: Elastic Curves and Rods

Curve Straightening

The manifold of closed curves

Let

2={y:[0,1] — M||y| =t #0,y" € L?)

’
b

A= {y € 2[y(0) =~(1),7'(0) =+'(1)}

A is a Hilbert manifold (using, for instance,

1B = %0+~ + [ [ as

FA A — R is defined by

Ay L [0 .
F(J—QﬁA+A¢
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A critical point of FO9 with contrained length
is a critical point of F* for some \ (Lagrange
multiplier). A may be thought of as a length
penalty. Thus if A > 0 arbitrarily long curves
will have high FA values. Very short curves
have high [ k2ds.

FX is a smooth function on a Hilbert manifold,
so it defines a flow via the negative gradient,
called ¢ '

Curve Straightening

Theorem. If A > 0, then FA satisfies the
Palais-Smale condition (C). Therefore, the tra-
Jjectories of —VFA converge to critical points
(or at least have critical points as adherence
points). Furthermore the minimax principle
and Morse theory hold for FA

The theorem applies for M compact, and with
modification for space forms.

The theorem also applies to spaces of curves
of a fixed length.
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Example: In R2, the only closed elastic curves
are coverings of circles and figure-eight curves.
There is precisely one critical point for 7 (\ >
0) of rotation index n = 0; curve-straightening
takes any closed curve of rotation index n to
the n - fold circle. (This demonstrates the
Whitney-Graustein theorem). In rotation index
0, the n - fold coverings of the figure eight
curve are all critical points.

There are no critical points for A = 0, be-
cause dilation reduces total squared curvature.
Curve-straightening cannot satisfy the Palais-
Smale condition in this case, and curves will
expand to infinite length.

*Example from A. Linner, Some properties of
the curve straightening flow in the plane, Trans.
Amer. Math. Soc. 314 (1989), 605-617.

R 6 &8 &
B & 63 9
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Recall the classification theorem of elastic curves
in R3: For each pair of relatively prime in-
tegers (m,n) with m > 2n there is a unique
closed elastic curve (up to congruence)which
lies on an embedded torus of revolution and
represents an (m,n) torus knot.

Using the Palais-Smale condition one can prove
more:

Theorem. Letp and q be a pair of relatively
prime integers with 0 < p < q. Let G be the
group of rotations around the z-axis generated
by rotation through angle 6 = ?—Eﬁ Then there
is a non-circular closed elastica v, , which is
G-symmetric and G-regularly homotopic to the
p-fold circular elastica. It is a minimax critical
point of total squared curvature (and hence
unstable). It is only planar when p = ¢, in
which case it is the figure-eight elastica.

The Hyperbolic Plane

In H2, the closed elastic curves are much more
abundant. In particular, there are critical points
for A = 0; we call such curves fres '

If the curvature of the hyperboliri: plane is &,
. v . sinh™* (1) -
then the circle €' of radius 7 is a free

elastica, called the ‘equator’ of H2. (The name
is by analogy to the equator of the sphere,
which is a free elastica by virtue of being a
geodesic.)
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Free elastic curves can be classified using the
Killing field J(s) = "‘5’.-“—}—}.-’,&". Although rota-
tion fields, translation fields, and horocycle fields
all arise as examples of J, only the rotation
fields are compatible with closed solutions.

Theorem. Let v be a free elastica in HZ2.
Then either ~ is C™ for some m, or v is a
member of the family of solutions {&,,} hav-

ing the following description:

ifm > 1 and n are integers satisfying % <<

n
3/22 there is (up to congruence) a unique curve
{om.n} which closes up in n periods of its cur-
vature k = kg CI"IQ(}‘BS.})) while making m orbits
about the fixed point q of the rotation field J.

ifm > 1 and n are integers satisfying % < % &

‘/75 there is (up to congruence) a unique curve
{om.n} Which closes up in n periods of its cur-
vature k = kg ch("‘—g'—“. p) while making m orbits
about the fixed point q of the rotation field .J.
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Theorem. Let ~v be a regular closed curve
in [H]Q, the hyperbolic plane with curvature .

Then
[ k2 ds > 4my/—C

with equality precisely for the equator C.

Application: Willmore tori of revolution in R3.

For the Chen-Willmore problem, one consid-
ers immersions W : M2 — R3 and the total

squared mean curvature functional

W) = f H2dA

H(W) ./ M

where H is mean curvature and dA is the area
element.

The Willmore conjecture is that H(W) > 272
when M is a torus. Robert Bryant and Ulrich
Pinkall independently observed the following:

Theorem. Let~ be a regular closed curve in
the hyperbolic plane represented by the upper
half plane above the x —axis. If V js the torus
obtained by revolving ~ around the x — axis,
then H(W) = 37 (v)

From the inequality we derive the

Corollary. The Willmore inequality holds for
tori of revolution.

F(y) = [;ﬁ ds > 4n/—C

9/17/2007



There are other ways to relate elastic curves
to Willmore manifolds (critical points for total
squared mean curvature). Let v be critical for
FLin S2. U. Pinkall observed that the inverse
image of ~ under the Hopf map = :S% — §2
is a Willmore torus; stereographic projection
gives a Willmore torus in R3. This gives an
infinite family of embedded Willmore surfaces
in R3: recall the theorem

Theorem. (L-S, 1987) Let )\ be a fixed con-
stant with 0 < ?G. Then for each pair of pos-
itive integers m,n with

m o _ VG
2n V4G — 2
there is a unique elastica "{;}Ln (up to congru-

ence) which closes up in n periods while cross-
ing the equator m times.

Stereographic image of the Hopf torus of p

Beitrige zur Algebra und Geometrie
b . o ) . Contributions to Algebra and Geometry
G. Preissler: Isothermic Surfaces and Hopf Cylinders Volume 44 (2003), No. 1, 1-8.
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