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Geometric tomography

One of central questions in geometric tomography:
unique determination of convex bodies from some measurements

V. Yaskin On unique determination of convex polytopes



Geometric tomography

One of central questions in geometric tomography:
unique determination of convex bodies from some measurements
such as

@ Sections

V. Yaskin On unique determination of convex polytopes



Geometric tomography

One of central questions in geometric tomography:
unique determination of convex bodies from some measurements
such as

@ Sections

@ Projections

V. Yaskin On unique determination of convex polytopes



Geometric tomography

One of central questions in geometric tomography:
unique determination of convex bodies from some measurements
such as

@ Sections
@ Projections

@ Other lower dimensional data
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Geometric tomography

Well-known classical result:

£\

K L
K, L origin-symmetric star bodies in R" such that
vol,—1(K N H) =vol,—1(L N H)

for every central hyperplane H.
Then
K=L.
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Geometric tomography

Previous result does not hold without the symmetry assumption.
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Geometric tomography

Previous result does not hold without the symmetry assumption.

Uniqueness for general (not necessarily symmetric) convex bodies:

@ Groemer: half-sections

@ Falconer and Gardner: hyperplane sections through two points
in the interior of the body
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Geometric tomography

Previous result does not hold without the symmetry assumption.

Uniqueness for general (not necessarily symmetric) convex bodies:

@ Groemer: half-sections

@ Falconer and Gardner: hyperplane sections through two points
in the interior of the body

@ many others...
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Problem # 1

Question (Barker and Larman, 2001)

Let K and L be convex bodies in R” containing a sphere of radius
t in their interiors. Suppose that for every hyperplane H tangent
to the sphere we have

vol,—1(K N H) =vol,_1(LN H).

Does this mean that K = L?
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Problem # 1
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Problem # 1

R2

V. Yaskin On unique determination of convex polytopes



Problem # 1

What is known?
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What is known?
@ Barker and Larman, 2001:
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What is known?
@ Barker and Larman, 2001:

s in R2: if all the chords have constant length, then it is a
Euclidean disk.
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Problem # 1

What is known?
@ Barker and Larman, 2001:

s in R2: if all the chords have constant length, then it is a
Euclidean disk.

@ in R” the answer is affirmative if hyperplanes are replaced by
planes of a larger codimension.
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Problem # 1

What is known?
@ Barker and Larman, 2001:

s in R2: if all the chords have constant length, then it is a
Euclidean disk.

@ in R” the answer is affirmative if hyperplanes are replaced by
planes of a larger codimension.

@ Xiong, Ma and Cheung, 2008:
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Problem # 1

What is known?
@ Barker and Larman, 2001:

s in R2: if all the chords have constant length, then it is a
Euclidean disk.

@ in R” the answer is affirmative if hyperplanes are replaced by
planes of a larger codimension.

@ Xiong, Ma and Cheung, 2008:

o uniqueness holds for convex polygons in R?
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Problem # 1

Theorem (V.Y.)

Let P and @ be convex polytopes in R” containing a sphere of
radius t in their interiors. If

VOlnfl(P N H) = VOlnfl(Q N H)

for every hyperplane H tangent to the sphere, then

P=Q.
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Problem # 1

Theorem (V.Y.)

Let P and @ be convex polytopes in R” containing a sphere of
radius t in their interiors. If

VOlnfl(P N H) = VOlnfl(Q N H)

for every hyperplane H tangent to the sphere, then

P=Q.

No symmetry is assumed.
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Problem # 2

Recall:
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Problem # 2

Recall:

P

K L
K, L origin-symmetric star bodies in R" such that
vol,—1(K N H) =vol,—1(L N H)

for every central hyperplane H.
Then
K=L.
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Problem # 2

Problem (Gardner, "Geometric Tomography")
Let P and @ be origin-symmetric convex bodies in R3 such that

L(PNH)=LQNH)

for every plane H through the origin, where L is the length of the
corresponding boundary curve. Is it true that

P=Q7
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Problem # 2

L
4

K L
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Problem # 2

The problem is open.

In particular, it is not known whether the uniqueness holds if one
of the bodies is the Euclidean ball.
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Some known results:
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Problem # 2

The problem is open.

In particular, it is not known whether the uniqueness holds if one
of the bodies is the Euclidean ball.

Some known results:

@ Howard, Nazarov, Ryabogin and Zvavitch: uniqueness in the
class of C! star bodies of revolution
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Problem # 2

The problem is open.

In particular, it is not known whether the uniqueness holds if one
of the bodies is the Euclidean ball.

Some known results:
@ Howard, Nazarov, Ryabogin and Zvavitch: uniqueness in the
class of C! star bodies of revolution

@ Rusu: settled an infinitesimal version of the problem, when
one of the bodies is the Euclidean ball and the other is its
one-parameter analytic deformation.
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Problem # 2

Theorem (V.Y.)

Let 2 < k < n—1 and suppose that P and Q are origin-symmetric
convex polytopes in R”, n > 3, such that

S(PNH) = S(QNH)

for every subspace H € G(n, k). Then

P=Q.

Here, S(-) denotes the (k — 1)-dimensional area of the boundary
surface of the corresponding k-dimensional body.
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Enough to prove the theorem only for k = n— 1.
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Enough to prove the theorem only for k = n— 1.

To prove P = @, we will show that P and @ have exactly the
same vertices.
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Enough to prove the theorem only for k = n— 1.

To prove P = @, we will show that P and @ have exactly the
same vertices.

Suppose the contrary. Assume that P and @ are different, i.e. they
have different sets of vertices.
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Enough to prove the theorem only for k = n— 1.

To prove P = @, we will show that P and @ have exactly the
same vertices.

Suppose the contrary. Assume that P and @ are different, i.e. they
have different sets of vertices.

Case 1. There is a vertex u of, say, P such that the line through
the origin and the vertex u does not contain any vertices of Q.
Case 2. All vertices of P and Q lie on the same lines, i.e. if a line
through the origin contains a vertex of one of the polytopes, then
it also contains a vertex of the other.
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CASE 1. There is a vertex u of, say, P such that the line through
the origin and the vertex u does not contain any vertices of Q.

Let E be any (n — 2)-face of P adjacent to the vertex u. There
exists &g € S"! such that

1) & NE = {u},
2) &3 contains no vertices of either P or Q (other than u, —u).
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The edges of P that intersect the plane §0L are denoted by

x = uj + Iisj, ie hubUlb,

where u; is a vertex that belongs to the edge, /; is the direction of
the edge, s; is a parameter.
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i) i € I if the edge is not adjacent to u or —u,
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i) i € I if the edge is not adjacent to u or —u,
ii) i € k if the edge is adjacent to u and lies in 5;, or adjacent to
—u and lies in &y,
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i) i € I if the edge is not adjacent to u or —u,

ii) i € k if the edge is adjacent to u and lies in 5;, or adjacent to
—u and lies in &y,

iii) i € I3 if the edge is adjacent to u and lies in £, , or adjacent to
—u and lies in 5;.
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The edges of @ that intersect the plane §0L we denote by

X = Vi + m;t;, i€ J.

where v;, mj, t; are correspondingly a point on the edge, its
direction and parameter along the edge.
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Let A be a spherical cap centered at . We assume that the radius
of A is small enough to guarantee that for all £ € A the plane ¢+
contains no vertices of P and Q, except possibly v and —u.
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Proof

Denote by A, the subset of those vectors & € A for which the plane
&L lies “above” u.
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Proof

Denote by A_ the subset of those vectors & € A for which the plane
&L lies “"below” w.
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The i-th edge of P is given by x = u; + I;s;, so it intersects fl at
the point

<uia£>
i =ui— ;i -
T e
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The i-th edge of P is given by x = u; + I;s;, so it intersects fl at

the point
<uia£>
pi = uj — i .
</i’£>
The points of intersection of the edges of Q and the plane ¢ are
given by
g =vi—m <Vl'a£>
gy
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The (n — 2)-dimensional surface area of PN &L is given by

S(Pnet) Zvol,, o(Fined),

where the sum is taken over all facets F; of P that have nonempty
intersection with ¢+
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The (n — 2)-dimensional surface area of PN &L is given by

S(Pnet) Zvol,, o(Fined),

where the sum is taken over all facets F; of P that have nonempty
intersection with ¢+

In order to compute the latter surface area, we will fix a
triangulation of each (n — 2)-dimensional polytope F; N ¢+.
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First, in each facet F; consider an auxiliary segment x = w; 4 v;7;
with the properties (v;,&£) # 0, £ € A, and v; is not parallel to E.
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First, in each facet F; consider an auxiliary segment x = w; 4 v;7;
with the properties (v;,&£) # 0, £ € A, and v; is not parallel to E.

The point of intersection of the auxiliary segment with the plane
s

—_

wj, €)
<VJ'75>.

Zj = wj — v
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Triangulate F; N &1 as follows:
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Triangulate F; N &1 as follows:

i) Fix a triangulation of the boundary of F; N ¢+ in such a way that
the vertices of simplices in this triangulation coincide with the
vertices of F; N ¢+
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Triangulate F; N &1 as follows:

i) Fix a triangulation of the boundary of F; N ¢+ in such a way that
the vertices of simplices in this triangulation coincide with the
vertices of F; N ¢+

ii) Take convex hulls of z; and simplices from Step (i).
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Proof

Triangulate F; N &1 as follows:

i) Fix a triangulation of the boundary of F; N ¢+ in such a way that
the vertices of simplices in this triangulation coincide with the
vertices of F; N ¢+

ii) Take convex hulls of z; and simplices from Step (i).

P,

V. Yaskin On unique determination of convex polytopes



Now we write the (n — 2)-dimensional area of F; N ¢+ as the sum
of the areas of simplices in its triangulation.

If a simplex in this triangulation has vertices z;, p;, ..., pi,_,, then
its area is equal to the determinant
1

(2T (mg? PRI e P 5

Here, n; is the unit outward normal to the facet F;.
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Now we write the (n — 2)-dimensional area of F; N ¢+ as the sum
of the areas of simplices in its triangulation.

If a simplex in this triangulation has vertices z;, p;, ..., pi,_,, then
its area is equal to the determinant

1
(2 mgr P B PR e P 5

Here, n; is the unit outward normal to the facet F;.

Similarly we triangulate the boundary of @ N ¢+ and compute its
surface area.
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We will write

S(Pnet)y =S (Pnet)+S(Pnet), if € ey,
and

S(Pneb)y=5S (Pneh)+S(Pnet), ifcen,

where S (respectively, S_) is the total area of the simplices in the
boundary of P N &L that have at least one vertex p; with index

i € I (respectively, ), and S is the total area of all other
simplices.

Note that 5(P N &L) has the same formula for both A, and A_.
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Since S(PN &) = S(QNEL) for all € € A, we have
SH(PNEN)+5(PNET) =S(QNET)
for £ € Ay, and
S.(PNEN)+5(PNET) =S(@NED)

for £ € A_.
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Since S(PN &) = S(QNEL) for all € € A, we have
SH(PNEN)+5(PNET) =S(QNET)
for £ € Ay, and
S.(PNEN)+5(PNET) =S(@NED)

for £ € A_.
Lemma. We can assume that these equalities hold for all ¢ € S"~1
without finitely many great subspheres and finitely many points.
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Since S(Q@ N &L is given by the same formula for both ¢ € A, and
& e N, we have

Sy (PNEN+S(PNEH) =S (Pnet)+5(Pneh),

that is
Si(PNEr) =S_(Pn¢h)

for all £ € S™ ! except finitely many great subspheres and finitely
many points, i.e. except the set where the denominators vanish.
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Let F; and F, be the facets of P such that N F, = E,
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Let F; and F, be the facets of P such that F{ N F, = E, n1 and ny
their outward unit normal vectors.
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Let F; and F, be the facets of P such that F{ N F, = E, n1 and ny
their outward unit normal vectors.
Define

n = any + Bna,

where o, 3 >0, a® + 32 = 1, are to be chosen.
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Let F; and F, be the facets of P such that F{ N F, = E, n1 and ny
their outward unit normal vectors.
Define

n = any + Bna,

where o, 3 >0, a® + 32 = 1, are to be chosen.
For a small enough ¢, consider the following curve on the sphere:

1+ €A

€)=

where A is a (properly chosen) vector.
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Let F; and F, be the facets of P such that F{ N F, = E, n1 and ny
their outward unit normal vectors.
Define

n = any + Bna,

where o, 3 >0, a® + 32 = 1, are to be chosen.
For a small enough ¢, consider the following curve on the sphere:

_ nt e
nteN’

§(e)
where A is a (properly chosen) vector.
Now put £(€) into the equality
Si(PNgh)=5-(PNegr),

multiply both sides by €"~2, and send € — 0.
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We can choose 17 and A in such a way that only the vectors
spanning E survive in the limit.
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We can choose 17 and A in such a way that only the vectors
spanning E survive in the limit.
Thus we have

I} Q
(i\/1<n1,77>2 . V1- <n2,77>2>

<u777>n_2 ‘/

- </11,)\></1 2’)\> il’l..7lin_27n1’n2|:0' (1)

V. Yaskin On unique determination of convex polytopes



We can choose 17 and A in such a way that only the vectors
spanning E survive in the limit.
Thus we have

I} Q
(i\/1<n1,77>2 . V1- <n2,77>2>

(u, )2
liysooodi oo, m| =0, (1
</i1,)\>"' </in72,)\> ‘ 1 n—2 nl n2| ( )

X

Moreover, we can assume that 1 and X are chosen such that
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We can choose 17 and A in such a way that only the vectors
spanning E survive in the limit.
Thus we have

I} Q
(i\/l — (n1,m)? . V1- <n2,77>2>
(u,m)" 2

Ty Ty e o] =0 1)

Moreover, we can assume that 1 and X are chosen such that
i) </,'k,)\> > 0,
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We can choose 17 and A in such a way that only the vectors
spanning E survive in the limit.
Thus we have

B a
+
<i ViI={mn)? V1= <N2,?7>2>
<3 (u,m)" 2 iyeehy o mym = 0. (1)
</il7)\>“‘</in727)\> e ’

Moreover, we can assume that 1 and X are chosen such that
i) </,'k,)\> > 0,
i) (u,m) # 0.

V. Yaskin On unique determination of convex polytopes



We can choose 17 and A in such a way that only the vectors
spanning E survive in the limit.
Thus we have

I} Q
(i\/1<n1,77>2 . V1- <n2,77>2>

<u)77>n_2 ‘/

RS R AR /Y oo gy My m2 = 0. (1)
LS In—2»

Moreover, we can assume that 1 and X are chosen such that

i) </,'k,)\> > 0,

i) (u,m) #0.

We can also show that all the determinants have the same sign.
Therefore, if we choose « # 3, then the left-hand side of (1) is
nonzero.
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We can choose 17 and A in such a way that only the vectors
spanning E survive in the limit.
Thus we have

I} Q
(i\/1<n1,77>2 . V1- <n2,77>2>

<u)77>n_2 ‘/

RS R AR /Y oo gy My m2 = 0. (1)
LS In—2»

Moreover, we can assume that 1 and X are chosen such that

i) </,'k,)\> > 0,

i) (u,m) #0.

We can also show that all the determinants have the same sign.
Therefore, if we choose « # 3, then the left-hand side of (1) is
nonzero. Contradiction.
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Case 2. All vertices of P and @ come in pairs, that is if a line
through the origin contains a vertex of one of the polytopes, then
it also contains a vertex of the other.
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Case 2. All vertices of P and @ come in pairs, that is if a line
through the origin contains a vertex of one of the polytopes, then
it also contains a vertex of the other.

Lemma.

There exist a vertex u of P, a corresponding vertex v of @ lying on
the same line and on the same side with respect to the origin, and
an (n — 2)-face E of, say, P adjacent to u that is not parallel to
any (n — 2)-face of Q adjacent to v.
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Case 2. All vertices of P and @ come in pairs, that is if a line
through the origin contains a vertex of one of the polytopes, then
it also contains a vertex of the other.

Lemma.

There exist a vertex u of P, a corresponding vertex v of @ lying on
the same line and on the same side with respect to the origin, and
an (n — 2)-face E of, say, P adjacent to u that is not parallel to
any (n — 2)-face of Q adjacent to v.

Now, having fixed the face E, proceed as in Case 1.
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THANK YOU!!
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