

The manifold of closed curves

Let

$$\Omega = \{\gamma : [0, 1] \longrightarrow M | \|\gamma'\| \equiv \ell \neq 0, \gamma'' \in L^2\}$$
$$\wedge = \{\gamma \in \Omega | \gamma(0) = \gamma(1), \gamma'(0) = \gamma'(1)\}$$

 $\boldsymbol{\Lambda}$ is a Hilbert manifold (using, for instance,

$$\|\gamma\|_{2}^{2} = \gamma(0)^{2} + \gamma'(0)^{2} + \int_{0}^{1} \|\gamma''\|^{2} ds$$

$\mathcal{F}^{\lambda}: \Lambda \longrightarrow \mathbb{R}$ is defined by

$$\mathcal{F}^{\lambda}(\gamma) = \frac{1}{2} \int_{\gamma} k^2 + \lambda \ ds$$

A critical point of \mathcal{F}^0 with contrained length is a critical point of \mathcal{F}^{λ} for some λ (Lagrange multiplier). λ may be thought of as a *length penalty*. Thus if $\lambda > 0$ arbitrarily long curves will have high \mathcal{F}^{λ} values. Very short curves have high $\int k^2 ds$.

 \mathcal{F}^{λ} is a smooth function on a Hilbert manifold, so it defines a flow via the negative gradient, called Curve-Straightening.

Curve Straightening

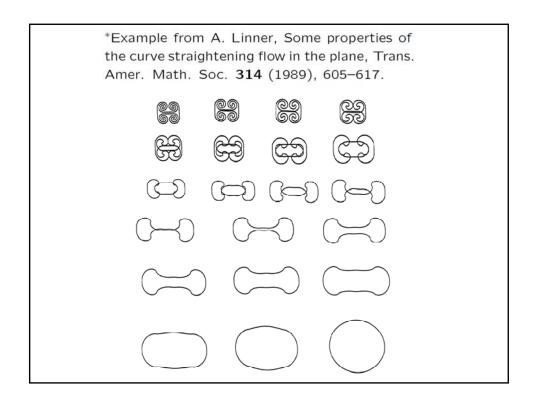
Theorem. If $\lambda > 0$, then \mathcal{F}^{λ} satisfies the Palais-Smale condition (C). Therefore, the trajectories of $-\nabla \mathcal{F}^{\lambda}$ converge to critical points (or at least have critical points as adherence points). Furthermore the minimax principle and Morse theory hold for \mathcal{F}^{λ} .

The theorem applies for M compact, and with modification for space forms.

The theorem also applies to spaces of curves of a fixed length.

Example: In \mathbb{R}^2 , the only closed elastic curves are coverings of circles and figure-eight curves. There is precisely one critical point for \mathcal{F}^{λ} ($\lambda > 0$) of rotation index $n \neq 0$; curve-straightening takes any closed curve of rotation index n to the n - fold circle. (This demonstrates the Whitney-Graustein theorem). In rotation index 0, the n - fold coverings of the figure eight curve are all critical points.

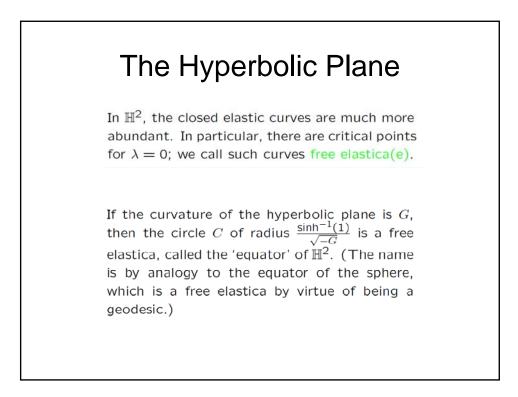
There are no critical points for $\lambda = 0$, because dilation reduces total squared curvature. Curve-straightening cannot satisfy the Palais-Smale condition in this case, and curves will expand to infinite length.



Recall the classification theorem of elastic curves in \mathbb{R}^3 : For each pair of relatively prime integers (m, n) with m > 2n there is a unique closed elastic curve (up to congruence)which lies on an embedded torus of revolution and represents an (m, n) torus knot.

Using the Palais-Smale condition one can prove more:

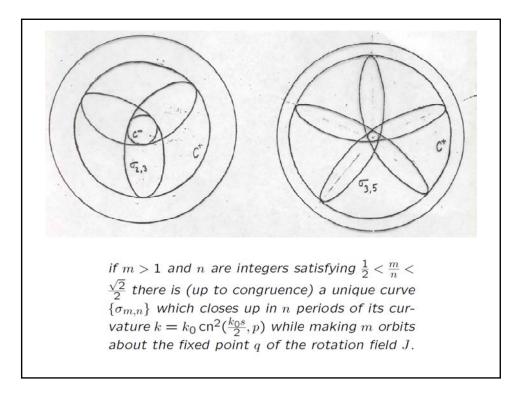
Theorem. Let p and q be a pair of relatively prime integers with $0 . Let <math>\mathcal{G}$ be the group of rotations around the z-axis generated by rotation through angle $\theta = \frac{2\pi p}{p+q}$. Then there is a non-circular closed elastica $\gamma_{p+q,p}$ which is \mathcal{G} -symmetric and \mathcal{G} -regularly homotopic to the p-fold circular elastica. It is a minimax critical point of total squared curvature (and hence unstable). It is only planar when p = q, in which case it is the figure-eight elastica.



Free elastic curves can be classified using the Killing field $J(s) = \frac{k^2}{2}T + k'N$. Although rotation fields, translation fields, and horocycle fields all arise as examples of J, only the rotation fields are compatible with closed solutions.

Theorem. Let γ be a free elastica in \mathbb{H}^2 . Then either γ is C^m for some m, or γ is a member of the family of solutions $\{\sigma_{m,n}\}$ having the following description:

if m > 1 and n are integers satisfying $\frac{1}{2} < \frac{m}{n} < \frac{\sqrt{2}}{2}$ there is (up to congruence) a unique curve $\{\sigma_{m,n}\}$ which closes up in n periods of its curvature $k = k_0 \operatorname{cn}^2(\frac{k_0s}{2}, p)$ while making m orbits about the fixed point q of the rotation field J.



Theorem. Let γ be a regular closed curve in \mathbb{H}^2 , the hyperbolic plane with curvature G. Then

 $\int_{\gamma} k^2 \, ds \ge 4\pi \sqrt{-G}$

with equality precisely for the equator C.

Application: Willmore tori of revolution in \mathbb{R}^3 .

For the Chen-Willmore problem, one considers immersions $\Psi:M^2\longrightarrow\mathbb{R}^3$ and the total squared mean curvature functional

$$\mathcal{H}(\Psi) = \int \int_M H^2 dA$$

where ${\cal H}$ is mean curvature and $d{\cal A}$ is the area element.

The Willmore conjecture is that $\mathcal{H}(\Psi) \ge 2\pi^2$ when *M* is a torus. Robert Bryant and Ulrich Pinkall independently observed the following:

Theorem. Let γ be a regular closed curve in the hyperbolic plane represented by the upper half plane above the x - axis. If Ψ is the torus obtained by revolving γ around the x - axis, then $\mathcal{H}(\Psi) = \frac{\pi}{2}\mathcal{F}(\gamma)$

From the inequality we derive the

Corollary. The Willmore inequality holds for tori of revolution.

$$\mathcal{F}(\gamma) = \int_{\gamma} k^2 \ ds \ge 4\pi \sqrt{-G}$$

There are other ways to relate elastic curves to Willmore manifolds (critical points for total squared mean curvature). Let γ be critical for \mathcal{F}^1 in \mathbb{S}^2 . U. Pinkall observed that the inverse image of γ under the Hopf map $\pi : \mathbb{S}^3 \longrightarrow \mathbb{S}^2$ is a Willmore torus; stereographic projection gives a Willmore torus in \mathbb{R}^3 . This gives an infinite family of embedded Willmore surfaces in \mathbb{R}^3 : recall the theorem

Theorem. (L-S, 1987) Let λ be a fixed constant with $0 \leq \frac{8}{7}G$. Then for each pair of positive integers m, n with

$$\frac{m}{2n} < 1 - \frac{\sqrt{G}}{\sqrt{4G - 2\lambda}}$$

there is a unique elastica $\gamma_{m,n}^{\lambda}$ (up to congruence) which closes up in n periods while crossing the equator m times.

