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Abstract. A theorem of Bôcher and Grace states that the critical points

of a cubic polynomial are the foci of an ellipse tangent to the sides of the

triangle joining the zeros. We prove an analogous result for hyperbolic cubic
polynomials, that is, for Blaschke products with three roots in the unit disc.

1. Introduction

The well-known theorem of Lucas [6] states that the critical points of a polyno-
mial in the complex plane lie within or on the convex hull of the zeros. But more is
known about the critical points. A remarkable theorem of Bôcher [1] and Grace [4]
relates the position of the zeroes of a cubic polynomial in the plane to the position
of the critical points. It states:

Theorem 1.1. The critical points of a cubic polynomial P (z) are the foci of an
ellipse E which is tangent to the midpoints of the three line segments joining the
roots of P (z). More generally, the zeroes of the function F (z) =

∑3
1 mi(z − zi)−1

are the foci of the conic that touches the line segments (z1, z2), (z2, z3), and (z3, z1)
in points which divide these segments in the ratios m1 : m2, m2 : m3, and m3 : m1,
respectively.

The first assertion follows from the second when F (z) is chosen to be the loga-
rithmic derivative P ′(z)

P (z) , in which case mi = 1, 1 ≤ i ≤ 3. The theorem is actually
a special case of a theorem first proved by Siebeck [10] which states:

Theorem 1.2. The zeros of the function F (z) =
∑p

1
mi

z−zi
are the foci of the curve

of class p − 1 which touches each line segment (zi, zj) in a point dividing the line
segment in the ratio mi : mj.

For the proof of these theorems, see Marden [7], pp. 7–11.

Remark 1.3. Given a polynomial F (z), we can form a family Fa(z) = F (z) − a
of polynomials with the same critical points. It follows then that one can replace
“zeros” with “preimages of a” in Theorem (1.1). One can show that there is another
ellipse consisting of sets of preimages such that the ellipse E is the envelope of the
family of line segments joining pairs (z, w) with P (z) = P (w). We have found an
elementary proof of the Bôcher-Grace theorem based on this observation.

We will discuss an analogous result in the hyperbolic plane. The notion of a
non-Euclidean polynomial seems to be due to Walsh [12]. He uses this term for a
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function of the form function of the form

(1.1) P (z) = λ
n∏
1

z − αk

1− αkz
, |λ| = 1, |αk| < 1

This is the general form for a rational function which takes the closed unit disc
D to itself, and it is usually referred to as a finite Blaschke product. P (z) is an n-to-
one map of D onto itself, has precisely n zeros in the interior D, and has modulus
unity on C : |z| = 1. We may regard D as the hyperbolic plane and the unit circle
C as the set of ideal points, using either the Poincaré model or the Klein model
of the hyperbolic plane. Then it is reasonable to think of P (z) as a polynomial,
and indeed it has exactly n − 1 critical points (counting multiplicity) in D, with
the remaining critical points in the exterior of the disc, symmetric with respect to
inversion in the circle. There is an analogue to Lucas’s theorem:

Theorem 1.4 (Walsh, [12], p. 157). Let P (z) be defined by (1.1). The critical
points of P (z) in the interior of the disc lie within or on the (non-Euclidean) convex
hull of the zeroes of P (z), with respect to the Poincaré metric.

The goal of this paper is to describe an analogue of the theorem of Bôcher and
Grace for non-Euclidean cubic polynomials. A closely related result is already
known; Daepp, Gorkin and Mortini proved ([2]) that if P (z) is cubic and one of
the zeros of P (z) is located at the origin, then the other two zeros are the foci
of an ellipse which is inscribed in any (Euclidean) triangle whose vertices are the
pre-images of a complex number λ of modulus 1. We will show:

Theorem 1.5 (Main Theorem). Let P (z) = β
∏3

1
z−αk

1−αkz , |β| = 1, |αk| < 1 be a
cubic non-Euclidean polynomial, and let γ be the curve in D which is the envelope of
the non-Euclidean geodesics joining pairs of points wi, wj on C satisfying P (wi) =
P (wj). Then γ is a non-Euclidean ellipse whose foci are the critical points of P (z)
in D.

2. Blaschke Products

We will work with the space P of NE (for non-Euclidean) cubic polynomials
and the group G of isometries of the hyperbolic plane. The elements of G are the
fractional linear transformations which preserve the unit disc. We will consider the
domain and range of functions in P to be the closed disc. An element P of P is
given by

(2.1) P (z) = µ
z − a

1− az

z − b

1− bz

z − c

1− cz
, |µ| = 1, |a|, |b|, |c| < 1

An element of G is given by

(2.2) g(z) = β
z − α

1− αz
, |β| = 1, |α| < 1

G acts on P on the left by Lg(P )(z) = g(P (z)) and on the right by Rg(P )(z) =
P (g−1)(z).

The following propositions summarize the behavior of NE polynomials under the
left and right actions.

Proposition 2.1. The right action satisfies the following properties:
(1) If z1 and z2 are the critical points of P , then the critical points of Rg(P )

are g(z1) and g(z2).
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(2) If λ1, λ2 and λ3 are the three pre-images of a point z under P , then g(λ1),
g(λ2) and g(λ3) are the preimages of z under Rg(P ).

(3) In particular, if a, b and c are the zeros of P , then g(a), g(b) and g(c) are
the zeros of Rg(P ).

Corollary 2.2. Let γ = γP be the curve in D formed as the envelope of the non-
Euclidean geodesics joining pairs of points wi, wj on C satisfying P (wi) = P (wj).
Then the corresponding envelope γRg(P ) of Rg(P ) is the image curve g(γ). Thus
the two envelopes are isometric as curves in the Poincaré disc.

Proposition 2.3. The left action satisfies the following properties:

(1) If z1 and z2 are the critical points of P , then the critical points of Lg(P )
are z1 and z2.

(2) If λ1, λ2 and λ3 are the three pre-images of a point z under P , then λ1, λ2

and λ3 are the preimages of g(z) under Lg(P ).
(3) In particular, if a, b and c are the zeros of P , then the zeros of Lg(P ) are

the preimages of g−1(0).

Corollary 2.4. The envelope curve γ is invariant under the left action of G.

We will prove that the curve γP is a non-Euclidean ellipse with foci at the critical
points of P . Corollary (2.2) shows that to prove this for a polynomial P we need
only prove it for some polynomial Rg(P ). Similarly, Corollary (2.4) ensures that
we may act on the left by any element of G. This allows us to put P in a canonical
form.

Using the right action of G, we may move the two critical points of P so that
they lie on the real axis at ±ε, 0 ≤ ε < 1. The value of ε is determined by the
fact that g is an isometry; the NE distance between the two critical points is an
invariant.

The conditions on P insuring that the critical points are at ±ε are determined
by rewriting P in un-factored form:

(2.3) P (z) = −µ
z3 − r2z

2 + r1z − r0

roz3 − r1z2 + r2z − 1

The critical point equation P ′(z) = 0 is the self-inversive equation:

(2.4) (r0r2 − r1)z4 + (2r2 − 2r1r0)z3 + (−3− |r2|2 + |r1|2 + 3|r0|2)z2

+ (2r2 − 2r1r0)z + (r0r2 − r1) = 0

The four roots of this equation are supposed to be ±ε and ± 1
ε . This means that

the coefficient of z3 must vanish, or r2 = r1r0. Substituting this into equation (2.4)
and simplifying, we get:

(2.5) r1z
4 + (3− |r1|2)z2 + r1 = 0, |r1| < 1

In order that the roots of (2.5) are real, r1 must be real and negative. Letting
r1 = −s2, we have:
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Proposition 2.5. Every NE cubic polynomial is right equivalent to one of the
form:

P (z) = µ
z3 − s2r0z

2 − s2z + r0

r0z3 − s2z2 − s2r0z + 1
, 0 ≤ s < 1, |r0| < 1, µµ = 1

Next, we apply the left action. If P (z) is given in the form described in proposi-
tion 2.5 and g(z) = z−α

1−αz , then a straightforward (but tedious) computation shows

(2.6) Lg(P )(z) = g(P (z)) = ν
z3 − s2rz2 − s2z + r

rz3 − s2z2 − s2rz + 1
where

(2.7) ν =
µ− αr0

1− αµr0
= h(µ) for h(z) =

z − αr0

1− αr0z

and

(2.8) r =
µr0 − α

µ− αr0
=

r0 − αµ

1− r0αµ
= k(αµ) for k(z) =

z − r0

r0z − 1

As α varies over D, so does αµ and so, by formula (2.8), does r = k(αµ). It
follows that by choosing appropriate α we may assume that r = 0. This completes
the proof of

Theorem 2.6 (Normal Form). Every element of P is equivalent, under the two-
sided action of G, to an element of the form

P (z) = µ
z3 − s2z

1− s2z2
, 0 ≤ s < 1, µµ = 1

Note that the left action left the critical points at ±ε while moving the zeros of
P to 0, s, and −s, where, by (2.5), ε and s are related by the formula

(2.9) s2ε4 − (3− s4)ε2 + s2 = 0

3. The Non-Euclidean ellipse

The ellipse in the hyperbolic plane is not a totally familiar object. Using the
projective model of the hyperbolic plane as the lines interior to the absolute conic
< X,X >= −x2

0+x2
1+x2

2 = 0 or the Klein model of the hyperbolic plane x2+y2 < 1,
given by x = x1

x0
, y = x2

x0
, it can be described as, respectively, a conic interior to the

absolute conic (see [9]),or a compact quadratic curve given in orthogonal coordinates
as x2

a2 + y2

b2 = 1, a < 1, b < 1 (see [11]). Schilling proved that the ellipse defined in
this manner is the locus of a point the sum of whose hyperbolic distances from the
two foci are constant.

To see this explicitly, we may use the distance formula in the hyperbolic plane
([5], p. 75):

(3.1) cosh d(A,B) =
1−AB√

1−AA
√

1−BB
, A, B ∈ D

Let A = x+ iy and B± = ±δ. Then the equation of an ellipse with foci at B± is
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(3.2) C = cosh(d(A,B+) + d(A,B−))

= cosh(d(A,B+)) cosh(d(A,B−)) + sinh(d(A,B+)) sinh(d(A,B−))

=
1− δ2x2

(1− r2)(1− δ2)
+

√
(1 + δ2x2 − (1− r2)(1− δ2))2 − 4δ2x2

(1− r2)(1− δ2)

where r2 = x2 + y2. Rearranging terms,

(3.3) C(1− r2)(1− δ2)− (1− δ2x2)

=
√

(1− δ2x2)2 − 2(1 + δ2x2)(1− r2)(1− δ2) + (1− r2)2(1− δ2)2

Upon squaring, cancelling terms and dividing out the common factors, we get

(3.4) (C2 − 1)(1− r2)(1− δ2) = (2C − 2)− (2C + 2)δ2x2

This can now be written in the standard form:

(3.5)
x2

α2
+

y2

β2
= 1, α2 =

C − 1
C + 1

, β2 =
(C − 1)− δ2(C + 1)

(C + 1)(1− δ2)

Eliminating C, we get the equation

(3.6) β2 =
α2 − δ2

(1− δ2)

Viewed as a Euclidean ellipse, this curve has foci at ±s, where

(3.7) s2 = α2 − β2 =
δ2(1− α2)

1− δ2

The Euclidean foci ±s are closer to the center than the non-Euclidean foci ±δ.
Consider the NE polynomial in normal form given in Theorem 2.6. This has

zeros at 0 and ±s. Since one of the roots of P is at 0, we may now apply this result
to the theorem of Daepp, Gorkin and Mortini [2] which states that the envelope of
the Euclidean line segments joining preimages of points on the circle is the ellipse

(3.8) |z − s|+ |z + s| = 1 + s2

or equivalently

(3.9)
x2

α2
+

y2

β2
= 1, α =

1 + s2

2
, β =

1− s2

2

Comparing equation (3.11) with equation (3.9),

(3.10) s2 =
δ2(3− 2s2 − s4)

4(1− δ2)

and so

(3.11) δ2 =
4s2

3 + 2s2 − s4

Thus we have the corollary:
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Corollary 3.1. Let P (z) = µ z3−s2z
1−s2z2 , 0 ≤ s < 1, µµ = 1. Then the curve η

which is the envelope of the family of (Euclidean) line segments joining preimages
of points on the unit circle is a NE ellipse with NE foci at the points ±δ with
δ2 = 4s2

3+2s2−s4

4. Proof of the Main Theorem

We have been considering the disc D as having the Klein metric, for which
geodesics are Euclidean straight line segments. The result we want must be for-
mulated with respect to the Poincaré metric. The relationship can be described as
follows. If we consider the complex plane as the boundary of upper half space H3

with the Poincaré metric ds2 = (dx2
1 + dx2

2 + dx2
3)/x2

3, then the unit hemisphere
model for the hyperbolic plane is given by the unit hemisphere x3 =

√
1− x2

1 − x2
2

with the induced metric. (See [8], page 191) The Klein model, which Milnor refers
to as the projective disc model, is gotten by ignoring the x3 - coordinate. On the
other hand, the Poincaré model is achieved by stereographic projection of the unit
hemisphere onto the disc from the south pole (0, 0,−1). We define a canonical map
relating these two models.

Definition 4.1. The Klein-to-Poincaré map KP : D −→ D is defined by

KP (z) =
z

1 +
√

1− |z|2

The Klein-to-Poincaré map is the unique isometry from the disc D with the
Klein metric to the disc with the Poincaré metric which keeps the ideal boundary
pointwise fixed. It takes the straight line segment between points on the boundary
to the NE geodesic between the same two points. It therefore takes the envelope
described in Corollary 3.1 to the non-Euclidean envelope γ.

Applying the Klein-to-Poincaré map to the focus δ of the curve η, we get the
equation for the focus ε of γ:

(4.1) ε = KP (δ) =
√

3 + 2s2 − s4 −
√

3− s2 − s4

2s
Thus

(4.2) ε2 =
3− s4 −

√
(3− s4)2 − 4s4

2s2

which in turn means that ε2 is a root of the equation s2x2 − (3 − s4)x + s2 = 0.
But this is precisely formula (2.9), and thus the NE foci of the envelope γ are the
critical points of P (z), at least for P (z) in normal form. Since both the envelope
and the critical points of P (z) are preserved under isometries, the proof of Theorem
1.5 is complete.

Daepp, Gorkin and Martini also proved:

Theorem 4.2. Let B(z) = z(z−a)
1−az be a Blaschke product with a 6= 0. Then if z1

and z2 are two points on the unit circle satisfying B(z1) = B(z2), then the line
segment joining them passes through a.

Applying the map KP to such a map one can verify that the NE line segment
joining z1 and z2 passes through the critical point of B, a

1+
√

1−a2 . Since any NE
quadratic polynomial can be transformed into the form B, it follows that:
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Corollary 4.3. The critical point of a NE quadratic polynomial is the point of
intersection of the NE geodesics joining preimages of points on the unit circle.

It is natural to conjecture that the critical points of the general NE polynomial
of degree p are the “non-Euclidean foci” of curve of class p−1; that is, there should
be a non-Euclidean analogue of Siebeck’s theorem. A difficulty to overcome would
be to determine what such a curve should be. Thus one must define what “foci”
and “class” mean in this context.
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