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Steiner formula for K ⊂ IRd

vold(K + λB) =
d∑

j=0

volj(Bj)λ
j Vd−j(K )

Vj(K ) : intrinsic volumes

Proof Take iid isotropic line segments L1, L2, . . . , Ln, such that
EL1 = Bd . By the LLN for random convex bodies: for large n,

Bd ≈ (1/n) (L1 + L2 + · · ·+ Ln)

so

vold (K + λBd) ≈ vold [K + (λ/n) (L1 + L2 + · · ·+ Ln)] .



For one line segment (i.e., n = 1):

vold(K + (λ/n)L1) = vold(K ) + (λ/n)|L1| · vold−1(ΠL⊥1
K ).

By induction,

vold [K + (λ/n) (L1 + L2 + · · ·+ Ln)] =∑
S⊆{1,2,...,n}

0≤|S|≤d

(λ/n)|S| vol|S | (LS) vold−|S |

(
ΠL⊥S

K
)
,

where LS =
∑

i∈S Li . Equivalently,

vold [K + (λ/n) (L1 + L2 + · · ·+ Ln)] =
d∑

j=0

(
n
j

)
nj

λjUjn.

Ujn =
1(
n
j

) ∑
|S |=j

volj (LS) vold−j

(
ΠL⊥S

K
)

(U-statistic) .



vold (K + λBd) = lim
n

vold [K + (λ/n) (L1 + L2 + · · ·+ Ln)]

=
d∑

j=0

volj(Bj)λ
j Vd−j(K ),

where

Vj(K ) =

(
d

j

)
vold(Bd)

volj(Bj) vold−j(Bd−j)
E volj (ΠjK ) .



Key property: For an independent, random orthogonal O,

ΠjO
d
= Πj .

But also
Z[ j ,d ]O

d
= Z[ j ,d ],

where Z[ j ,d ] ,is a j × d matrix of independent N(0, 1) variables.

Alternate representation (V, 2008):

Vj(K ) =
(2π)j/2 E volj

(
Z[ j ,d ]K

)
j! volj(Bj)

.



Commonly Encountered Intrinsic Volumes

V0(K ) = 1

V1(K ) = intrinsic width

=
√

2π EhK (Z ) =
√

2π E sup
t∈K

Xt

...

Vd−1(K ) = 1/2 · surface area of K

Vd(K ) = d-dimensional volume of K

Vj(K ) = 0 for j > d

Vj([a1, b1]× · · · × [an, bn]) =
∑

i1<i2<···<ij

(bi1 − ai1) · · · (bij − aij )

V1(Bd) ∼
√

2πd



Alexandrov–Fenchel Inequalities for Intrinsic Volumes:

For a fixed K , {j!Vj(K )}∞j=0 is a log-concave sequence.

I Beckenbach and Bellman, An Introduction to Inequalities, vol.
2 (!) .



A Curious Sharpening

Recall the planar isoperimetric inequality: for any convex body K
with area A(K ) and perimeter L(K )

4π · A(K ) ≤ L2(K ) . (1)

Consider now a triangle K , a 2× 2 matrix M of independent
N(0, 1) variables, and the image body MK . Insert this into (1) and
take expectations:

4π · E [A(MK )] ≤ E
[
L2(MK )

]
. (2)

However, it is the case that a stronger inequality holds:

4π · E [A(MK )] ≤ [EL(MK )]2 . (3)

That is, the realization-wise bound (2) yields to the sharpened
form (3).



Conjecture: The Alexandrov-Fenchel inequalities can be regarded
in general as sharpenings of realization-wise geometric bounds for
random convex bodies.



Extension of intrinsic volumes to convex bodies in `2

Kd = convex bodies in IRd

K = convex bodies in `2

KFD = finite–dimensional convex bodies in `2.

For arbitrary K ∈ K, define

Vj(K ) = sup
{

Vj(K̂ ) : K̂ ⊆ K , K̂ ∈ KFD

}
KGB = {K ∈ K : V1(K ) <∞} .

I KFD ⊂ KGB ⊂ K

I K ∈ KGB =⇒ Vj(K ) <∞, j = 2, 3, . . .



I K ∈ KGB =⇒ Vj(K ) =
(2π)j/2 E volj(Z[ j,∞]K)

j! volj (Bj )
, where Z[ j ,∞] is

a j ×∞ matrix of independent N(0, 1) variables.

Gaussian processes – isonormal indexing

Z = (Z1,Z2, . . .), independent N(0, 1) random variables.

K ⊂ `2

t ∈ K , t 7→ Xt = <t,Z> =
∑∞

i=1 tiZi ∼ N(0, ‖t‖2)

{Xt , t ∈ K}: isonormally indexed Gaussian process.

An equivalent representation for intrinsic volumes (Tsirel’son,
1985)

Vj(K ) =
(2π)j/2 E volj

(
{(X 1

t ,X
2
t , . . . ,X

j
t ), t ∈ K}

)
j! volj(Bj)

.



Theorem K ∈ KGB ⇐⇒ {Xt , t ∈ K} is an almost–surely
bounded Gaussian process. That is P(supt∈K0

Xt <∞) = 1 for
any denumerable subset K0 ⊂ K .

A Classification: Suppose that {an} is a decreasing sequence of
positive constants and that {en, n = 1, 2, . . .} is an orthonormal
sequence.

Set K = conv{an en , n = 1, 2, . . .}. Then

K ∈ K ⇐⇒ an ↓ 0,

K ∈ KFD ⇐⇒ an = 0 eventually,

K ∈ KGB ⇐⇒ an = O
[
(log n)−1/2

]
.



Example Brownian Motion Body (BMB)

f : [0, 1]→ H (Hilbert space)

I 0 ≤ x1 ≤ x2 ≤ x3 ≤ x4 ≤ 1 =⇒

[f (x2)− f (x1)] ⊥ [f (x4)− f (x3)]

I ‖f (x2)− f (x1)‖2 = |x2 − x1| for all 0 ≤ x1 ≤ x2 ≤ 1.

Call conv{f ([0, 1])} a Brownian Motion Body (BMB).

A realization in L2[0, 1]: {g : [0, 1]→ IR1 | 0 ≤ g ≤ 1, g ↑ }.

Theorem [F. Gao and V, 2001]

Vj(BMB) =
volj(Bj)

j!
j = 1, 2, . . .



Singularities

It is possible to have GB bodies Kn → K , but Vj(Kn) 6→ Vj(K ),
in particular,

Kn ↓ {p}, but V1(Kn) 6↓ V1({p}) = 0.

Definition t∗ ∈ K ∈ KGB is a singularity of K if, as ε ↓ 0,

V1(K ∩ B(t∗, ε)) 6↓ 0.

Definition KGC = {K ∈ KGB : K has no singularities}.

KFD ⊂ KGC ⊂ KGB ⊂ K



Theorem K ∈ KGC ⇐⇒ {Xt , t ∈ K} is an almost–surely
continuous Gaussian process. That is tn → t =⇒ Xtn → Xt

almost–surely.

A Classification (continued)

K = conv{an en, n = 1, 2, . . .} ∈ KGC ⇐⇒ an = o
[
(log n)−1/2

]
.



Itô-Nisio Theory

Theorem [Itô-Nisio, 1969] Suppose that t∗ ∈ K ∈ KGB. Then

0 ≤ 2 · osc(t∗) = lim
ε↓0

[
sup

t∈K∩B(t∗,ε)
Xt − inf

t∈K∩B(t∗,ε)
Xt

]

is (a.s.) constant. Further, osc(t∗) > 0⇔ t∗ is a singularity of K .

osc(t∗) : oscillation of X at t∗

osc(t∗)
a.s.
=

1√
2π

lim
ε↓0

V1(K ∩ B(t∗, ε)).



Theorem [V, 2001] Suppose that osc (t∗) > 0. Then

I For each j ,
lim
ε↓0

Vj(K ∩ B(t∗, ε)) > 0. (4)

I K ∩ B(t∗, 0+) ≈ 1√
2π·∞B∞(t∗, osc (t∗)), in the sense that,

for each j , the limit in (4) is equal to

lim
d→∞

Vj

(
1√
2πd

Bd(t∗, osc (t∗)

)
,

both equating to
osc j (t∗)

j!
.



I Define osc (K ) = sup{E osc (t∗) : t∗ ∈ K}. Then

I K ∈ KGC ⇐⇒ osc (K ) = 0.

I osc (K ) = limj→∞
(j+1)Vj+1(K)

Vj (K) .

I Open question: if osc (K ) = 0, how slowly can the previous
sequence of ratios make the approach?



The Wills Functional

W (K ) =

∫
IRd

1

(2π)d/2
e−

1
2
δ2(x ,K) dx (Wills, 1973)

=
1

(2π)d/2
E vol(K + ΛB),

where fΛ(λ) = 1(λ ≥ 0)λe−(1/2)λ2
.

=
d∑

j=0

1

(2π)j/2
Vj(K ).

= Eesupt∈K [Xt− 1
2
σ2

t ].



The Alexandrov-Fenchel inequality implies

Vj(K ) ≤ 1

j!
V j

1(K ) =
1

j!

[√
2π E sup

t∈K
Xt

]j

.

W (rK ) = Eesupt∈K [rXt− 1
2
r2σ2

t ] ≤ er E supt∈K Xt

(Tsirel’son, 1985; V, 1996, 2001)

P

(
sup

t
Xt − E sup

t
Xt ≥ a

)
≤ e−a2/2σ2

,

(Maurey-Pisier, 1986; V, 1996, 2001)



Quasi-widths

For K ∈ K and j = 0, 1, . . ., define quasi-widths

mj(K ) =
j Vj(K )√

2πVj−1(K )
(0/0 = 0).

I {mj}∞1 is a decreasing sequence (Alexandrov-Fenchel).

I m1 = E supt∈K Xt .

I limj→∞mj = osc(K ).

I For each i , there is the bound

W (rK ) ≤
[
Πi

j=1 (mj/mi )
]

ermi (K).

For i = 1, this reduces to

W (rK ) ≤ er supt Xt ,

as seen before.



I Maurey-Pisier-type deviation bounds: for each i and a > 0,

P

(
sup

t
Xt −mi ≥ a

)
≤
[
Πi

j=1 (mj/mi )
]

e−a2/(2σ2).

I Open question: is there a relationship between quasi-widths
and Dvoretsky’s theorem?
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INTRINSIC VOLUMES AND GAUSSIAN PROCESSES 

RICHARD A. VITALE,* University of Connecticut 

Abstract 

Intrinsic volumes are key functionals in convex geometry and have also appeared in 
several stochastic settings. Here we relate them to questions of regularity in Gaussian 
processes with regard to It6-Nisio oscillation and metrization of GB/GC indexing sets. 
Various bounds and estimates are presented, and questions for further investigation are 
suggested. From alternate points of view, much of the discussion can be interpreted in 
terms of (i) random sets and (ii) properties of (deterministic) infinite-dimensional convex 
bodies. 

Keywords: Convex body; deviation bound; Gaussian process; GB/GC set; intrinsic 
volume; It&-Nisio oscillation; metric; quermassintegral; Steiner point; Wills functional 

AMS 2000 Subject Classification: Primary 60G15 
Secondary 52A07; 52A22; 52A39; 60D05; 60E15 

1. Introduction 

As functionals on convex bodies, intrinsic volumes have appeared in many stochastic settings, 
including geometric probability, integral geometry, and Gaussian processes (e.g. [1], [3], [4], 
[12], [17], [19], [20], [21], [22], [23], [24], [32], [33]). Our aim here is to elaborate some further 
connections with Gaussian processes that are of interest in themselves and that also hint at a 
deeper theory. In particular, we treat (i) geometric formulation of the It6-Nisio oscillation 
function, which quantifies the 'size' of a discontinuity of a Gaussian process, (ii) metric 
categorization of GB and GC sets, which are classes of compact, convex subsets of Hilbert 
space distinguished by the behavior of Gaussian processes using them as indexing sets, and 
(iii) bounds and estimates associated with (i) and (ii). An important role is played throughout 
by the Wills functional, which in a parametrized form provides the generating function of the 
intrinsic volumes. 

The plan is as follows. The next section summarizes background and preliminaries for 
convenient reference. Connections between It6-Nisio oscillation and intrinsic volumes are 
discussed in Section 3. This is followed by a characterization of GC processes based on a new 
metrization of convex bodies. Section 5 carries bounds and continuity estimates for intrinsic 
volumes and for a vector analogue, the Steiner point. The final section outlines directions for 
future work toward a general theory. 

Two comments: firstly, from the viewpoint of random sets, the paper can be read as a detailed 

study of random convex bodies of the form MK (see X* below), where K is a convex body 
and M is a matrix of i.i.d. Gaussian elements. Among all models for random convex bodies, 
this is among the most natural and bears close examination. Secondly, from the viewpoint 
of convex geometry, the paper is about the extension of intrinsic volumes, known classically 

Received 24 October 2000; revision received 28 March 2001. 
* Postal address: Department of Statistics, University of Connecticut, Storrs, CT 06269, USA. 
Email address: rvitale@uconnvm.uconn.edu 

354 



Intrinsic volumes and Gaussian processes SGSA* 355 

as 'quermassintegrals', to convex bodies in infinite dimensions, a procedure that (remarkably) 
appears to be best described in probabilistic terms. 

2. Background 

In this section, we gather some preliminaries and notation. Further background on Gaussian 
processes and convex bodies can be found, for example, in [13] and [18] respectively. 

The setting is e2 with standard basis 

ej = (0, 0,... ,0, 1, 0, 0,...), j = 1,2 ... 
j-1 

inner product (., .), norm II II, and closed unit ball B. The closed line segment between 
x, y is [x, y]. Finite-dimensional Euclidean space IRn is freely identified with the span of 
el, 

e2,...., 
en using the same notation for inner product and norm. Orthogonal projection of 

f2 onto the spans of el, 
e2,..... 

en and en+1, en+2, 
.... 

are denoted by .7rn and Yn respectively. 
In Rn, the unit sphere is Sn-1 and the closed unit ball Bn (we specify that, in either IRn or e2, 
B(x, r) stands for the closed ball of radius r and centered at x). Volume (Lebesgue measure) 
in IRn is voln(.) with (on = voln(Bn) = irn/2/ F(1 + n/2). 

We denote by Xn and X the collections of convex bodies (i.e. non-empty, compact, convex 
subsets) in IRn and e2 respectively. The collection of all finite-dimensional convex bodies in 
e2 is XFD C X. Minkowski addition of sets is signified by +. We say that K1, K2 are 
equalized by L if K1 C K2 + L and K2 C K1 + L. The support function hK of a convex 
body K is given by hK(x) = sup{(x, t) It e K}, and the norm of K, written IIKII, or aK, is 

sup{IIltll I t e K}. Distance on X is given by the Hausdorff metric PH(K1, K2) = inf{e > 0 I 
K1 c K2 + B, K2 C K1 + EB}. 

For Gaussian processes, let Z = (Z1, Z2,...) comprise a sequence of independent stan- 
dard Gaussian variables. While Z 0 e2 almost surely, there is, for every t E e2, almost 
sure (conditional) convergence of the sum ti Zi, which represents a Gaussian variable 
(written below as either (t, Z) or Xt) having mean 0 and standard deviation Iltll. In addition, 
cov(Xt, Xt,) = E XtXt, = (t, t'). For K e X, we write XK for the Gaussian process 
{Xt = (t, Z), t E K}. Expressions such as supteK Xt mean suPteDCK Xt, where D is a 
countable, dense subset of K (the particular subset is immaterial almost surely). 

The Steiner formula for the volume of a parallel body to a convex body has, for K E Xn 
and X > 0, 

voln(K + Bn) = () 
W• 

(K). 
j=O 

It can be shown that the coefficients (quermassintegrals) satisfy Wj(K) = (On/,n-j) x 
E voln-j(If[n-j,n]K), where II[n-j,n] signifies the first n - j rows of a random (normalized 
Haar measure) n x n orthogonal matrix (see e.g. [27]). Dependence on the dimension n is 
removed by re-normalization to the intrinsic volumes [14]: 

V(K) = n - 

other properties can be found in [16] and [18]. In [4] and [19], intrinsic volumes were 
extended to X with the definition Vj(K) = sup{Vj(K) I K K, K e 

XF•D}. 
An alternate 

representation (essentially appearing in [23]) considers, for each j, the vector process X = 
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(X~, 
xt2), 

..., J)), where the components are independent copies of Xt. Setting X* - 

conv{Xj*, t e K} 
_c 

IRJ (conv is introduced to avoid irrelevant measurability questions) leads 
to Vj (K) = (2r) j/2 E volj (XK*)/owj j!. For later reference, the intrinsic width V1 (.) satisfies 
V1(K) = (27r)1/2EsupteK Xt with V1([x, y]) = IIx - yll; also, V1(Bn) - (2r)1/2E(Z2 + 
Z2 + ... + Z2)1/2 ~ (2rn)1/2. The Wills functional for XK ([9], [10], [23], [28], [31], [34]) 
is given by 

W(K) = E exp sup[Xt - 

lt2 
'Kt 

•E 
2 

and provides the generating function of the intrinsic volumes: 

W(rK) = ~ r) Vj(K), r > 0. (1) 
j=0 

3. Oscillation 

A convex body K e X is said to be GB (Gaussian bounded), or GC (Gaussian continuous), 
if XK has, respectively, a version with bounded or continuous sample paths. With the class XFD 
of finite-dimensional convex bodies, we have the respective classes XGC and XGB satisfying 

XFD C XGC C XGB C X. They have been studied from many points of view, and in 
particular the following features of XGB ([4], [15], [19]) are basic: 

Theorem 1. If K e X, then K E XGB if and only if V1 (K) < o00, in which case Vj (K) < 
VI (K)/j! for j = 2, 3 

... From now on, assume that all convex bodies are in XGB. 
The classic result of It6 and Nisio [ 11] asserts that 

lim[sup{Xt It e K n B(t, 8)} - inf{Xt It e K n B(t, 8)}] (2) 
8--+0 

exists as an almost sure constant, which we label 2 oscK (t) (we depart from convention and 
introduce the factor 2 for later convenience). Geometrically, (2) says that the random interval 

[inf{Xt It Kn B(t, 8)}, sup{Xt te K n B(t, 8)}] 

tends almost surely to the non-random interval [- oscK (t), oscK (i)]. Our first result extends 
this to higher dimensions and indicates further that at a point t of discontinuity, a small ball 
neighborhood K nB(t, 8) itself generically resembles a ball (of small radius and high dimension, 
irrespective of any other features of K). 

Theorem 2. As e - 0, 

(i) the random convex body X.B(i) tends almost surely in the Hausdorff metric to 

Bj(O, osc(ti))for j = 1, 2 ... 

(ii) W(r(K n B(t, 8))) - exp(osc(i)r), which coincides with 
limn-, W(r(1/(2rn)1/2) 

Bn (0, osc(t))). 

Proof For u ESj-l, 

hx*, (u) =- sup{(u, XJ*) It e K n B(i, 8)}, 
KnB(t,s) 
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which is equal in distribution to sup{Xt It e K n B(t, 8)} and hence almost surely convergent 
to osc(i). Recalling that pointwise convergence of support functions implies Hausdorff metric 
convergence yields (i). It follows that for each j, Vj (K n B(t, 8)) - ((2r)1/2 oSCK(t))jlj!, 
so that by the dominated convergence theorem, W(r(K n B(i, 8))) - exp(oscK (t)r). For the 
last assertion, let A have density X 

1(~. > 0)2rX. exp(-rX.2). 
Then [28] 

( r_ ( oscK () ) 
( - Bn (0, osc(t)) E voln + 2irA Bn 

n• 6cn osCK (t)r j 

j=-o 
n- n 

Standard estimates provide 

(ncOn ( ) j 
j) n-] 1/27tn 

with a dominating sequence of the form c /j !. 

An important parameter is osc(K) = sup{oscK(t) t E K). For example, K e GC if 
and only if limo0 Vi (K n B(t, 3)) = 0 for every t e K, so that osc(K) = 0 if and only if 
K e XGC. We show next that osc(K) can be read off from the intrinsic volumes. At least 
formally, this can be done in two ways. Consider the following maps for r E [0, o00) and 
j {E 1,2 

.9... 
}: 

r ? eK(r) = log W(rK), 

j Vj (K) j mj(K) Vj (K) (by convention, 0/0 = 0). 
vf rV -1 (K) 

Proposition 1. (i) The function ?K is positive, increasing, concave, and bounded above by 
(2r)-1/2 V1 (K)r. 

(ii) The sequence mj(K) is positive and decreasing. 

Proof In (i), the first two properties are clear from (1); concavity follows from [31, 
Lemma 2]. The exponential bound appears in [15] (see also [23], [28], [31]), as does (ii). 

Theorem 3. For K e XGB 

osc(K) = lim -deK(r) = lim 
mj(K). r- oo dr 

j--oo 

Proof By the proposition, 
limr,,,(d/dr)gK 

(r) = limrooo eK(r)/r. Let ti K. Theo- 
rem 2 and the monotonicity of W(.) show that exp(osc(t)r) < 

W(r(K n B(i, 1)) < W(rK). 
Taking logarithms and a supremum over t E K gives osc(K) < limr K (r)/r. Conversely, 
let E > 0. There is an open cover for K of sets Int[B(i, 8(t))], where V1i(K n B(i, S('))) < 

(2r)1/2[osc(t) + E]. Compactness of K gives a finite subcover, say indexed by it ...N, N; let 
Ki = K n B(ti, S(i)). Then 

W(rK) 4 W(rKi) exp[ r , i= 1 i= 

so that eK(r)/r < osc(K) + 8 + o(1), and hence lim, eK(r)/r < osc(K). 
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Next, (d/dr)W(rK) = 
-j=o(r/(2r)'/2j 

Vj (K)mj+l(K). Monotonicity of the mj se- 
quence implies that this is bounded from below by [limj mj (K)]W(rK), so that limj mj(K) < 
limr(d/dr)eK(r). Similarly, for any j, there is an upper bound of the form my(K)W(rK) 
+ o(rJ), which implies that limr(d/dr)W(rK)/W(rk) < my and 

limr(d/dr)geK(r) 
< 

limj my(K). 

As an application, there is an alternate proof of a deviation bound ([6]; see also [13]): 

Theorem 4. For K e XGB and a > 0, 

logP sup Xt > a + osc(K) 
-- 

2 
+ o(a), r2 = sup X2. 

2K teK 

Proof Following an argument in [28], 

logP sup Xt > a osc(K)) ~< j + ?K (r) - r(a + osc(K)) 
(K 2 

for r > 0. Letting r = a/C2 gives the bound -(a2/2 )+) ?+ eK (a/ak) - (a/ak) osc(K), and 
the result follows. 

As a final note, we mention that the intrinsic volumes associated with Brownian motion have 

recently been determined [7]. This led to a conjectured phase transition in the gap between GB 
and GC sets: 

Conjecture 1. Either limj mj > 0 or mj = O(j-1/2). 

4. Metrization 

Discontinuity of a Gaussian process clearly presents special problems for analysis. The 

sequel presents a general setting in which, on the contrary, continuity of the process is assured. 
This is done with a characterization of XGC; the following section shows, with specific bounds, 
continuity of the intrinsic volumes and Steiner point on XGB. 

Our point of departure is that, geometrically, a discontinuity of a Gaussian process can be 

regarded as a diameter/intrinsic-width anomaly (which can occur only in infinite dimensions). 
This is when Kn 4 {i}, that is, diam(Kn) 4 0, but in such a way that VI(Kn) / 0. This 

suggests focusing first on the continuity properties of V1. Examples show that the classic 
Hausdorff metric for convex bodies must be replaced with a more delicate one. The following 
is natural: 

Pv, (K1, K2) = inf{ V1 (L) I K1, K2 are equalized by L E X)}. 

Proposition 2. (i) On XGB, PV1 is a (finite) metric. 

(ii) If K1, K2 E Rn, then 

pH(K1, K2) < 
PV•(K1, 

K2) < V1(Bn)PH(K1, K2). (3) 

Proof For (i), note that if K1, K2 E XGB, then they are equalized by L = conv[(Ki + 
(-K2)) U ((-K1) + K2)] E XGB, so that pv (K1, K2) is finite. It is easy to see that if L 
equalizes K1 and K2, then 0 e L and consequently aL = IlL I < V1(L), since x E L with 

lxll = IILII implies that if [0,x] c L, then IILI| = Ilxll = 
Vl([0,x]) < VI(L) by the 

monotonicity of V1. It follows that if Pv1 (K1, K2) = 0, then K1 = K2. The triangle inequality 
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follows from the (sub)-additivity of V1 (-). For (ii), if L equalizes K1, K2, then so does ILII Bn, 
and thus PH(K1, K2) < I L II < VI(L). On the other hand, if EBn equalizes K1, K2, then 

Pvy (K1, K2) < V1 (EBBn) = V1 (Bn), and the right inequality of (3) holds as well. 

We then have the following characterization of XGC: 

Theorem 5. The completion of (XFD, PVl) is (XGC, PV1). 

Note that this parallels the classic observation that completing {XFD, PH} leads to {X, PH} 
(e.g. [2]). The proof is based on two lemmas. 

Lemma 1. Suppose that K e XGB. Then, as n -- oo, supteK n 
ti Zi converges to a 

nonnegative constant almost surely and in L1. 

Proof. Form =...,-2, -1, let Rm = suPtEK E' ti Zi, andFm = a(Z_m, Z-m+1,...). 
Then E[Rm+1 1 Fm] = E[supteK 

E-'m-1 
tiZi I Z-m, Z-m+, ... ] sup.tK EIm tiZi -= 

Rm, so that { Rm, Fm } is a reverse submartingale. If 0 e K, then 0 < infm Rm almost surely. 
This suffices for almost-sure and L1 convergence of the Rm. The limit variable is obviously 
tail-measurable and so must be a nonnegative constant. If 0 0 K, note that the argument holds 
for K - t, t E K, but the shift is asymptotically negligible since (Yni, Z) -- 0 almost surely. 

Lemma 2. Suppose that K e X is such that, for arbitrary 8 > 0, there are K1 E XFD and 
K2 E XGB with K C K1 + K2 and V1 (K2) < e. Then K E XGC. 

Proof For arbitrary to e K, it must be shown that VI (K n B(to, g)) - 0 as - 0. Assume 
that K, E, K1, K2 are as described, and assume also (without loss of generality: effected by 
a translation if necessary) that to = 0 e K n K1 n K2. We orthogonalize the inclusion 
K c K1 + K2 as follows: let 

r/K1 
stand for projection onto the subspace spanned by vectors in 

K1 and 
/K,1 

for projection onto the complementary subspace. Since K2 
_C 

r'K, K2 + K1 K2, 
K C [K1 + rK1 K2] + K1 K2, where again the first summand in brackets is finite-dimensional 
and the second satisfies Vi 

(Y-K,•K2) _ 
V1 (K2) < e. Additionally, the two now reside in 

orthogonal subspaces. This implies the following inclusion upon intersection with the ball 
B(0, 9): 

K n B(0, ) C {[K1 + TK1 K2] n B(0, 2)} + {5K1 K2 n B(0, )}. 

Applying V1 (.) gives 

V1 (K n B(0, )) < V1([K1 + rK1 K2] n B(0, r)) + V1 (fK K2 n B(0, )) 

< V1 ([K1 + 7K, K2] n B(0, )) + e. 

As 2 -+ 0, the first quantity on the right tends to zero since XFD C XGC. Since e > 0 was 
arbitrary, it follows that 

lim,_0 
V1 (K n B(0, )) = 0, and this completes the proof. 

Proof of Theorem 5. The proof is in two parts, showing (i) that {XFD, PV1} is dense in 
{JGC, PV1 } and (ii) that {JGC, PV1 } is complete. 

(i) Suppose that K e XGC. Without loss of generality, 0 e K. An argument by contradiction 
will show that pv, (EnrK, K) -+ 0 as n -+ oo. Suppose that this is not the case. It is 
easy to see that in K and K are equalized by Ln = conv(in K, -n K). This implies that 

pvl(rnrK, 
K) VI1(Ln) 

_ 
Vl(-fnK) + 

Vl(-Yn 
K) = 2V1(-fnK) < oo. By Proposition 1, 

it must be the case that, as n -+ co, 
Vl(YnK) 

= 
(2r)1/2EsuptEK L~1 tiZi tends to a 

constant c, where, by hypothesis, c is strictly positive. 
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There is a halfspace bisection procedure for localizing this phenomenon: given a unit 
vector e, let a = l(mintK (t, e) + maxtK (t, e)), and define K', K" E XGC by K' = 
K n {xI (x, e) < a}, K" = K n {x Ia < (x, e)}. By the same reasoning as above, 
V1 (YnK) -+ c' > 0 and V1 (YnK") -+ c" > 0. Further, since YnK = conv(YnK', KnIK"), 
we have suPtErnK(t, Z) = max{suPtE,,K'(t, Z), 

suPtE3,K,(t, 
Z)}. Lemma 1 implies that 

this equation has the almost sure limiting form c = max{c', c"}, that is, c' = c and/or 

c" = c. There is a program of such bisections yielding a nested decreasing sequence of 
sets K D K(j) D K(j+l) D ... such that, for each j, V1 (K(j)) = c > 0 and diam(K(j)) -+ 0. 

By the compactness of K, t* = nj K(j) exists, and the bisection construction implies that 
V1 (K n B(t*, e)) 74 0 as e \ 0. This however contradicts the assumption that K e GC- 

(ii) To show that {XGC, PVl } is complete, assume that the sequence {Kj} is pv1,-Cauchy. Then 
PH it is also pH-Cauchy and, since (X, PH) is complete, there is convergence Kj -+ K for some 

PVI K e X. We show that K e GC and that Kj -- K. Begin by extracting a subsequence of 
indices jl < j2 < ... increasing sufficiently fast so that 

pvl (Kji, Kji+) < 2-'. It follows 
that there are L1, L2... E I E GB with V1(Li) < 2-i and such that Kji, Kj,,+ 

are equalized 
by Li. Since 0 e Li for each i, Lm 

_ L*m= - 
Li E 

,7GB 
with 

VI(L*m) 
< 21-m. It 

follows that for m < n, Kjm, Kjn 
are equalized by L*. Letting n -+ 00 then yields that 

Kjm, K are equalized by L*m. Putting these facts together implies that the sequence {Kj, }, and 
hence the original sequence {Kj }, converges pvl to K. By part (i), n can be taken sufficiently 
large so that Kjm C tnKjm + YnKjm, where Vi(3fnKjm) is arbitrarily small. It follows that 

Kjm 7n Kjm + [fn Kjm + L* ], and by Lemma 2, K e GC. 

Remarks. (i) The last argument can be modified in an obvious way to show that {XGB, 
PV1l is complete. 

(ii) The fact that pvl (rn K, K) -+ 0 for K XGC is folklore; a proof for balanced convex 
bodies was given in [21]. From there, we have used the martingale idea in a slightly different 
fashion. 

5. Continuous functionals on IXGB, PV1J 

In this section, we show that continuous functionals on {JXGB, PV1 } include the intrinsic 
volumes, the Wills functional, and a related vector functional, the Steiner point. A bound for 
the kernel of the Wills functional is the starting point: 

Theorem 6. For K1, K2 E 
,GB, 

E 
expsup {Yt- 

o2})- 
exp( sup { 

Xs- 
2 
0 S\tEK2 \sEKi 

< [Q(Ki) + Q(K2)]Pv1 (K1, K2) exp(2p2(K1, K2)), (4) 

where Q(K) = 2[2 + 
oK] 

exp(1 + VI(K) + k 
0). 

Proof Use the isonormal representations Xs = (s, Z), Yt = (t, Z) and, for K e KGB, 
set ~I(Z, K) = supteK[(t, Z) - lllt112], so that the aim is to bound E lel(Z,K2) - el(ZK')I. 
Suppose that L e KGB equalizes K1, K2. Then 

eI(Z,K2) 
_ 

e(Z,K1) <eJ(Z,K1+L) eP(Z,K1) 

e)I(Z,K1) elI(Z,K2) <e)I(Z,K2+L) - eI(Z,K2) 
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so that it suffices to bound E 
= E[eJ (Z,Ki+L) - e J1(Z,Ki)]. Treating one of the terms and 

omitting subscripts, let J = E[eq(Z,K+L) - eJ(Z,K)]. It is elementary that eq'(Z,K+L) - 
eP(Z,K) < ['I(Z, K + L) - IJ(Z, K)] eq(Z,K+L). An application of the Cauchy-Schwarz 
inequality provides 

[(t + w, Z) - 11t + w||2] - [(t, Z) - ||t112] 
_ 

(w, Z) + Iltllllwll, 

which, upon rearrangement and taking suprema, yields 'I(Z, K + L) - I(Z, K) < 
supw.EL(W, Z) + 

gUKL. 
This is bounded above by [supw.EL(w, Z) - 

Esupw•EL(w, 
Z)]+ + 

E sUPwEL (w, Z) +aKaL, and in turn 
[supw•eL(w, 

Z) - E 
supw•EL(w, 

Z)]+ + (1/(27r)1/2 + aK) 
x V1(L) where we have used aL < V1(L). Applying the Cauchy-Schwarz inequality again 
together with Jensen's inequality twice gives 

J2 <E[ sup(w, Z)-E sup(w, Z) + UKK) Vi(L) E e2q,(ZK+L) 

WEL 
wEL 

1+2 

\ 

< 2 E sup (w, Z) - E sup (w, Z) + I + aK 
V12(L) 

Ee2qIJ(ZK+L) 
wL upw, \1+ 1227Z 

S2E sup(w, Z)-E sup(w, Z) + - + 2 V(L) Ee2 K+L). (5) 
wEL wEL + 

I 

Then Theorem 4 gives 

r 

0o 
r \2 

Esup (w, Z) - E sup (w, Z) P sup (w, Z) - E sup (w, Z) > x dx 
[wEL wEL + [)J (WEL WEL + 

=f P sup (w, Z) - 
E sup (w, 

Z) > dx 0 wEL wEL + 

< e-x/2A dx = 2a2 

_ 2V12(L), 
so that the first expectation in (5) is bounded above by (2 + 1/1r + 2ar ) V2(L), or (loosely) 
4[2 + 

UaK2V12(L). 
To estimate the expected exponential in (5), 

2'I(Z, K + L)= 2 sup [(t+w,Z)- llt+wll2] 
tEK,WEL 

sup [2(t + w, Z) - 211t + w112 + lit + w112] 
tEK,WEL 

< sup [2(t + w, Z) - 211t + w112] + sup lt + w112 
tEK,wEL tEK,wEL 

< sup [2(t + w, Z) - 211t + w112] + [aKg + aL]2 
tEK,wEL 

Ssup [2(t + w, Z) - 2l|t + wll2] + 2[ + 2 
tEK,wEL 

Ssup [2(t + w, Z) - 2l|t + wI|2] + 2[aK + V2(L)]. 
tEK,wEL 
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A previous estimate ([23], [28]) implies that 

Ee2(ZK+L) <exp 
2E sup (t + w,Z)+2[K + 

V2(L)] L tEK,WEL J 

Sexp [Vi(K) + Vi(L)] + 2[VK + V,2(L)] 

< exp{2[1 + Vi(K) + + 2V(L)]}. 

Putting these bounds together and taking a square root yields 

J < 2[2 + UK] el+VI(K)+2 
V1 

(L) e2Vz(L) 

Summing for K = K1, K2 and minimizing the result over equalizing L yields (4). 
Continuity properties are now straightforward to show (for an alternate formulation using 

different methods, see [8, Proposition 2.4.1]). 

Theorem 7. The Wills functional and all intrinsic volumes are continuous on (XGB, PV1). 

Proof Letting K1 = K and K2 = Kn in (4), note that Q(Kn) remains bounded as 

pv1 (Kn, K) -- 0 since Kn C K + L implies that V1(Kn) < V1i(K) + V1 (L) and aKn _ UK + aUL 5 aK + V1i(L). Then 

W(Kn) - W(K)I= Eexp sup [Yt- t2] - exp sup[Xt - 

2 

I tEKn 
2 

Ju 
ItEK J 

Sexp sup[Y ] - exp sup[Xt - 

ItEKn J tEKJI 

and (4) imply the continuity of W(.). For the intrinsic volumes, we show a somewhat stronger 
assertion: suppose first that K1, K2 E GB and that L equalizes them. Then, for each j = 

1, 2,..., Vj(K2) - Vj(KI) < Vj(K1 + L) - Vj(KI) and the corresponding relation with K1 
and K2 reversed. It follows that I Vj(K2) - Vj (K1)|I [Vj(K1 + L) - Vj(K1)] + [Vj(K2 + L) 
- Vj (K2)]. Multiplying this bound by (27r)-j/2, summing over j, and noting (1) yields 

00 

j(2r)-j/2i1Vj(K2) 
- 

Vj(Ki)I < [W(K1 + L) - W(K1)] + [W(K2 + L) - W(K2)]. 
j=o 

As in the proof of Theorem 6, the infimum of the right-hand side over all L equalizing K1, K2 
is majorized by the bound (4). 

We conclude this section with a related result. Several years ago the author was first 
introduced to this topic by a question of Zvi Artstein about high dimensional behavior of 
the Steiner point, which is a vector analogue of intrinsic volumes and a natural centroid for 
finite-dimensional convex bodies. At that time, a negative result was shown: there is a sequence 
of (finite-dimensional) convex bodies that is pH-convergent to an infinite-dimensional body and 
such that the associated sequence of Steiner points does not converge. Indeed, one can arrange 
to have any point of the limit body as the limit of such a sequence of Steiner points ([25]). In 
present terms, this flexibility is afforded by the limit body's not being GB. By contrast, we have 
now the following positive result. 
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Theorem 8. The Steiner point map s : 
?GB 

- e2 is PVI -Lipschitz continuous. 

Proof Recall the Gaussian interpretation s(K) = E[hK(Z)Z] ([4], [25], [29], [30]). For a 
unit vector u and K1, K2 E CGB, 

(s(K2) - s(Ki), u) = E[hK2 (Z) - hK1 (Z)](u, Z), (6) 

so that the Cauchy-Schwarz inequality implies that the square of (6) is bounded above by 
E IhK2 (Z) - hK1 (Z)12 (uniformly in u). Then it is enough to show (more generally) that, for 
p> 1, there is a constant cp such that 

E IhK2(Z) - hK,(Z)I <P CpP (K1, K2) (7) 

(for a related metric, see [26]). This follows from a Khintchine-Kahane bound (e.g. [5, 
Section 3.2]): suppose that K1, K2 are equalized by L. Then, for all x, IhK2 (x) - hK1 (x) I 
hL (x), so that E hK2(Z) - hK1 (Z)IP < E hp(Z). Now 

foIoh foE 

hL (Z) 

fE2() EhP (Z) - prP-1 P[hL(Z) > r] dr = h +L(Z) + j 

IfoEhL(Z) fEE 
Z 

<EhL(Z)pr-1' dr + pr-1 e-r2/(2a2) dr 
SEhL(Z)dr 

<[E hL(Z)]p + f p(oLs + E hL (Z))P1 e-S2/2L ds 

SVi(L)P + [Vi(L)]P p(s + 1/ 2)P1 e-2/2 ds. 

Minimizing over L yields (7) with cp = 
(1/(27r)1/2)p 

-+ 
f0 p(s + 1/(27r)1/2p-1 e-s2/2 ds. 

6. Future directions and speculation 

As the foregoing sections indicate, important properties of a Gaussian process are mirrored in 
its intrinsic volumes. Toward a deeper theory (as well as for a new source of estimates, bounds, 
etc.), we can ask how far this can be pushed, i.e. for the nature of equivalence classes of Gaussian 
processes reduced modulo equality of intrinsic volumes. This seems to be a difficult question 
at present, but, as a first step, a characterization of the class of intrinsic volume sequences is 
relevant; some progress along these lines will appear elsewhere. There is a sense as well in 
which the treatment of this paper has been 'in the mean'. There is, for example, the following 
intriguing combination of formulas from Section 2 

Eexp sup[Xt - j 2} = E W voli(X) , 
teK wj=0 

and we can ask if there is any sense in which the expectations can be dropped. 
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