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Steiner formula for K ¢ R?

d
volg(K + AB) = voli(B)N Vy_;(K)
Jj=0
Vi(K) : intrinsic volumes
Proof Take Jiid isotropic line segments L1, Ly, ..., L,, such that
EL; = By. By the LLN for random convex bodies: for large n,
By ~ (1/n)(Li+ Lo+ -+ Lp)

SO

volg (K + ABy) = volg [K + (A\/n) (L1 + Lo+ - -+ + Lp)] -



For one line segment (i.e., n = 1):
V0|d(K + ()\/n)Ll) = VO|d(K) + ()\/H)‘Ll‘ . VOld—l(an- K).
By induction,

volg [K + (A\/n) (L1 + Lo+ -+ + Lp)] =

> (/n)Svolis; (Ls) volg_ iy (M. K) .
5C{1,2,...,n}
0<|S|<d

where Ls = .5 L;. Equivalently,

d ("
volg [K + (A\/n) (Ly + Ly + - Z )
Jj=0

1
Un = Z vol; (Ls) voly_j (I'ILSL K) (U-statistic) .

(5) 55




V0|d(K+ABd) = ||’r7nv0|d[K—|—()\/n)(L1—|—L2—i——i—Ln)]
d

= > voli(B)N Vy_i(K),
j=0
where

: N d V0|d(Bd) vol: )
09 = () w08 vl £ (90



Key property: For an independent, random orthogonal O,

mo<n;.

But also .
25,010 = Zpjd)s

where Zj; 4 ,is a j x d matrix of independent N(0, 1) variables.

Alternate representation (V, 2008):

(27)//2 Evol; (Zj.aK)
j! VO|j(Bj)

Vi(K) =



Commonly Encountered Intrinsic Volumes

W(K) = 1
Vi(K) = intrinsic width
= V2wEhk(Z) = V2w Esup X;

tek

Vg—1(K) = 1/2-surface area of K
V4(K) = d-dimensional volume of K
Vi(K) = 0 for j>d

Vj([ah bl] X X [ambn]) = Z (b,’l - a,-l) s (b,] - a,j)

i1 <ip <<

Vi(Bg) ~ V2rd



Alexandrov—Fenchel Inequalities for Intrinsic Volumes:

For a fixed K, {f!‘/j(K)}f.io is a log-concave sequence.

» Beckenbach and Bellman, An Introduction to Inequalities, vol.

2 (1) .



A Curious Sharpening

Recall the planar isoperimetric inequality: for any convex body K
with area A(K) and perimeter L(K)

4 - A(K) < L3(K) . (1)

Consider now a triangle K, a 2 x 2 matrix M of independent
N(0, 1) variables, and the image body MK. Insert this into (1) and
take expectations:

41 - E[A(MK)] < E[L*(MK)] . (2)
However, it is the case that a stronger inequality holds:
47 - E[A(MK)] < [EL(MK))® . (3)

That is, the realization-wise bound (2) yields to the sharpened
form (3).



Conjecture: The Alexandrov-Fenchel inequalities can be regarded
in general as sharpenings of realization-wise geometric bounds for
random convex bodies.



Extension of intrinsic volumes to convex bodies in ¢

Kq = convex bodies in R
K = convex bodies in ¢
Kgp = finite—dimensional convex bodies in /5.

For arbitrary K € K, define

(K) = sup{\/j(R) - K C K, REICFD}

Kgg = {KekK:Vi(K) <oo}.

’ICFDC]CGBCIC

» KeKgg = Vi(K)<oo, j=23,...



/2 . .
» KeKgg = Vi(K) = s jF\\,/cjlj((BZj[)J’oo]K), where Z[; ] is

a j x oo matrix of independent N(0, 1) variables.

Gaussian processes — isonormal indexing

Z = (24,25,...), independent N(0,1) random variables.
K C ¥t

teK, t—Xe=<t,Z>=>2,tZ ~ N(O,|t[?)
{Xt,t € K}: isonormally indexed Gaussian process.

An equivalent representation for intrinsic volumes (Tsirel'son,
1985)

(27 Y/2 E vol; ({(x,_},xf, LX) te K})
j! VO|_,'(BJ')




Theorem K € Kgg <= {X:,t € K} is an almost—surely
bounded Gaussian process. That is P(sup,ck, Xt < 00) = 1 for
any denumerable subset Ky C K.

A Classification: Suppose that {a,} is a decreasing sequence of
positive constants and that {e,, n=1,2,...} is an orthonormal
sequence.

Set K = conv{ase,, n=1,2,...}. Then

KeK <= a,l0,
KeKgp <= an,=0 eventually,

KeKgg <= an=0 [(log n)_l/z} .



Example  Brownian Motion Body (BMB)

f :[0,1] — H (Hilbert space)

»0<x<x<x3<x<l =

[f(x2) = Fa)] L [f(a) = F(xs)]

> If(x2) — F(xa)]|? = |x2 — xa| forall 0 < x3 < x < 1.
Call  conv{f([0,1])} a Brownian Motion Body (BMB).
A realization in L2[0,1]: {g:[0,1] = R'|0<g<1, g7}

Theorem [F. Gao and V, 2001]

vol;(B;))

Vi(BMB) = =,

j=1,2,...



Singularities

It is possible to have GB bodies K, — K, but Vj(K,) /~ V;(K),
in particular,

Ko L{p}, but Vi(K,) /Vi({p}) =0.

Definition  t* € K € Kgp is a singularity of K if, as e | 0,

Vi(K N B(t*,¢)) yO.

Definition  Kgc ={K € Kgg : K has no singularities}.

ICFD CICGC C/CGB cK



Theorem K € Kgc <= {X:, t € K} is an almost—surely
continuous Gaussian process. Thatis t, =t = X;, — X;
almost—surely.

A Classification (continued)

K =conv{a,e,, n=1,2,...} € ICGC < ap,=o0 [(Iogn)_l/z} .



[t6-Nisio Theory
Theorem [It6-Nisio, 1969] Suppose that t* € K € Kgg. Then

0 <2-o0sc(t”) = lim sup  Xi— inf  X;
€l0 | teKNB(t*¢) teKNB(t*¢)

is (a.s.) constant. Further, osc(t*) > 0 < t* is a singularity of K.

osc(t*) : oscillation of X at t*

osc(t*) =

\/12? im Vi(K N B(¢",)).



Theorem [V, 2001] Suppose that osc(t*) > 0. Then

» For each j,
Iilrra Vi(K N B(t*,€)) > 0. (4)
3

» KN B(t",0+) =~ \/blrfooBoo(t*,osc(t*)), in the sense that,

for each j, the limit in (4) is equal to

1
lim V; < Bd(t*,osc(t*)> ,

d—oo 27

Q.

J t*
both equating to L().

J!



» Define osc (K) = sup{E osc(t*) : t* € K}. Then

» KeKge = osc(K)=0.

» osc(K) = limj_ o %

» Open question: if osc (K) = 0, how slowly can the previous
sequence of ratios make the approach?



The Wills Functional

_ LIPS 1O :
W(K) = /,;,d(271)d/2€ P dx (Wills, 1973)

1
= WEVO'(K"_AB),

where fa(A\) = 1(A > 0)Ae7(1/2))‘2.
d
_ 2(21)1,/2\/1-(/0.
j=0 <"

—  EeMPeek[Xi—30%]



The Alexandrov-Fenchel inequality implies

Vi(K) < 1|vf( K) = {rEsupXt} .

J: teK
W(rK) = EesqueK[rXti%ﬁU?] S erEsuPtEKXt
(Tsirel'son, 1985; V, 1996, 2001)

P (supXt — Esup X; > a) < e_32/2‘72,
t t

(Maurey-Pisier, 1986; V, 1996, 2001)



Quasi-widths
For K€ K and j =0,1,..., define quasi-widths

A6 _
mJ(K)—\/EVj_l(K) (0/0 =0).

{m;}$° is a decreasing sequence (Alexandrov-Fenchel).
my = Esup;ci Xt.

limj_.oo mj = osc(K).

vV v . vY

For each i, there is the bound
W(rK) < [y (mj/m;)] ™.
For i = 1, this reduces to
W(rK) < e"sP%,

as seen before.



» Maurey-Pisier-type deviation bounds: for each j and a > 0,

P (SupXt -—mj > 3> < [rlj-zl (mj/m,)] e732/(2‘72)'
t

» Open question: is there a relationship between quasi-widths
and Dvoretsky's theorem?
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THE WILLS FUNCTIONAL AND GAUSSIAN PROCESSES!

BY RICHARD A. VITALE

University of Connecticut

The Wills functional from the theory of lattice point enumeration can
be adapted to produce the following exponential inequality for zero-mean
Gaussian processes:

Eexp[sup(Xt - (1/2)at2)] < exp(EsupXt).
t ¢

An application is a new proof of the deviation inequality for the
supremum of a Gaussian process above its mean:

g

1/2)a?
P(supXt — EsupX, > a) < exp(——(——/——g——),
¢ t

where a > 0 and % = sup,0,%.

1. Introduction. The use of geometric methods in the study of Gaussian
processes is by now well established. Our purpose here is to identify a
surprising, and apparently deep, connection in the form of the Wills func-
tional. Originally introduced for bounding lattice point enumeration (see
[23]), the Wills functional is built up from the classical quermassintegrals
(“projection-measure integrals”) of Minkowski, which have effectively been
applied before to Gaussian processes under the name mixed volumes (or
mixed widths) (e.g., [1], [3], [4], [12], [14], [16], [17], [18], [19] and [21]). Placed
in our setting, the Wills functional leads naturally to an exponential moment
inequality for Gaussian processes and, as a corollary, a deviation inequality
for the supremum of a Gaussian process above its mean. The latter is sharp
in the sense of having the best possible constant in the exponent.

In the next section, we discuss two representations for the Wills functional.
Then we turn to the exponential inequality and the deviation inequality.
Section 4 carries some finite-dimensional complements, leading to a second
proof of the deviation inequality. We conclude with some remarks in the last
section.

For Gaussian processes and bounds in particular, see [6] and [9].

Received October 1995; revised February 1996. .

!This work was supported in part by ONR Grant N00014-90-J-1641.

AMS 1991 subject classifications. Primary 60G15; secondary 52A20, 60G17.

Key words and phrases. Alexandrov-Fenchel inequality, Gaussian process, deviation inequal-
ity, exponential bound, intrinsic volume, mixed volume, quermassintegral, tail bound, Wills
functional.
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2. The Wills functional. Suppose that K is a convex body in R? (com-
pact, convex subset) and that 8(x, K) is the distance between x € R? and K.
The Wills functional can be expressed as

(1) W(K) = fRdexp[—waz(x, K)]dx,  dx = Lebesgue measure.

It was observed by Hadwiger [8] that (1) coincides with the original definition
of Wills [23] in terms of quermassintegrals:

(2) W) = 1 (4) Zwee).

j=o\Y

J

Here w; = w//2/T(j/2 + 1) is the volume of the unit ball B; in R/, and the
Jth quermassintegral W,(K) is equal to (w;/w,_))E vol,_/(Il,_,K), where
the expectation is of the (d — j)-volume of the projection of K onto a random
(d — j)-dimensional subspace. It is of interest to consider

d) 1 .
Vj(K)=(j)h(;d—.Wd_j(K)’ OSJSd,
=J

which are normalized versions of the quermassintegrals that do not depend
on the dimension of the ambient space R (e.g., [3] and [10]). Following
McMullen [10], they are known in the geometry literature as the intrinsic
volumes of K [in the probability literature, they have been written 4 (K)].

Here is a sketch of the equivalence of (1) and (2) which has a probabilistic
flavor. We start with the classical Steiner formula for the volume of a parallel
body (which itself can be established using a stochastic argument, [22]; for
the general theory, see [15]):

d
vl(K + AB) = ¥ (?)AJWJ.(K),
j=
where A > 0, or, equivalently,
d g\
(3) [ 1(8(x,K) <A)de= % ( .)AJWj(K).
R4 j—o\J
We then regard A as a random variable with density

(4) f(A) = 1(A = 0)2mAexp( — 7A?)

and take expectations on both sides of (3) with the use of Fubini’s theorem
and the moments EA’ = o; ', j =1,2,... .

We also recall the following bound (see [11]), which is a consequence of the
deep Alexandrov—Fenchel inequality (see [15]):

(5) W(K) <expVi(K).
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3. Bounds. Our main result is as follows.

THEOREM 1. Suppose that {X,, t € T} is a bounded, zero-mean Gaussian
process. Then

(6) E exp| sup {X, - (1/2)0-,2}] < exp[EsupXt],
t t
where o2 = EX?2.

NoTE. Since the process is bounded, it is continuous in probability with
respect to the pseudometric dy(¢,,t,) = \/ E(X, - th)2 . We regard sup, X,

as over a countable, dense (under dy) subset of T. Any other countable,
dense subset of T' gives the same value for sup, X, almost surely.

ProoF oF THEOREM 1. It is enough to show (6) for T'={1,2, ..., n}, a finite
set, since the general case follows by approximation. By the Gram—Schmidt
procedure, there is a collection Z,,Z,,...,Z,, d < n, of independent, stan-
dard Gaussian variables, such that, for 1 < 2 < n and appropriate vectors
a,,a,,...,a, € R,

(7) Xk=<ak,z>:

where Z =(Z,,2Z,,...,Z;,)" € R? and (-, ) signifies inner product. Note
that EX? = lla,|I” and EX, X, = {(a,, a,). Let K c R? be the convex hull of
A ={a,/ V27}}. Employing the natural definition of W(A) (A nonconvex)
and making a change of variables at one point, we have

W(A) = [Rdexp[—wéz(x,A)] dx
= f exp[—winf”x - ak/\/—2_7;”2] dx
R4 k
- /Rdexp[sup(mmk, %) - (1/2)|Iak||2)]exp[—Wllxllz] dx
k
= Eexp[s:p((ak,Z> - (1/2)||ak||2)]

= E exp

sup (X, — (1/2)0,3)].
k

Now A ¢ K implies W(A) < W(K), and, together with (5), we only have to
recall that V,(K) = E sup, X, [e.g., [16], Proposition 14, where it is written
h(K)]. O

As a consequence, we have the sharp deviation inequality.
COROLLARY 1. Under the conditions of Theorem 1, for any a > 0,
(8) P(supXt~EsupXt za) < exp[—(1/2)(a%/0?)],
t t

where 0% = sup,o2.
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The literature contains a variety of applications and results related to (8)
(see, e.g., [6] and [9)]), often associated with Maurey and Pisier (13). See also
the antecedent [4].

PrROOF. We use the inhomogeneity of (6) in a variational argument.
Consider the process {rX,} for fixed r > 0. Then (6) provides

E exp

sup (rX, — (1/2)r2¢rt2)] < exp{ Esuert] .
t t
Since 0,2 < o2 for all ¢, some rearrangement gives
E exp[rs1t1p (X, - Esngt)] < exp|(1/2)r?%s?].
Using Markov’s inequality, we have

P(supXt — EsupX, > a) = P(r[supXt - EsupXt] > ra)
t t t t

= P(exp[suert - Esuert] > exp(ra))
t t

< exp|(1/2)r%? - ra].

Minimizing the last expression over r then yields exp[ —a?(202)"1] at r =
a/c? 0O

4. Finite-dimensional bounds. In general, bounds which are indepen-
dent of dimension are the most useful. Still, we elaborate a dimensional one
here since it leads to a second proof of the deviation inequality. In addition, it
illustrates a different use of the Wills functional, here allied with Urysohn’s
inequality (e.g., [2]; in a probabilistic format, [20]), which we state as follows.

PROPOSITION 1. Suppose that K is a convex body in R%. Then
d

Vi(K) )

Vi(B,) |

As before, B, is the unit ball in R® with volume w,. There is equality in (9) if
and only if K is a ball.

(9) vol(K) < wd(

The bound is as follows.

THEOREM 2. Suppose that {X,, t € T} is a bounded Gaussian process that
can be identified with A c R? via (7). That is, for each t, X, = {a,,Z) for
some a, € V2w A. Then

E sup, X, ¢
(10) E exp|sup X, - (1/2)0,2}] < wdE(illf—t———‘ )
t
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Here A has the density (4), and there is equality if and only if the closed
convex hull of A is a ball.

ProoF. Let K be the closed convex hull of A. By Urysohn’s inequality.

Vi(K) !
VO](K+ABd)Sa)d m‘i‘A .

We then take expectations with respect to A and express the left-hand side as
in the proof of Theorem 1. O

COROLLARY 2. Foreacha >0 andc > 1,

foro- s |

For the proof, we use the following estimate. It bounds a polynomial with
an exponential, but that is sharp enough for our purpose.

1
(11) P|supX, — EsupX, > a] < cdexp[—
: ¢ 20

LEMMA 1.
d

< c%?/¢

(7]
(0 =wE(—+A
d( ) d V](Bd)
forall 6>0,c>1andd =1,2,....

ProOOF. Fix ¢ > 1. We verify the property for each y,(-) by induction on d.
For d =1, ¢(6) = 1 + 6 < ce®/°. Given that the claim has been shown for
¥;_, and noting that y,(0) < ce®/® = ¢, it is enough to compare derivatives.
Using the facts that Vi(B,;_,) < V(B,;) and w,;d = Vi(B,))w,_,, we have

d-1
wyd

Vl(Bd>E(V1(Bd) A

$q(0) =

d-1
A

IA

E|l——— +
@i (vl(Bd_l)

Scd—le()/c — CdeB/c,

de
which completes the proof. O

PROOF OF COROLLARY 2. Consider the process {rX,}. Using the lemma and
a variational argument similar to that for Corollary 1 leads to the assertion.
O

Setting ¢ = 1 gives a second proof of the deviation inequality (Corollary 1).
Finally, we can tailor (11) a bit as follows: let ¢ = 1 + 1/d and using the
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(possibly more accessible) quantity diam(X) = sup, ,dx(¢,t') < V27 E sup, X,
leads to the variant

1 2
TT1 mdlam(X)} .

1 1
P(supX, — EsupX, > a sexpl———z{a+( )
¢ ¢ 20

5. Remarks.

REMARK 1. The connection we have drawn between Gaussian processes
and the Wills functional, which can be thought of as a measure of size for
convex bodies, is in the spirit of [5], which has motivated much work. For
further references on the Wills functional, see the survey [7].

REMARK 2. Derived independently, the bound (6) is formally equivalent to
Corollary 1 of Tsirel’son [18], which is proved by other means. The context
there is different, an infinite-dimensional maximum likelihood problem, and
it is presented with no reference to the bounds for Gaussian processes. In any
case, the interested reader should consult this important paper together with
the others in its series, [17] and [19].

REMARK 3. The corresponding left-tail bound to (8),
(1/2)a? )
2 |

P(supXt — EsupX, < a) <exp|L -
¢ ¢ a

does not seem to be accessible by the approach described here.

Acknowledgments. I am grateful to P. McMullen and J. M. Wills for an
introduction to the Wills functional and to M. Talagrand for the reference to
[4]. The referee made several helpful comments.
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INTRINSIC VOLUMES AND GAUSSIAN PROCESSES

RICHARD A. VITALE,* University of Connecticut

Abstract

Intrinsic volumes are key functionals in convex geometry and have also appeared in
several stochastic settings. Here we relate them to questions of regularity in Gaussian
processes with regard to It6—Nisio oscillation and metrization of GB/GC indexing sets.
Various bounds and estimates are presented, and questions for further investigation are
suggested. From alternate points of view, much of the discussion can be interpreted in
terms of (i) random sets and (ii) properties of (deterministic) infinite-dimensional convex
bodies.

Keywords: Convex body; deviation bound; Gaussian process; GB/GC set; intrinsic
volume; It6—Nisio oscillation; metric; quermassintegral; Steiner point; Wills functional

AMS 2000 Subject Classification: Primary 60G15
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1. Introduction

As functionals on convex bodies, intrinsic volumes have appeared in many stochastic settings,
including geometric probability, integral geometry, and Gaussian processes (e.g. [1], [3], [4],
[12], [17], [19], [201], [21], [22], [23], [24], [32], [33]). Our aim here is to elaborate some further
connections with Gaussian processes that are of interest in themselves and that also hint at a
deeper theory. In particular, we treat (i) geometric formulation of the It6—Nisio oscillation
function, which quantifies the ‘size’ of a discontinuity of a Gaussian process, (ii) metric
categorization of GB and GC sets, which are classes of compact, convex subsets of Hilbert
space distinguished by the behavior of Gaussian processes using them as indexing sets, and
(iii) bounds and estimates associated with (i) and (ii). An important role is played throughout
by the Wills functional, which in a parametrized form provides the generating function of the
intrinsic volumes. :

The plan is as follows. The next section summarizes background and preliminaries for
convenient reference. Connections between It6—Nisio oscillation and intrinsic volumes are
discussed in Section 3. This is followed by a characterization of GC processes based on a new
metrization of convex bodies. Section 5 carries bounds and continuity estimates for intrinsic
volumes and for a vector analogue, the Steiner point. The final section outlines directions for
future work toward a general theory.

Two comments: firstly, from the viewpoint of random sets, the paper can be read as a detailed
study of random convex bodies of the form MK (see Xy below), where K is a convex body
and M is a matrix of i.i.d. Gaussian elements. Among all models for random convex bodies,
this is among the most natural and bears close examination. Secondly, from the viewpoint
of convex geometry, the paper is about the extension of intrinsic volumes, known classically
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as ‘quermassintegrals’, to convex bodies in infinite dimensions, a procedure that (remarkably)
appears to be best described in probabilistic terms.

2. Background

In this section, we gather some preliminaries and notation. Further background on Gaussian
processes and convex bodies can be found, for example, in [13] and [18] respectively.
The setting is £, with standard basis

e; =(0,0,...,0,1,0,0,...), ji=12,...,
—_———
j—1

inner product (-, -}, norm | - ||, and closed unit ball B. The closed line segment between
x,y is [x, y]. Finite-dimensional Euclidean space R”" is freely identified with the span of
e1, e, ...,e, using the same notation for inner product and norm. Orthogonal projection of
£, onto the spans of ej, €, ..., e, and e,11, en+2, ... are denoted by 7, and 7, respectively.
In R”, the unit sphere is $"=1 and the closed unit ball By, (we specify that, in either R” or £5,
B(x, r) stands for the closed ball of radius r and centered at x). Volume (Lebesgue measure)
in R” is vol,, (-) with @, = vol,(B,) = #™?/T(1 + n/2).

We denote by K ,, and K the collections of convex bodies (i.e. non-empty, compact, convex
subsets) in R” and £; respectively. The collection of all finite-dimensional convex bodies in
£ is Kgp C K. Minkowski addition of sets is signified by +. We say that K, K, are
equalized by L if K1 € K> + L and K> € K1 + L. The support function g of a convex
body K is given by hx (x) = sup{{x,t) |t € K}, and the norm of K, written | K ||, or ok, is
sup{||t]| | ¢ € K}. Distance on X is given by the Hausdor{f metric pu(K1, K2) = inf{e > 0|
K, CK;+¢B,Ky, C K; +¢B}.

For Gaussian processes, let Z = (Z1, Z», ...) comprise a sequence of independent stan-
dard Gaussian variables. While Z ¢ f;, almost surely, there is, for every ¢ € £, almost
sure (conditional) convergence of the sum Zf" t;Z;, which represents a Gaussian variable
(written below as either (¢, Z) or X;) having mean 0 and standard deviation ||£||. In addition,
cov(Xs, Xp) = EX Xy = (t,t'). For K € X, we write Xg for the Gaussian process
{X: = (t,Z), t € K}. Expressions such as sup,.x X; mean sup,.pcx X¢, where D is a
countable, dense subset of K (the particular subset is immaterial almost gurely).

The Steiner formula for the volume of a parallel body to a convex body has, for K € X,
and A > 0,

n

voly (K +ABy) = (”) MW;(K).
: J
j=0
It can be shown that the coefficients (quermassintegrals) satisfy W;(K) = (wp/wn—j) X
Evol,_ j(ITjp— j, mK), where I, ; ) signifies the first n — j rows of a random (normalized
Haar measure) n x n orthogonal matrix (see e.g. [27]). Dependence on the dimension # is
removed by re-normalization to the intrinsic volumes [14]:

Wo_j (K
Vi(K) = (;l) w;()
n—j

other properties can be found in [16] and [18]. In~[4] gnd [19],~ intrinsic volumes were
extended to X with the definition V;(K) = sup{V;(K)| K C K, K € Kgp}. An alternate

representation (essentially appearing in [23]) considers, for each j, the vector process X ,’ Y=
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(X fl) , X ;2), X ﬁj )), where the components are independent copies of X;. Setting X }{* =
conv{X;*, t € K} € R/ (conv is introduced to avoid irrelevant measurability questions) leads
to V;(K) = (2m)I/2 Evol;(X}")/w; j!. For later reference, the intrinsic width V1 (-) satisfies
Vi(K) = 2m)' /2 Esup,cx X; with Vi([x, y]) = Ilx — y[; also, Vi(B,) = (27)'/?E(Z} +
Z2 + .-+ Z2)Y/2 ~ (27n)'/2. The Wills functional for Xx ([9], [10], [23], [28], [31], [34])

is given by
W(K) = Eexp{sup[X, — %cr,z]}, oy = ,/EX,Z
tek

and provides the generating function of the intrinsic volumes:

o0 j
WeK) =Y (J_iz_;) Vi(K), r>0. )

j=0

3. Oscillation

A convex body K € X is said to be GB (Gaussian bounded), or GC (Gaussian continuous),
if X ¢ has, respectively, a version with bounded or continuous sample paths. With the class Krp
of finite-dimensional convex bodies, we have the respective classes Kgc and Kgp satisfying
Kep C Kgec C Ko C K. They have been studied from many points of view, and in
particular the following features of Kgp ([4], [15], [19]) are basic:

Theorem 1. If K € X, then K € Kgp if and only if Vi(K) < oo, in which case Vj(K) <
VI (K)/jlfor j=2,3,....

From now on, assume that all convex bodies are in Kgg.
The classic result of It6 and Nisio [11] asserts that

lirrb [sup{X; |t € K N B(f, &)} —inf{X; |t € K N B(Z, ¢)}] 2)

exists as an almost sure constant, which we label 2 osck (f) (we depart from convention and
introduce the factor 2 for later convenience). Geometrically, (2) says that the random interval

linf(X: |t € K N B(, &)}, sup{X; |t € K N B(E, &)}]

tends almost surely to the non-random interval [— oscg (£), osck (£)]. Our first result extends
this to higher dimensions and indicates further that at a point # of discontinuity, a small ball
neighborhood KNB(t, ¢) itself generically resembles a ball (of small radius and high dimension,
irrespective of any other features of K).
Theorem 2. As e — 0,
(i) the random convex body X ;(* B
B;(0, 0sc(d) for j=1,2.. " "°

tends almost surely in the Hausdorff metric to

(i) W(r(K N B(,€))) — exp(osc(f)r), which coincides with limy_, 0o W (r(1/(2n)/2)
B, (0, osc(£))).

Proof. Foru € S/—1,

hyw () =sup{(u, X]*)|t € KN B, &)},

KNB(f,¢)
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which is equal in distribution to sup{X, |t € K N B(t, £)} and hence almost surely convergent
to osc(f). Recalling that pointwise convergence of support functions implies Hausdorff metric
convergence yields (i). It follows that for each j, V;(K N B(f, &)) — ((2m)Y/2 osck (£))7 /]!,
so that by the dominated convergence theorem, W (r(K N B(t, £))) — exp(osck (£)r). For the
last assertion, let A have density A — 1(A > 0)27 A exp(—-nkz). Then [28]

W ( T B0, osc(i))) = Evol, [(M + 271A> B,,]

W 2nn N 2mn
_ i(n) wp, [oscx(r /
=0 J) on—j 27n '

() () -
J) @wn—j 2nn I5

with a dominating sequence of the form ¢/ /j!.

Standard estimates provide

An important parameter is osc(K) = sup{oscK(f)lf € K}. For example, K € Kgc if
and only if lims_,o Vi (K N B(t, §)) = 0 for every f € K, so that osc(K) = 0 if and only if
K € Kgc. We show next that osc(K) can be read off from the intrinsic volumes. At least
formally, this can be done in two ways. Consider the following maps for r € [0, oc) and
jef{1,2,...}

r— Lg(r) =log W(rK),
V2 Vi_1(K)
Proposition 1. (i) The function £k is positive, increasing, concave, and bounded above by
Qo) 12vi(K)r.

jr>mj(K)= (by convention, 0/0 = 0).

(ii) The sequence m ; (K) is positive and decreasing.
Proof. In (i), the first two properties are clear from (1); concavity follows from [31,
Lemma 2]. The exponential bound appears in [15] (see also [23], [28], [31]), as does (ii).

Theorem 3. For K € KgB
d
osc(K) = lim —{£g(r) = lim m;(K).
r—>oo dr j—oo

Proof. By the proposition, lim,_, o (d/dr)fg (r) = lim, £ (r)/r. Let t € K. Theo-
rem 2 and the monotonicity of W (-) show that exp(osc(f)r) < W(r(K N B({, 1)) < W(rK).
Taking logarithms and a supremum over ¢ € K gives osc(K) < lim, £k (r)/r. Conversely,
let ¢ > 0. There is an open cover for K of sets Int[B(Z, £(f))], where Vi (K N B(£, §(f))) <
(27)2[osc(f) + €]. Compactness of K gives a finite subcover, say indexed by t, ..., tn; let
K; = K N B(#;, 8(t;)). Then

Y Y &
W(rK) <) WrK) < Zexp[ o r],

so that £x (r)/r < osc(K) + ¢ + o(1), and hence lim, £x (r)/r < osc(K).

i=1 i=1
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Next, (d/dr)W(rK) = 3_32(r/(27)"/2)/V;(K)m 11 (K). Monotonicity of the m; se-
quence implies that this is bounded from below by [lim; m ; (K)]W (r K), so thatlim; m ; (K) <
lim,(d/dr)€k (). Similarly, for any j, there is an upper bound of the form m;(K)W (rK)

+ o(r’), which implies that lim,(d/dr)W(rK)/W(rk) < mj and lim,(d/dr)lg(r) =<
lim]~ mf(K).
As an application, there is an alternate proof of a deviation bound ([6]; see also [13]):

Theorem 4. For K € Kgg and a > 0,

2
logP(sup X >a+ osc(K)) = _a_2 + o(a), 012( = sup X,z.
K 20 tek

Proof. Following an argument in [28],

2 2
logP(supX, >a+ osc(K)) < % + L (r) —r(a + osc(K))
K

forr > 0. Lettingr = a/a,z( gives the bound —(a2/2012{) + ek (a/cr,z() - (a/cr,z() osc(K), and
the result follows.

As a final note, we mention that the intrinsic volumes associated with Brownian motion have
recently been determined [7]. This led to a conjectured phase transition in the gap between GB
and GC sets:

Conjecture 1. Eitherlim;jm; > 0orm; = O(j‘l/z),

4. Metrization

Discontinuity of a Gaussian process clearly presents special problems for analysis. The
sequel presents a general setting in which, on the contrary, continuity of the process is assured.
This is done with a characterization of Kgc; the following section shows, with specific bounds,
continuity of the intrinsic volumes and Steiner point on Kgg.

Our point of departure is that, geometrically, a discontinuity of a Gaussian process can be
regarded as a diameter/intrinsic-width anomaly (which can occur only in infinite dimensions).
This is when K, | {f}, that is, diam(K,) | O, but in such a way that Vi(K,) 4 0. This
suggests focusing first on the continuity properties of Vi. Examples show that the classic
Hausdorff metric for convex bodies must be replaced with a more delicate one. The following
is natural:

ov, (K1, Kp) = inf{Vi(L) | K1, K7 are equalized by L € X}.

Proposition 2. (i) On Kgg, pv, is a (finite) metric.
(i) If K1, K € R?, then

pH(K1, K2) < pv, (K1, K2) < Vi(Bp)pu(K1, K2). 3)

Proof. For (i), note that if K1, K» € Kgs, then they are equalized by L = conv[(K| +
(—K2)) U ((—K1) + K2)] € Kgg, so that py, (K1, K3) is finite. It is easy to see that if L
equalizes K and K7, then 0 € L and consequently o7, = ||L|| < Vi(L), since x € L with
x|l = IIL| implies that if [0,x] C L, then [L|| = [lx] = Vi([0,x]) < Vi(L) by the
monotonicity of V;. It follows that if py, (K1, K2) = 0, then K1 = K. The triangle inequality
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follows from the (sub)-additivity of V;(-). For (ii), if L equalizes K1, K3, then so does || L|| B,
and thus pg(K1, K2) < ||L|| < Vi(L). On the other hand, if ¢B, equalizes K1, K3, then
ov, (K1, K2) < Vi(eB,) = €V1(By), and the right inequality of (3) holds as well.

We then have the following characterization of Kgc:
Theorem 5. The completion of (Xrp, pv,) is (Kac, pvy)-

Note that this parallels the classic observation that completing {Krp, pn} leads to {X, pu}
(e.g. [2]). The proof is based on two lemmas.

Lemma 1. Suppose that K € Kgp. Then, asn — 00, Sup,cx > o tiZ; converges to a
nonnegative constant almost surely and in L.

Proof. Form =..., =2, —1,1et Ry, = Sup,cg > oo tiZisand Fon = 6 (Z_m, Z_m1, - .. ).
Then E[Rp+1 | Fiml = E[sup,egx Y n 1 Zi | Zomy Zomt1, .. ] = SUPjeg D oy iZi =
Ry, so that {R,,, F,,} is a reverse submartingale. If 0 € K, then 0 < inf,, R,, almost surely.
This suffices for almost-sure and L; convergence of the R,,. The limit variable is obviously
tail-measurable and so must be a nonnegative constant. If 0 ¢ K, note that the argument holds
for K — £, € K, but the shift is asymptotically negligible since (7,£, Z) — 0 almost surely.

Lemma 2. Suppose that K € XK is such that, for arbitrary ¢ > 0, there are K| € Kgp and
Ky € Kgg with K € K1 + K, and Vi(K3) < &. Then K € Kgc.

Proof. For arbitrary ty € K, it must be shown that V; (K N B(#g, £)) — Oas& — 0. Assume
that K, &, K1, K are as described, and assume also (without loss of generality: effected by
a translation if necessary) that £ = 0 € K N K1 N K;. We orthogonalize the inclusion
K C K1+ K> as follows: let g, stand for projection onto the subspace spanned by vectors in
K1 and Tk, for projection onto the complementary subspace. Since K» € g, K> + Tk, K2,
K C [K1+ 7k, K2]+ Tk, K2, where again the first summand in brackets is finite-dimensional
and the second satisfies Vi(Tk, K2) < Vi(K2) < &. Additionally, the two now reside in
orthogonal subspaces. This implies the following inclusion upon intersection with the ball
B(0, &):

KNB(0,8) C{[K1+ 7k, K21NB(0,8)}+ {Tk, K2 N B0, &)}

Applying V1 (-) gives

Vi(K N B(0,8) < Vi([K1 + g, K21 N B(0, &) + Vi(Tk, K2 N B(0, €))
< Vi([K1 + g, K21 N B(0, 8)) + €.

As & — 0, the first quantity on the right tends to zero since Xrp C Kgc. Since ¢ > 0 was
arbitrary, it follows that limz_,¢ V1(K N B(0, £€)) = 0, and this completes the proof.

Proof of Theorem 5. The proof is in two parts, showing (i) that {Kgp, pv,} is dense in
{Kac, pv,} and (i) that {Kgc, pv,} is complete.

(i) Suppose that K € Kgc. Without loss of generality, 0 € K. An argument by contradiction
will show that py, (m, K, K) — 0 as n — oo. Suppose that this is not the case. It is
easy to see that m,K and K are equalized by L, = conv(7,K, —7,K). This implies that
v, (K, K) < Vi(Lp) £ Vi@, K) + Vi(—7,K) = 2V1(w,K) < oo. By Proposition 1,
it must be the case that, as n — oo, Vi(m,K) = (2n)1/2Esup,€K foj_l 4 Z; tends to a
constant ¢, where, by hypothesis, ¢ is strictly positive.
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There is a halfspace bisection procedure for localizing this phenomenon: given a unit
vector e, let o = %(min,eK(t, e) + max,ck (t, e)), and define K, K” € Kgc by K =
KNix|(x,e) < a}, K" = KN{x]a < (x,e)}. By the same reasoning as above,
Vi@uK') - ¢ > 0and Vi (m,K") — ¢” > 0. Further, since 7,K = conv(m,K', T,K"),
we have sup;ez (¢, Z) = max{supsez, g/ (¢, Z), SUPser, x(t, Z)}. Lemma I implies that
this equation has the almost sure limiting form ¢ = max{c/, ¢}, that is, ¢’ = ¢ and/or
¢’ = c. There is a program of such bisections yielding a nested decreasing sequence of
sets K D K 2 KU+D o ... such that, for each j, Vi (K?)) = ¢ > 0 and diam(K 1)) — 0.
By the compactness of K, t* = () j K exists, and the bisection construction implies that

Vi(K N B(t*, €)) 4 0as & N\ 0. This however contradicts the assumption that K € Kgc.

(ii) To show that {KGc, pv, } is complete, assume that the sequence {K ;} is oy, -Cauchy. Then
it is also pg-Cauchy and, since (K, py) is complete, there is convergence K ; PR K for some
K € X. We show that K € Kgc and that K ; e K. Begin by extracting a subsequence of
indices j; < jo» < --- increasing sufficiently fast s0 that oy, (Kj;, K, |) < 2= 1t follows
that there are L1, Ly, ... € Kgp with Vi(L;) < 27" and such that K;;, K, | are equalized
by L;. Since 0 € L; foreachi, L,, € L}, = Z;’o L; € Kgp with V((L}) < 21-m 1t
follows that for m < n, Kj,,, K;, are equalized by L. Letting n — oo then yields that
K., K are equalized by L7 . Putting these facts together implies that the sequence {K j,}, and
hence the original sequence {K ;}, converges py, to K. By part (i), n can be taken sufficiently
large so that K, C n,K;, + 7,K;,, where V{(7,K},) is arbitrarily small. It follows that
K;, € mK;, +[7nKj, + L},], and by Lemma 2, K € Kgc.

Remarks. (i) The last argument can be modified in an obvious way to show that {Kgg, pv, }
is complete.

(ii) The fact that py, (7, K, K) — 0 for K € Kgc is folklore; a proof for balanced convex
bodies was given in [21]. From there, we have used the martingale idea in a slightly different
fashion.

5. Continuous functionals on {K g8, pv,}

In this section, we show that continuous functionals on {KGg, pv;} include the intrinsic
volumes, the Wills functional, and a related vector functional, the Steiner point. A bound for
the kernel of the Wills functional is the starting point:

Theorem 6. For K|, K> € Xgg,

E exp(sup{Yt - %atz}) - exp(sup {Xs — %o*sz})
teks seky
< [Q(K1) + Q(K2)]pv, (K1, K2) exp(2p7, (K1, K2)), )

where Q(K) = 2[2 + og]exp(1 + Vi(K) + 02).

Proof. Use the isonormal representations Xg = (s, Z), Yy = (¢, Z) and, for K € Kgg,
set W(Z, K) = sup,e[(t, Z) — 31£]1%], so that the aim is to bound E |e¥(Z-K2) — e¥(Z.K1)|,
Suppose that L € Kgp equalizes K1, K». Then

eV(Z.K2) _ W(Z K1) < QVZKi+L) _ JV(ZKY),

eV(Z.K) _ W(ZK2) _ (V(ZKo+L) _ V(Z.K2)
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so that it suffices to bound Y"7_, E[e¥ % Ki+L) _ ¢¥(Z.K] Treating one of the terms and
omitting subscripts, let J = E[e¥(ZK+L) _ e¥(Z.K)] [t is elementary that eV (Z-K+L) _
eV@K) < [W(Z,K + L) — W(Z, K)]eY#XK+L) . An application of the Cauchy-Schwarz
inequality provides

[t +w, Z) — 3lIt +wl*) = [, Z) — L1ie1?] < (w, Z) + [1£]]]|w]],

which, upon rearrangement and taking suprema, yields W(Z, K + L) — W(Z,K) <
SUpyer (W, Z) + ogor. This is bounded above by [sup,c; (w, Z) — Esup,¢; (w, Z)]+ +
Esup,,c; (w, Z)+ogor, and in turn [sup,; (w, Z) —Esup,c; (w, Z)]+ +(1/Q2n) 2 +ok)
x V1(L) where we have used o, < Vi(L). Applying the Cauchy—Schwarz inequality again
together with Jensen’s inequality twice gives

1 2
J? < EH sup (w, Z) — E sup (w, Z)] + (——— + aK) V1(L)} Ee?V(Z.K+L)
+

wel wel V21
2 2
1
< 2E{ [ sup (w, Z) — E sup (w, Z)] + (— + 0K> V12(L)} Ee?¥(Z.K+L)
wel wel + N2
2
1
< 2E[[sup(w, Z) — E sup (w, Z)] + (— + 20};) V12(L)} Ee?V(ZK+D) (5
wel wel + s

Then Theorem 4 gives

2 00 2
E[sup(w, Z) — E sup(w, Z)] =f P[(sup(w, Z) — E sup(w, Z)) > x]dx
0

wel wel + wel wel +
00
=f P[(sup(w, Z) — E sup(w, Z)) > ﬁ] dx
0 wel wel +

o0
< f e /%L dx = 202 < 2VA(L),
0

so that the first expectation in (5) is bounded above by (2 + 1/7 + 20,2{)V12 (L), or (loosely)
42 + ch]2V12 (L). To estimate the expected exponential in (5),

2V(Z,K+L)=2 sup [(t+w Z)— Lt +w|?
teK,wel

= sup [2(t+w,Z) =2/t +w|®+ |t + w]?]

teK,wel

< sup RE+w Z)-2t+w|? 1+ sup |t +w|?
teK,wel teK,wel

< sup [2(t+w, Z) =2t + w|*] + [ok +or]?
teK,wel

< sup [2(t+w, Z) 2|t +w|*]+2[0Z + 0}]
teK,welL

< sup [2(t+w, Z) -2t + w|?] + 202 + VA(L)].

teK,wel



362 ¢SGSA R.A. VITALE

A previous estimate ([23], [28]) implies that

Ee2V(Z.K+L) < exp{zE sup (¢t +w, Z)+2[02 + V12(L)]}

teK,welL

2
< exp {\/;[VI(K) + Vi)l + 2o + VE(L)]}
< exp{2[1 + Vi(K) + o + 2VE(L)]}.
Putting these bounds together and taking a square root yields
J <202+ og ety (1) 2V D),

Summing for K = K, K7 and minimizing the result over equalizing L yields (4).
Continuity properties are now straightforward to show (for an alternate formulation using
different methods, see [8, Proposition 2.4.1]).

Theorem 7. The Wills functional and all intrinsic volumes are continuous on (Xgs, pv;).

Proof. Letting K1 = K and K» = K, in (4), note that Q(K,) remains bounded as
pv,(Kn, K) — 0 since K, € K + L implies that V1(K,) < Vi(K) + Vi(L) and og, <
ox + o1 <og + Vi(L). Then

IW(K,) — W(K)| = ‘Eexp[ sup [Y; — %0,2]} - Eexp[sup[X, — %0,2]”
tekKy tek

<E

exp[ sup[Y; — %0,2]} - expisup[X, - %0,2]}
tekK, tek

and (4) imply the continuity of W(-). For the intrinsic volumes, we show a somewhat stronger
assertion: suppose first that K1, K» € Kgp and that L equalizes them. Then, for each j =
1,2,...,Vij(Kp) — Vj(Ky) < Vj(K1 + L) — V;(K1) and the corresponding relation with K
and K reversed. It follows that [V;(K2) — V; (K| < [V;(K1+L) = V;(KD]+[V;(K2+ L)
~ V;(K3)]. Multiplying this bound by (27r)~4/2, summing over j, and noting (1) yields

> @r)y I |Vi(Ka) = Vi(KD| < [W(Ky + L) = WKD] + [W(K2 + L) = W(K2)].
j=0

As in the proof of Theorem 6, the infimum of the right-hand side over all L equalizing K1, K>
is majorized by the bound (4).

We conclude this section with a related result. Several years ago the author was first
introduced to this topic by a question of Zvi Artstein about high dimensional behavior of
the Steiner point, which is a vector analogue of intrinsic volumes and a natural centroid for
finite-dimensional convex bodies. At that time, a negative result was shown: there is a sequence
of (finite-dimensional) convex bodies that is py-convergent to an infinite-dimensional body and
such that the associated sequence of Steiner points does not converge. Indeed, one can arrange
to have any point of the limit body as the limit of such a sequence of Steiner points ([25]). In
present terms, this flexibility is afforded by the limit body’s not being GB. By contrast, we have
now the following positive result.
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Theorem 8. The Steiner point map s : Kgp — £2 is pv, -Lipschitz continuous.

Proof. Recall the Gaussian interpretation s(K) = E[hx (Z)Z] ({4], [25], [29], [30]). For a
unit vector # and K1, K, € KGs,

(s(K2) — 5(K1), u) = E[hi,(Z) — hi,(Z2))(u, Z), Q)

so that the Cauchy—Schwarz inequality implies that the square of (6) is bounded above by
E|hg,(Z) — hk,(Z) 2 (uniformly in #). Then it is enough to show (more generally) that, for
p > 1, there is a constant c;, such that

E|hg,(2) — hi, (D)IP < cppyy, (K1, K2) )

(for a related metric, see [26]). This follows from a Khintchine—Kahane bound (e.g. [5,
Section 3.2]): suppose that K, K, are equalized by L. Then, for all x, |hg,(x) — hg,(x)| <
hp(x),sothatE |hg,(Z) — hg (Z)|P < Eh’L’(Z). Now

[e.¢]

% EhL(Z)
Ehy(Z) =/0 prP~'PlhL(Z) > r]dr =](; +/E

hi(Z)

Eh(Z) %) ’ )
5/ prp_ldr+/ prP=le /D) 4
0 EhL(Z)

oo
< [Eh (D)) + f plors + Ehy(2))"~ e~ Poy ds
0

Vi(L P o0
s[—j—%] +[v1(L)]PfO p(s +1/3/2m)P~Le s’/ 4.

Minimizing over L yields (7) with ¢, = (1/21)'/2)P + [ p(s + 1/(2m)/2)P~1 e=5*/2 ds.

6. Future directions and speculation

As the foregoing sections indicate, important properties of a Gaussian process are mirrored in
its intrinsic volumes. Toward a deeper theory (as well as for a new source of estimates, bounds,
etc.), we can ask how far this can be pushed, i.e. for the nature of equivalence classes of Gaussian
processes reduced modulo equality of intrinsic volumes. This seems to be a difficult question
at present, but, as a first step, a characterization of the class of intrinsic volume sequences is
relevant; some progress along these lines will appear elsewhere. There is a sense as well in
which the treatment of this paper has been ‘in the mean’. There is, for example, the following
intriguing combination of formulas from Section 2

[o¢]
1 .
Eexpisup[X, - %0,2]} = E[Z —.,VOlj(X?)],
tek =0 wjJ:

and we can ask if there is any sense in which the expectations can be dropped.
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