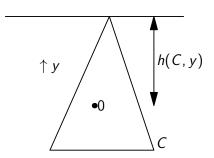
$$\mathcal{C}(K) := \lim_{N \to \infty} T_N C_N \ (a.s.) \ and \ \mathcal{C}(\overline{B_2^n}) := \lim_{N \to \infty} S_N C_N \ (a.s.).$$

$$\mathbb{E} \operatorname{vol} (\mathcal{C}(K)) \geq \mathbb{E} \operatorname{vol} (\mathcal{C}(\overline{B_2^n})).$$

Notation:

For a convex body $C \subset \mathbb{R}^n$, let $h(C, \cdot)$ be the support function, i.e.,

$$h(C, y) = \sup_{x \in C} \langle x, y \rangle \quad (y \in S^{n-1}).$$



Hausdorff metric: for convex bodies $C, D \subset \mathbb{R}^n$,

$$\delta^{H}(C, D) := \sup_{y \in S^{n-1}} |h(C, y) - h(D, y)|.$$

L_p -centroid bodies

Definition

Assume

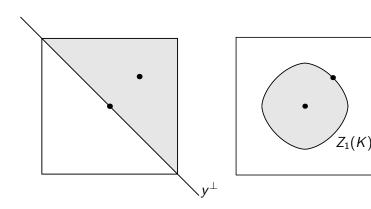
- ▶ $K \subset \mathbb{R}^n$ is bounded, Borel measurable.
- $ightharpoonup \operatorname{vol}(K) = 1.$
- ▶ $p \ge 1$.

The L_p -centroid body $Z_p(K)$ is defined by its support function

$$h(Z_p(K), y) := \left(\int_K |\langle x, y \rangle|^p \, dx\right)^{1/p} \quad (y \in S^{n-1}).$$

Example: $K = [-\frac{1}{2}, \frac{1}{2}]^2$, p = 1.

$$h(Z_1(K), y) := \int_K |\langle x, y \rangle| dx \quad (y \in S^{n-1}).$$



7 v

Support function of $Z_p(K)$:

$$h(Z_p(K),y):=\left(\int_K \left|\langle x,y\rangle\right|^p dx\right)^{1/p} \quad (y\in S^{n-1}).$$

Theorem (Lutwak-Yang-Zhang, 2000)

Let $K \subset \mathbb{R}^n$ be compact. Assume

- $ightharpoonup \operatorname{vol}(K) = 1.$
- ▶ K is star-shaped (i.e. $\alpha K \subset K$ for each $\alpha \in [0,1]$).

Then

$$\operatorname{vol}\left(Z_p(K)\right) \geq \operatorname{vol}\left(Z_p(\overline{B_2^n})\right)$$
.

Equality holds only for ellipsoids.

A different approach

Theorem (P., Paouris, 2010)

Assume

- ▶ $K \subset \mathbb{R}^n$ bounded, Borel measurable.
- $ightharpoonup \operatorname{vol}(K) = 1.$
- ▶ $p \ge 1$.

Then

$$\operatorname{vol}\left(Z_p(K)\right) \geq \operatorname{vol}\left(Z_p(\overline{B_2^n})\right)$$
.

Proof: Take q with 1/p + 1/q = 1 and set

$$B_q^N := \left\{ t \in \mathbb{R}^N : \sum_{i=1}^N |t_i|^q \leq 1 \right\}.$$

Apply $T_N = [X_1 \cdots X_N]$ to B_q^N :

In our set-up:

 $T_N = [X_1 \cdots X_N], N = 1, 2, ...$

Support function of $T_N B_q^N$:

$$h(T_N B_q^N, y)^p = \sum_{i=1}^N |\langle X_i, y \rangle|^p.$$

Support function of $Z_p(K)$:

$$h(Z_p(K), y)^p := \int_K |\langle x, y \rangle|^p dx$$

So, in the Hausdorff metric,

$$Z_p(K) = \lim_{N \to \infty} N^{-1/p} T_N B_q^N \text{ (a.s.)}$$

Orlicz centroid bodies

Theorem (Lutwak-Yang-Zhang, 2010)

Assume

- ▶ $K \subset \mathbb{R}^n$ convex body with vol(K) = 1.
- $\psi:[0,\infty) o [0,\infty)$ convex, \nearrow , $\psi(0)=0$.

Define $Z_{\psi}(K)$ by its support function

$$h(Z_{\psi}(K),y):=\inf\left\{\lambda>0:\int_{K}\psi\left(rac{|\langle x,y
angle |}{\lambda}
ight)dx\leq1
ight\}.$$

Then

$$\operatorname{vol}\left(Z_{\psi}(K)\right) \ge \operatorname{vol}\left(Z_{\psi}(\overline{B_2^n})\right). \tag{1}$$

Equality holds only for ellipsoids.

Remark: For $\psi(s) := s^p$, $Z_{\psi}(K) = Z_p(K)$.

Orlicz-centroid body inequality in our framework

As before:

•
$$\psi:[0,\infty) \to [0,\infty)$$
 - convex, \nearrow , $\psi(0)=0$.

Orlicz norm on \mathbb{R}^N

$$\|t\|_{\psi/N} := \inf \left\{ \lambda > 0 : \frac{1}{N} \sum_{i=1}^N \psi\left(\frac{|t_i|}{\lambda}\right) \leq 1 \right\}.$$

Consider

$$B_{\psi/N} := \{ t \in \mathbb{R}^N : ||t||_{\psi/N} \le 1 \}.$$

As before,

- \triangleright $X_1, ..., X_N$ independent random vectors in K.
- $T_N = [X_1 \cdots X_N].$

Then (in the Hausdorff metric)

$$Z_{\psi}(K) = \lim_{N \to \infty} T_N B_{\psi/N}^{\circ}$$
 (a.s.)

Acknowledgements

I thank

- Nicole Tomczak-Jaegermann
- ► The conference organizers